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Abstract

Epidermal function is regulated by numerous exogenous and endogenous

factors, including age, psychological stress, certain skin disorders, ultraviolet

irradiation and pollution, and epidermal function itself can regulate cutaneous

and extracutaneous functions. The biophysical properties of the stratum cor-

neum reflect the status of both epidermal function and systemic conditions.

Type 2 diabetes in both murine models and humans displays alterations in epi-

dermal functions, including reduced levels of stratum corneum hydration and

increased epidermal permeability as well as delayed permeability barrier

recovery, which can all provoke and exacerbate cutaneous inflammation.

Because inflammation plays a pathogenic role in type 2 diabetes, a therapy that

improves epidermal functions could be an alternative approach to mitigating

type 2 diabetes and its associated cutaneous disorders.
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Highlights

• Individuals with type 2 diabetes display epidermal dysfunction.

• Epidermal dysfunction can provoke cutaneous and extracutaneous

inflammation.

• Because of the pathogenic role of inflammation in type 2 diabetes, improve-

ments in epidermal functions could benefit type 2 diabetes.

1 | INTRODUCTION

Diabetes is a common disorder with a worldwide preva-
lence of 9.3%, 90% of which are cases of type 2 diabetes.1

The prevalence of type 2 diabetes is higher in males than
in females,2 and older individuals (aged >60 years) have
a higher prevalence than young people.3 Over 20% of
individuals aged ≥65 years are diagnosed with type 2 dia-
betes.4 The estimated occurrence of type 2 diabetes was

0.67 per 1000 subjects aged 10 to 19 years in the
United States in 2017,5 and living in rural areas and/or
having a higher education level lowers the risk for type
2 diabetes.3,6 In addition to its frequency, type 2 diabetes
is further complicated by a number of comorbidities such
as cardiovascular disorders, obesity, neuropathy, and
nephropathy.7–10 Moreover, cutaneous comorbidities are
also common in patients with diabetes. About 79% of
patients with either type 1 or 2 diabetes have at least one

Received: 31 May 2022 Revised: 14 July 2022 Accepted: 30 July 2022

DOI: 10.1111/1753-0407.13303

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Journal of Diabetes published by Ruijin Hospital, Shanghai JiaoTong Uni-

versity School of Medicine and John Wiley & Sons Australia, Ltd.

586 Journal of Diabetes. 2022;14:586–595.wileyonlinelibrary.com/journal/jdb

https://orcid.org/0000-0002-0957-4903
mailto:mqman@hotmail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jdb


TABLE 1 Changes in epidermal functions in humans and animals with type 2 diabetes

Models
Epidermal permeability
barrier function SC hydration Skin surface pH References

Animal models

Otsuka Long-Evans
Tokushima Fatty
Rats

No changes in baseline
TEWL.

Barrier recovery was normal
in 20-week-old rats;

Delayed recovery at 3 and
6 h in 30- and 45-week-old
rats;

Slower barrier recovery in
rats with higher levels of
HbA1c (>6.5%) than those
with lower HbA1c (≤6.5%)
at 3 h;

Decreased SC integrity at age
of 45 weeks.

Decreased at age of
45 weeks.

ND 14

C57BLKS/J-db/db
mice

No changes in baseline
TEWL.

Delayed recovery at both 3
and 6 h.

No changes Increased 15

KK-Ay/TaJcl mice No changes in baseline
TEWL.

Low hydration ND 37,42

STZ-induced T2D
miceb

No changes in baseline
TEWL in T2D;

Increased TEWL in T1D

Low hydration;
No changes in T1D

ND 37

C57BLKS/J-db/db
mice

Low baseline TEWL Low hydration ND 31

Humans

Patients with T2D Decreased baseline TEWL;
Delayed recovery at 3 h.

Decreased;
SC hydration levels
correlated negatively with
HbA1c levels.

ND 14

38 patients with T2D
and 11 patients with
T1D

TEWL was significantly
lower in high HbA1c
(>5.8%) than in low
HbA1c (<5.8%). TEWL
was higher in young
(<45 years old) than in old
patients (>45 years old).

Similar hydration between
high HbA1c (>5.8%) and
low HbA1c (<5.8%). But
hydration conversely
correlated with FPG levels

ND 17

35 patients with T2D
and 7 patients with
T1D

Lower TEWL in diabetic
patients than in the
controls.

Patients with peripheral
autonomic neuropathy had
lower TEWL than those
without peripheral
autonomic neuropathy.

TEWL negatively correlated
with age in controls, not in
diabetic patients.

ND ND 19

34 patients with T2D
and 4 patients with
T1D

No changes in baseline
TEWL.

No differences ND 20

(Continues)
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kind of skin disorders, including cutaneous infections
(48%), xerosis (26%), and inflammation (21%).11 Acantho-
sis nigricans, skin tags, and chronic ulcers are also com-
mon cutaneous manifestations in type 2 diabetic
patients.12,13 Additionally, changes in epidermal func-
tions, reflected by variations in biophysical properties,
have been demonstrated in both animal models and
humans with type 1 and 2 diabetes. This review
summarizes these epidermal functional alterations in
type 2 diabetes and discusses some implications for the
management of this disease.

2 | ALTERATIONS IN EPIDERMAL
FUNCTIONS

2.1 | Epidermal permeability barrier

Epidermal permeability barrier function is regulated by a
number of exogenous and endogenous factors such as
age, gender, some skin disorders, ultraviolet irradiation,
and air pollution. An altered epidermal permeability bar-
rier is observed in both human diabetic patients and
murine models of type 2 diabetes (Table 1). For example,
epidermal permeability barrier recovery is delayed in
Otsuka Long-Evans Tokushima Fatty rats, a model of
type 2 diabetes, at 30 weeks of age, although no changes

in either baseline transepidermal water loss or barrier
recovery rate were observed in rats younger than
30 weeks old.14 Similar results were observed in db/db
mice, another murine model of type 2 diabetes.15 More
prominent delays in barrier recovery were observed in
diabetic rats with higher circulating levels of hemoglobin
A1c (HbA1c) (>6.5%) than in those with low HbA1c
(<6.5%). Ibuki et al16 reported that baseline transepider-
mal water loss (TEWL) rates, an indicator of epidermal
permeability barrier function, were significantly higher in
obese diabetic patients than in the normal controls (14.27
vs. 11.30 g/m2/hr), suggesting a link between type 2 diabe-
tes and epidermal permeability barrier dysfunction. In
contrast, another study showed lower baseline TEWL
rates on the forearm of diabetic patients (mix of type
2 diabetes and type 1 diabetes) with high HbA1c (>5.8%)
than those with low HbA1c (<5.8%) (p < 0.05).17 Like-
wise, another study showed that baseline TEWL rates
were lower in diabetic patients with high HbA1c (>6.5%),
and insulin injections increased TEWL rates.18 Other
studies showed that baseline TEWL rates were either
unchanged or significantly lower in both humans and
murine models of Type 2 diabetes.15,17,19,20 The variation
of results among these studies could be the result of the
differences in the individual health conditions of each
patient, including HbA1c levels, duration of diabetes, and
whether patients had any peripheral neuropathy.

TABLE 1 (Continued)

Models
Epidermal permeability
barrier function SC hydration Skin surface pH References

Obese diabetic
patientsa

Significantly high baseline
TEWL

Significantly low Higher 16

68 patients with T2D
and 5 patients with
T1D

Overall, no differences in
baseline TEWL.

Overall, no differences.
Significantly low in patients
with either uncontrolled
FPG or neuropathy than
those with controlled FPG
or without neuropathy.

ND 18

22 patients (both T2D
and T1D)

No differences in baseline
TEWL.

Significantly low ND 57

40 patients with T2D
and 17 patients with
T1D

No differences in baseline
TEWL.

Significantly low; Negatively
associated with
neuropathy

43

Patients with T2D Increased baseline TEWL. ND ND 56

Patients with T2D No differences No differences Higher skin pH in inguinal
and axillary regions
(lymph nodes)

36

Abbreviations: FPG, fasting plasma glucose; ND, no differences; SC, stratum corneum; STZ, streptozotocin; T1D, Type 1 diabetes; T2D, type 2 diabetes; TEWL,
transepidermal water loss.
aPaper did not mention which type of diabetes.
bStreptozotocin injection to newborn mice.
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For example, TEWL rates were lower in patients with
either higher HbA1c levels or neuropathy.17,19 High
HbA1c levels indicate a higher level of glucose over a
prior 2–3-month period. In keratinocyte cultures, a high
concentration of glucose (20 mM) enhances calcium-
induced keratinocyte differentiation,21 whereas topical
glucose increases filaggrin and claudin-1 expression in
NC/Nga mice.22 Stimulation of keratinocyte differentia-
tion benefits epidermal permeability barrier function.
Thus, a diabetic patient's lower TEWL rate may be owing
to their higher plasma glucose levels, but a correlation of
TEWL rates with plasma glucose levels has not been
completely assessed. Because the data on TEWL in dia-
betic patients are limited, additional studies are needed
to determine the changes in epidermal permeability bar-
rier in individuals with diabetes.

Although the precise underlying mechanisms contrib-
uting to the altered epidermal permeability barrier func-
tion in type 2 diabetes are not clear, evidence points to
several potential processes. Our previous studies demon-
strated that both vascular endothelial growth factor and
antimicrobial peptides (β-defensin and cathelicidin-
related antimicrobial peptides) are required for epidermal
permeability barrier homeostasis,23,24 whereas high glu-
cose (a symptom of diabetes) decreases expression levels
of vascular endothelial growth factor, β-defensin, and
cathelicidin in keratinocytes in vivo and in vitro.25 More-
over, both connexin 43 and tight junction proteins
(including zonula occludens-1 and occludin) are also
required for a competent epidermal permeability
barrier.26–28 A high concentration of glucose (30 mM)
also downregulates connexin 43 expression, resulting in

reductions in zonula occludens-1 and occluding levels in
rat retinal endothelial and in human airway epithelial
cell cultures, and is accompanied by increased airway
epithelial permeability.29,30 Furthermore, mouse models
of type 2 diabetes exhibit increased short and medium
chain fatty acid contents,31 in addition to reductions in
overall epidermal lipid synthesis.14 Because either exces-
sive fatty acids or decreased epidermal lipid content can
compromise epidermal permeability barrier function,32,33

increased epidermal fatty acids can result in delayed per-
meability barrier recovery in patients with type 2 diabetes.
In addition, expression levels of loricrin and filaggrin are
decreased in diabetic mice.34 In vitro study showed that
high glucose inhibited the expression levels of transglutami-
nase 1 and loricrin in keratinocyte cultures.35 Thus,
decreased expression levels of differentiation-related marker
proteins can contribute to delayed permeability barrier
recovery. The delayed permeability barrier recovery in mice
and humans with type 2 diabetes can be attributed to ele-
vated skin surface pH (discussed later),15,16,36 and reduced
hyaluronic acid,37 which is required for epidermal lipid pro-
duction, keratinocyte differentiation, and proliferation.38

Finally, psychological stress can downregulate antimicrobial
peptide expression levels and epidermal lipid synthesis,39–41

leading to delayed permeability barrier recovery. Thus, the
compromised epidermal permeability barrier function in
patients with type 2 diabetes can be attributed to reductions
in expression levels of antimicrobial peptides, connexin
43, and vascular endothelial growth factor, differentiation-
related proteins and increases in skin surface pH and fatty
acid content, as well as to increased psychological stress
(Table 2).

2.2 | Stratum corneum hydration

Stratum corneum hydration levels are reduced in both
murine models and humans with type 2 diabetes
(Table 1). For example, significantly low levels of stratum
corneum hydration were observed in several murine
models of type 2 diabetes (streptozotocin-induced nono-
besity and obesity diabetes [KK-Ay/TaJcl] mice and
C57BLKS/J-db/db mice).33,37,42 Similarly, patients with
type 2 diabetes exhibit low levels of stratum corneum
hydration in comparison to subjects without diabe-
tes.15,16,43 However, some studies did not show changes
in stratum corneum hydration levels in diabetes
vs. controls in either humans or mice.15,20,36 These vary-
ing results could be because of differences in experimen-
tal methodology and other health conditions of the
subjects. For example, in Otsuka Long-Evans Tokushima
Fatty rats, reduced stratum corneum hydration was
observed only in older rats (45-week-old), not in younger

TABLE 2 Possible underlying mechanisms responsible for

altered epidermal functions in type 2 diabetes

Altered functions
Possible underlying
mechanisms

Delayed permeability barrier
recovery

#Keratinocyte differentiation
#Epidermal lipid production
#Antimicrobial peptides
#Hyaluronic acid
#Vascular endothelial growth
factor

#Tight junction proteins
"Stratum corneum pH
"Psychological stress

Decreased stratum corneum
hydration

#Sebum content
#Hyaluronic acid
#Epidermal lipid production
#Proteins
#Aquaporin 3

Elevated skin surface pH #Sebum content
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rats.14 Thus, stratum corneum hydration can be normal
in young db/db mice,15 but a significant reduction
develops later.31 In humans with type 2 diabetes, only
patients with fasting blood glucose level of >7 mM/L dis-
play reduced levels of stratum corneum hydration.18

Likewise, another study showed that high-frequency con-
ductance, an indicator of stratum corneum hydration, is
lower in patients with fasting blood glucose levels of
>110 mg/dL than in those patients with levels <110 mg/
dL. But high-frequency conductance did not differ signifi-
cantly in patients with high (>5.8%) versus low (<5.8%)
HbA1c levels.17 Hence, a diabetic patient can exhibit nor-
mal levels of stratum corneum hydration if his/her fast-
ing blood glucose levels are in (or close to) a normal
range.

Different metabolic changes can contribute to
reduced stratum corneum hydration in type 2 diabetes.
First, our previous studies demonstrated that skin surface
lipids (sebum from sebaceous glands) are a key determi-
nant for hydration.44,45 Skin surface lipid content is
markedly lower in type 2 diabetic patients with low stra-
tum corneum hydration and higher fasting blood glucose
levels (>110 mg/L).17 (Note: the different measurement
standards shown here are due to different methodologies
used in studies featured here.) Second, aquaporin 3 defi-
ciency can cause a reduction in stratum corneum hydra-
tion.46 Expression levels of cutaneous aquaporin 3 are
decreased in db/db mice,47 suggesting a pathogenic role
for reduced aquaporin 3 in type 2 diabetes-associated dry
skin. Third, during epidermal maturation, proteins are
degraded to amino acids, which serve as natural moistur-
izers in the stratum corneum,48 and stratum corneum
hydration levels correlate positively with amino acid con-
tent in the stratum corneum.49 Both mice and humans
with type 2 diabetes display higher blood glucose levels,
and high concentrations of glucose (12 mM) inhibit kera-
tinocyte proliferation and protein synthesis compared to
low concentrations of glucose (6 mM).50 Hence, the
decreased keratinocyte proliferation and protein synthe-
sis can be attributed to the reduced stratum corneum
hydration in type 2 diabet patients. Fourth, topical or oral
administrations of hyaluronic acid both improve stratum
corneum hydration,51–53 whereas hyaluronic acid levels
in the plasma of diabetic mice are 25–70% lower than
that of their respective controls, possibly because of
increased hyaluronidase activity.37 Finally, stratum cor-
neum lipid content is decreased by over 60% in patients
with type 2 diabetes vs. normal controls,15 whereas stra-
tum corneum lipids (originating from keratinocytes), par-
ticularly ceramides, are one of the major natural
moisturizers in the skin.54 Collectively, multiple endoge-
nous factors can contribute to the reduction in stratum
corneum hydration levels in type 2 diabetes (Table 2).

2.3 | Skin surface pH

Although diabetes-associated changes in skin surface pH
have not been thoroughly researched, all recent studies
that measured skin surface pH demonstrated a higher
skin surface pH in both mice and humans with type 2
diabetes.15,16,36 The underlying mechanisms are not clear.
However, low sebum content in patients with type 2 dia-
betes can explain, in part, the elevated skin surface pH
because of the known negative correlation of sebum con-
tent with skin surface pH.17,55 In conclusion, the bulk of
evidence mentioned previously indicates that alterations
in epidermal functions commonly occur in type 2 diabetes
(Table 1).56–58

Another noticeable change is the decreased epider-
mal thickness in diabetic rats (61.62 ± 13.48 μm
vs. 71.71 ± 19.50 μm, p < 0.0001),59 possibly owing to
inhibition of keratinocyte proliferation by high glu-
cose.21,50 For example, culture of human keratinocytes
with 12 mM glucose increased mean cell population
time from 3.65 days (cultured in medium with 6 mM
glucose) to 5.43 days.50 Chao et al reported that reduced
epidermal thickness was observed only in patients with
diabetic complications such as ulcer and neuropathy,
not in those without complications, in humans.60 Thus,
type 2 diabetes-associated changes in epidermal thick-
ness remain to be explored.

3 | CONSEQUENCES OF ALTERED
EPIDERMAL FUNCTIONS

3.1 | Epidermal dysfunction provokes
cutaneous inflammation

Previous studies have shown that epidermal functional
abnormalities can provoke and exacerbate cutaneous
inflammation, potentially leading to systemic inflamma-
tion. For instance, reduced stratum corneum hydration
leads to increased levels of cytokines and histamine,
accompanied by inflammatory infiltration in the skin.61

A lower level of stratum corneum hydration occurs with
type 2 diabetes,37 provoking an increased density of mast
cells (a sign of inflammation) in the skin. Moreover,
either increased histamine and/or cytokines can induce
pruritus. Correspondingly, 90% of patients with type
2 diabetes experience chronic itch, the intensity of
which correlates with fasting plasma glucose levels.62

Pruritus-caused scratching can further damage the stra-
tum corneum, the critical structure for effective epider-
mal permeability and antimicrobial barrier function.
Although a disrupted epidermal permeability barrier can
be rapidly repaired in normal skin, its recovery is delayed
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in the skin of patients with type 2 diabetes, as noted
earlier. Disruption of the epidermal permeability bar-
rier increases cutaneous cytokine releases and inflam-
matory infiltration.63–65 Prolonged dry skin and
repeated scratching make the skin constantly release
cytokines. Sustained release of cytokines from the skin
can eventually increase cytokine levels in the circulation,
leading to systemic inflammation (a vicious circle).65

Furthermore, elevated skin surface pH alone can delay
epidermal permeability barrier recovery and worsen
cutaneous inflammation.66,67 Diabetes is featured by
high glucose levels, which alone can increase secretion
of cytokines by keratinocytes,68 and contribute, in part,
to epidermal dysfunction,14,15,17,50,57 whereas epidermal
dysfunction can result in cutaneous and systemic
inflammation.63–67 Because of the pathogenic role of
inflammation in type 2 diabetes,69,70 the feedback loop
of high glucose-epidermal dysfunction-inflammation can
worsen underlying disease (Figure 1).

3.2 | Link between cutaneous
inflammation and type 2 diabetes

Type 2 diabetes has been considered as an
inflammation-driven disorder,69,70 and serum levels of
proinflammatory cytokines are increased in patients
with inflammatory dermatoses such as atopic dermatitis
and psoriasis.71–73 Clinical evidence has linked cutane-
ous inflammation to the development of type 2 diabetes.
Epidemiological studies show that the risk of type 2 dia-
betes in subjects with psoriasis is higher than those
without psoriasis (age-adjusted relative risk 1.21, 95%
confidence interval [CI] 1.01–1.44; body mass adjusted
relative risk 1.64, 95% CI 1.23–2.18).74,75 Prurigo nodu-
laris, another inflammatory dermatosis, is also associ-
ated with type 2 diabetes (adjusted odds ratio 1.37; 95%
CI 1.22–1.54).76 A link between atopic dermatitis and
type 2 diabetes has also been demonstrated, with an
odds ratio of 1.52 (95% CI 1.16–1.99) although some
studies showed reduced odds of type 2 diabetes in
patients with atopic dermatitis (odds ratio 0.78; 95% CI
0.71–0.84).77,78 The reduced odds ratio in some patients
with atopic dermatitis could be because those patients
had already received anti-inflammatory treatment. In
comparison to psoriasis, patients with atopic dermatitis
experience more severe pruritus,79,80 promoting them to
seek medical care, including administration of anti-
inflammatory agents such as glucocorticoids. Anti-
inflammatory therapies can mitigate type 2 diabetes,
which could explain the lack of a significant association
of atopic dermatitis with type 2 diabetes observed in
some studies.81,82

3.3 | Association of inflammation with
diabetes

Inflammation, originating partly from adipose tissue, has
been considered a trigger of inflammaging, resulting in
insulin resistance and the development of type 2 diabe-
tes.69 Accordingly, anti-inflammation regimens have
been deployed to effectively treat type 2 diabetes. For
example, blood HbA1c levels were markedly reduced in
patients with poorly controlled type 2 diabetes (95% CI
�1.09–0.13, p < 0.05 vs. placebo), following orally admin-
istered diacerein, an inhibitor of proinflammatory cyto-
kines, at a dosage of 100 mg once-daily for 24 weeks.83

And following anti-inflammation treatment, 7 out of
43 patients in the treated group were able to reduce their
insulin dosage, whereas 10 out of 41 patients in the pla-
cebo group increased insulin dosage. Similarly, Tres
et al84 showed that oral administration of 50 mg diacer-
ein twice-daily for 12 weeks decreased HbA1c levels with
an adjusted difference (age, gender, and duration of dis-
ease) of �0.98% (95% CI �2.02–0.05) in comparison to a

FIGURE 1 Impact of epidermal dysfunction and inflammation

feedback loop on type 2 diabetes. Diabetic patients display

epidermal dysfunction, including reduced stratum corneum

hydration, delayed permeability barrier recovery, and elevated skin

surface pH. Although it is not clear whether type 2 diabetes is the

cause or the result of epidermal dysfunction, these two can

negatively affect each other. Uncontrolled diabetic patients have

high blood glucose levels, and high glucose can reduce natural

moisturizer and lipid content in the epidermis, resulting in lower

stratum corneum hydration and compromised epidermal

permeability barrier homeostasis. Both reduced stratum corneum

hydration and high glucose levels can also provoke inflammation,

resulting in pruritus. Pruritus-caused scratching damages

permeability barrier, exacerbating cutaneous inflammation and

worsening pruritus. Sustained cutaneous inflammation can cause

inflammaging, leading to the development or aggravation of type

2 diabetes. Thus, improvements in epidermal functions, including

stratum corneum hydration, permeability barrier and skin surface

pH, can alleviate pruritus and cutaneous inflammation and

ultimately benefit patients with type 2 diabetes
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placebo-treated group. More profound reductions in
HbA1c levels were observed in patients with a disease
duration of <14 years (�1.3%, 95% CI �2.3 to �0.4,
p < 0.01 vs. placebo). More subjects in the diacerein-
treated group exhibited lower plasma tumor necrosis fac-
tor alpha (TNFα) levels (1.46 pg/mL) than those in the
placebo-treated group (66% vs. 34%, relative risk 95% CI
1.04–2.1, p < 0.05). Several clinical trials demonstrated
diacerein-induced reductions in fasting blood glucose
levels in patients with type 2 diabetes.85 Other anti-
inflammatory agents such as interleukin (IL)-1 receptor
blockers, IL-1β, and TNF antagonists have also been
shown to lower fasting blood glucose levels, while
increasing insulin sensitivity and insulin secretion,
although these are debated findings.86 Collectively, accu-
mulating data supports a pathogenic role for inflamma-
tion in type 2 diabetes.

4 | PERSPECTIVE

It is now widely accepted that aging-associated chronic
low-grade inflammation, also termed “inflammaging,”
contributes to the development of various aging-
associated disorders, including type 2 diabetes.69,70,86,87

Inflammaging can derive from a number of sources,
including senescent macrophages in the adipose tissue,
responses of immune cells to accumulation of damaged
macromolecules, and microbial constituents, as well as
secretion of proinflammatory cytokines by senescent
cells.88,89 Although inflammation from these sources can
increase circulating levels of proinflammatory cytokines
in the elderly, the contribution of the skin (surface area-
wise, the largest organ of the body) to inflammaging has
been underestimated to date. Because of its vast size
(≈2 m2 surface area and 15% of body weight),90 with only
mild inflammation, the skin alone can potentially pro-
voke a low-grade systemic inflammation. Indeed, all aged
humans display some signs and symptoms of inflamma-
tion in their skin. For example, over 45% of individuals
aged >60 years exhibit xerosis,91 which can increase
cutaneous inflammatory infiltration and cytokine
production,61,92 and 25% of the aged population has
chronic pruritus,93 an indicator of cutaneous inflamma-
tion. As noted previously, sustained cutaneous inflamma-
tion can eventually increase circulating levels of
proinflammatory cytokines. Thus, the cutaneous origin
of inflammation in aged individuals can be a source of
inflammaging. In line with this assumption, we demon-
strated that expression levels of cytokines are increased
in both the skin and the circulation of aged mice com-
pared to young mice, while improving epidermal func-
tion with either topical glycerol or petrolatum lowers

cytokine levels in both the skin and circulation.65 Like-
wise, improvements in epidermal function with a topical
emollient (Atopalm® MLE cream) lower the levels of
cytokines in the circulation of aged humans.94 Dysfunc-
tion of cutaneous macrophages can also contribute to
inflammaging and age-associated disorders.95,96 Although
whether epidermal dysfunction is linked to altered mac-
rophage function in the skin is unknown, these lines of
evidence suggest the skin's contribution to both inflam-
maging and type 2 diabetes.

As mentioned, the skin of people with type 2 diabetes
displays epidermal dysfunction, which can provoke and
exacerbate cutaneous inflammation, leading to elevation
in circulating cytokine levels. Therefore, correction of
epidermal dysfunction and alleviation of pruritus are piv-
otal in the management of type 2 diabetes and possibly
other inflammaging-associated disorders.

In summary, individuals with type 2 diabetes dis-
play epidermal dysfunction, including delayed perme-
ability barrier recovery, increased skin surface pH and
reduced stratum corneum hydration, which can all
induce and worsen cutaneous inflammation. Although
it is not clear whether type 2 diabetes causes epidermal
dysfunction, or vice versa, prolonged, constant cutane-
ous inflammation can eventually result in systemic
inflammation, potentially leading to exacerbation of
inflammaging-associated disorders such as type 2 diabe-
tes. Coupled with the evidence that topical emollients
lower cytokine levels in both the skin and the circula-
tion, improvements in epidermal functions could be a
valuable approach to mitigating inflammaging and its
associated disorders, including type 2 diabetes, in the
elderly. However, proper clinical trials are required to
validate this hypothesis.
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