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ABSTRACT
Background: Chikungunya virus (CHIKV) is a mosquito-borne pathogen, within the
Alphavirus genus of the Togaviridae family, that causes ~1.1 million human
infections annually. CHIKV uses Aedes albopictus and Aedes aegypti mosquitoes as
insect vectors. Human infections can develop arthralgia and myalgia, which results in
debilitating pain for weeks, months, and even years after acute infection.
No therapeutic treatments or vaccines currently exist for many alphaviruses,
including CHIKV. Targeting the phagocytosis of CHIKV by macrophages after
mosquito transmission plays an important role in early productive viral infection in
humans, and could reduce viral replication and/or symptoms.
Methods: To better characterize the transcriptional response of macrophages during
early infection, we generated RNA-sequencing data from a CHIKV-infected human
macrophage cell line at eight or 24 hours post-infection (hpi), together with mock-
infected controls. We then calculated differential gene expression, enriched
functional annotations, modulated intracellular signaling pathways, and predicted
therapeutic drugs from these sequencing data.
Results:We observed 234 pathways were significantly affected 24 hpi, resulting in six
potential pharmaceutical treatments to modulate the affected pathways. A subset
of significant pathways at 24 hpi includes AGE-RAGE, Fc epsilon RI, Chronic
myeloid leukemia, Fc gamma R-mediated phagocytosis, and Ras signaling. We found
that the MAPK1 and MAPK3 proteins are shared among this subset of pathways
and that Telmisartan and Dasatinib are strong candidates for repurposed small
molecule therapeutics that target human processes. The results of our analysis can be
further characterized in the wet lab to contribute to the development of host-based
prophylactics and therapeutics.
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INTRODUCTION
Chikungunya virus (CHIKV) infects approximately 1.1 million people per year in over 100
countries worldwide (Goupil & Mores, 2016), with over one billion people at-risk of
becoming infected with the virus due to the presence of the required mosquito vector in
tropical and subtropical climates (Nasci, 2014; Nsoesie et al., 2016; Goupil & Mores, 2016).
CHIKV infections were primarily observed in India prior to 2015 when it emerged in
the Western Hemisphere, which may be at least partially attributable to the role of Aedes
albopictus mosquitoes as active transmission vectors in addition to Aedes aegypti,
which had been considered the primary vector (Pagès et al., 2009; Delatte et al., 2010).
CHIKV is an arthrogenic alphavirus, which can cause chronic rheumatoid arthritis-like
symptoms in the peripheral joints of some patients, likely caused by viral presence in the
joint tissue (Nakaya et al., 2012; Lounibos & Kramer, 2016). The name of the virus itself
means “that which bends up”, referring to the painful posture of those who develop
chronic sequelae after acute infection. Currently, no cure, treatment, or vaccine exists for
most alphaviruses, including CHIKV.

The host immune response, which includes the rapid recruitment of macrophages, is
initiated shortly after the virus infects a human via a mosquito vector (Haist et al., 2017).
CHIKV initially invades stromal cells bypassing their intracellular defense mechanisms
to induce apoptosis (Srivastava et al., 2020). Cellular apoptosis is advantageous to the
virus which is ensconced within the produced apoptotic blebs that get consumed by
phagocytic cells including macrophages (Srivastava et al., 2020). Within the monocytes,
the virus is stabilized and begins to replicate preceding the acute phase of infection
(Sourisseau et al., 2007; Wikan et al., 2012; Srivastava et al., 2020). Infected macrophages
then operate as transporters for the virus, collecting in peripheral tissues, and serving as a
possible mechanism for the severe joint pain associated with CHIKV infection (Her
et al., 2010; Srivastava et al., 2020). Chronic CHIKV-infections still have detectable
amounts of infected macrophage cells in their synovial tissue (Her et al., 2010). This
process enables the virus to go through multiple rounds of infection in macrophages and
other cells, which contributes to the onset of symptoms and pathogenesis. As such,
maximizing the antiviral response in the macrophage to reduce virion production and/or
escape during acute infection could lead to a host-based therapeutic strategy with smaller
risks of the emergence of resistance in the future—especially when compared to antiviral
strategies that strictly target viral proteins.

The aims of the current study are two-fold: (1) to gain a better understanding of the
intracellular transcriptional response to CHIKV infection in human macrophages at 8
and 24 hpi, and (2) to apply that mechanistic knowledge to predict existing drugs that
could be repurposed as either prophylactic or therapeutic treatments to minimize viral
replication and spread from macrophages. Specifically, we calculated statistically
significant differentially expressed genes (DEGs), functional gene annotations, and
intracellular signaling pathways to improve our understanding of how macrophages
respond to CHIKV infection. We then mined this information to predict existing
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therapeutic treatments that could be repurposed to reverse key host-pathogen interactions
to reduce virus replication, infection, and pathogenesis. To our knowledge, this is the first
RNA-seq experiment involving CHIKV infection of cultured human macrophages.
The results obtained from this study contribute to ongoing efforts to develop effective
prophylactics and/or therapeutic treatments.

MATERIALS AND METHODS
Cell infection
Macrophages were differentiated from the U937� human monocyte cell line and infected
with CHIKV as described previously (Guerrero-Arguero et al., 2020). Briefly, monocytes
were propagated with fetal bovine serum (FBS), Penicillin/Streptomycin, L-glutamine,
and HEPES buffer. The cells were then cultured in T-75 culture flasks at 37 �C before
being transferred to six-well tissue culture plates. Cells were then induced to become
adherent macrophages by exposing them to phorbol 12-mystrate 13-acetate (PMA) and
incubating in 3 mL of RPMI 1640 complete media at 37 �C for 24 h. PMA-differentiated
U937 monocyte-derived macrophages were then transferred to 12-well tissue culture
plates prior to infection with the CHIKV-LR strain at 0.1 multiplicity of infection (MOI)
and incubated at 37 �C with 5% CO2 for 2 h. The virus-containing media was then
removed prior to washing the cells three times with PBS and adding fresh media prior
to incubation. Mock-infected cells were incubated using the same protocol and reagents,
and only lacked the presence of virus.

RNA extraction and RNA-sequencing
Biological replicates, in duplicate, of CHIKV-infected and mock-infected macrophages
were harvested at eight and 24 h post-infection (hpi) by removing the supernatant and
washing with PBS. RNA was extracted from all duplicate samples using Trizol reagent
according to the manufacturer’s protocol as performed previously (Guerrero-Arguero
et al., 2020). A NanoDrop instrument was then used to quantify the concentration of
RNA as approximately 1.8 ng/µL for each sample. Reverse transcription of the RNA into
cDNA was then performed prior to generating Nextera XT sequencing libraries and
samples were barcoded for multiplexing. The concentration of post-capture libraries for
the sample pools ranged from 0.02 to 0.3 ng/µL. An Illumina NovaSeq instrument was
then used to produce paired-end 150 bp reads for each sample for downstream
analysis. An average of ~40 million reads were collected from the control samples, with
~11 million collected from the eight hpi samples and ~188 million collected from the
24 hpi samples.

Statistical power analysis
The Scotty tool was used to confirm the sequencing depth and number of samples were
above what was necessary to achieve sufficient statistical power (Busby et al., 2013).
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RNA-seq data preprocessing
The fastq files containing the RNA-sequencing data were subjected to analysis by the
Snakemake-based Automated Reproducible MOdular Workflow for Preprocessing and
Differential Analysis of RNA-seq Data (ARMOR) software. Specifically, the fastq files,
associated metadata, and a configuration file for each dataset were used as input to the
ARMOR workflow (Orjuela et al., 2019). This workflow, which uses the python-based
Snakemake workflow language (Köster & Rahmann, 2018), performs the following steps:
trimming reads with TrimGalore (Krueger et al., 2021), performing quality control with
FastQC (s-andrews, 2021), mapping and quantifying reads to the human GRCh38
transcriptome with Salmon (Patro et al., 2017), generating DEG lists with edgeR
(Robinson, McCarthy & Smyth, 2010), performing GO enrichment with Camera (Wu &
Smyth, 2012), and identifying significant splice variants from the detected transcripts with
DRIMseq (Nowicka & Robinson, 2016).

Signaling pathway enrichment
The DEGs from ARMOR were then used as input to the signaling pathway impact analysis
(SPIA) algorithm to identify intracellular signaling pathways that were significantly
enriched with DEGs (Tarca et al., 2009). SPIA implements a bootstrapping approach to
generate a null distribution for DEGs in each pathway, then uses the null distribution to
calculate the significance threshold. Over 1,500 public signaling pathways from the KEGG,
Reactome, NCI, BioCarta, and Panther databases were used to test for enrichment.
The regulatory patterns from these analyses were then cross-referenced to the Open
Targets (opentargets.org) database to identify known drug targets that were present in each
of the significant pathways, and which could be repurposed as host-based therapeutics for
CHIKV.

Drug repurposing and ranking
To increase the number of high-confidence potential therapeutics, a ranking strategy
was implemented. For this study, a focus on small molecules was justified to facilitate
ease of therapeutic distribution in geographical regions lacking adequate cold-storage
resources. To simplify the multiple characteristics that were considered in the ranking of
the results, a numerical score that represents a variety of metrics was assigned to each
result. Contributing factors to this score include but are not exclusive to: whether the drug
has been through clinical trials or has obtained US Food and Drug Administration
(FDA) approval, if the drug had been approved and tested in multiple studies, the toxicity
of the drug (LD50 values and/or recommended diet restrictions, manufacturer safety
statements, requirements of administration, and long-term impacts or risks that are
included in drug consumption), prior publications or studies discussing the drug’s
effectiveness against CHIKV, and whether any complications were indicated during
trials—either during or after FDA approval.
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RESULTS
Power analysis
We began by confirming that our experimental design included appropriate numbers
of reads and biological replicates to achieve sufficient statistical power. Using two
biological replicates and at least 10 million reads, our analysis showed that ~35% of genes
could be detected at a log2 fold-change of ≥1.6 with a p-value of <0.05. We observed the
replicate dispersion among mock-infected samples was 0.89, while that for the 24 hpi
samples was 0.44. In addition, hierarchical clustering grouped the mock-infected
samples together and the 24 hpi samples together. We calculated that ~55% of genes
could be detected with a log2 fold-change of >3, which is acceptable. We calculated the
measurement bias, the percentage of genes measured with at least 95% of the maximum
power to be ~94%, which is also within the acceptable range.

Differential expression and gene ontology enrichment shows lag in
immune response
We first quantified the intracellular transcriptional response of human macrophages to
CHIKV infection by calculating the log2 fold-change and false discovery rate (FDR)
adjusted p-values for DEGs. We constructed these comparisons to compare the samples
from CHIKV-infected macrophages at 8 and 24 hpi to the mock-infected cells. We plotted
the relationship between all detected genes and retained those with a FDR p-value
smaller than 0.05. Interestingly, we found no genes that surpassed our significance
threshold of 0.05 for the eight hpi comparison, so this comparison was ignored in
subsequent analyses. This may be at least partially due to the lower number of reads
generated for the eight hpi samples. In contrast, we observed 9,670 genes that had
significant differential expression at 24 hpi (Supplemental File 1), with a majority of
DEGs being downregulated during early infection (Fig. 1). A subset of the most significant
genes that were impacted by virus infection at 24 h post-infection included those that
code for extracellular mucins (MUC3A, MUC12, MUC5B), an immunoglobulin gene
(IGFN1), a nucleosome assembly protein (NAP1L1), and Ras protein activator (RASA4) as
a Calcium signaling component.

We performed a Gene Ontology (GO) enrichment analysis on the DEG list to identify
the cellular component, molecular mechanism, and/or biological process annotations that
are assigned to each DEG result from the CHIKV-infected macrophages. The 24 hpi
GO analysis identified eight statistically significant GO terms (Supplemental File 2).
Significant GO terms include metal ion binding, nucleic acid binding, cell adhesion and
extracellular matrix organization.

Signaling pathway enrichment reveals intracellular stress
We next applied a robust signaling pathway enrichment algorithm to identify a total of 234
signaling pathways that were significantly affected at 24 hpi (Supplemental File 3). Seven
significant pathways that were positively or negatively affected during the early stages of
CHIKV infection in macrophages seemed especially relevant (Table 1). Collections of
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interacting proteins with the most significant corrected p-values also included Olfactory
Transduction (Fig. 2), AGE-RAGE (Fig. 3), and Stimuli-Sensing Channels (Fig. 4).
Our observation of the AGE-RAGE pathway is expected as it contains inflammatory
proteins including interleukins, NF-κB, and JAK-STAT that regulate the acute
inflammatory response and the innate immune system (Chen et al., 2018). The Olfactory
Transduction pathway consists of many proteins that contribute to the regulation of
Calcium signaling, presumably via Calmodulin. We also observed pathways involvingWnt
signaling, extracellular matrix receptors, Insulin-like growth factor 1, Calcineurin,
adherens junctions, and HIF-1-alpha (hypoxia) signaling.
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Figure 1 Volcano plot of differentially expressed genes at 24 hpi with CHIKV. The distribution of
adjusted p-values and fold-change values for up-regulated genes (green) or down-regulated genes (red) at
24 hpi with CHIKV is displayed. Full-size DOI: 10.7717/peerj.13090/fig-1

Table 1 Top seven intracellular signaling pathways impacted by CHIKV in monocyte-derived human macrophages at 24 hpi.

Name of pathway pSize* NDE** pGFWER+ Status++ Source database

Stimuli-sensing channels 100 76 2.71E−04 Activated Reactome

Wnt signaling pathway 219 139 2.94E−04 Activated Panther

ECM-receptor interaction 79 58 3.31E−04 Inhibited KEGG

IGF1 pathway 30 22 0.000975 Activated NCI

Role of Calcineurin-dependent NFAT signaling in lymphocytes 36 26 0.001006 Activated NCI

Stabilization and expansion of the E-cadherin adherens junction 42 30 0.001025 Activated NCI

HIF-1-alpha transcription factor network 64 44 0.001294 Activated NCI

Notes:
* Number of genes assigned to the pathway.
** Quantity of DE genes found in each pathway.
+ Bonferroni-corrected p-value for each pathway.
++ The predicted direction of pathway modulation.
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Figure 2 Protein-protein interaction network for the Olfactory Transduction pathway at 24 hpi with CHIKV. Nodes in orange are members of
the pathway that are significantly downregulated. Nodes in purple are members of the pathway that are significantly upregulated. Nodes in cyan are
unaffected members of the pathway. Full-size DOI: 10.7717/peerj.13090/fig-2
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In an effort to identify DEGs that were shared across multiple pathways, we compared
the members of multiple significant signaling pathways. We found that a subset of the
modulated pathways shared DEGs including MAPK3 and MAPK1.

Drug repurposing analysis identifies potential therapeutics for CHIKV
We cross-referenced all proteins in each significant signaling pathway against the
opentargets.org database to identify known human drug targets within each significant
signaling pathway and the associated existing small molecules that bind to each drug target
in each pathway. We anticipated that this approach would identify drug targets that play a
key role in fundamental viral processes, which would reduce virus replication and/or
disease when targeted by a drug. As expected from the copious number of significant
pathways, we predicted 136 pharmaceutical drugs from the 24 hpi pathways (Table 2).
We then ranked these potential therapeutics with a novel toxicity ranking algorithm
(Table 3). Briefly, this algorithm generates a single value that represents toxicity, safety,
clinical trial status, and past repurposing efforts in virology. The top drugs predicted by our
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Figure 3 Protein-protein interaction network for the AGE-RAGE pathway. Nodes in orange are
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pathway that are significantly upregulated. Nodes in cyan are unaffected members of the pathway.
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workflow included Telmisartan, Sunitinib, Etanercept, Vorinostat, Dasatinib, and
Regorafenib as potential therapeutic drugs that could be repurposed to reduce signs,
symptoms, and/or pathogenesis associated with infection by Chikungunya virus (Table 4).

DISCUSSION
The purpose of this study was to identify genes, functional annotations, and intracellular
signaling pathways at 24 hpi that improve our mechanistic understanding of CHIKV
infection of macrophages to aid in the prediction of prophylactics and/or treatments.
To our knowledge, this is the first study to generate RNA-sequencing data from
CHIKV-infected human macrophages. These cells play a key role in both the early
stages of systemic spread in the human host, as well as the chronic sequelae after acute
infection. Our results were also used to predict repurposed therapeutic drugs that could
potentially be used as antivirals to combat CHIKV infection, replication, and/or
pathogenesis in human macrophages. Throughout this study, we found that CHIKV-
infected human macrophages modulate various biological pathways that generate
intracellular and immune-related signals that likely contribute to the characteristic
symptoms of fever, polyarthralgia, and/or chronic pain.

Figure 4 Multi-protein complexes contribute to the Stimuli-Sensing Channels intracellular signaling pathway. Differentially expressed genes
with a p-value < 0.05 were mapped to their associated protein product within the public Reactome pathway. Proteins in the pathway were col-
or-coded according to how many DEGs contribute protein component(s) to each. Intracellular organelles or locations are labeled.

Full-size DOI: 10.7717/peerj.13090/fig-4
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Table 2 Therapeutics that significantly modulate the same pathways found in human macrophages infected with CHIKV at 24 hpi.

Drug name ECM-
receptor
interaction

Influenza
A

Salmonella
infection

Olfactory
transduction

Fc epsilon
RI
signaling
pathway

Pathogenic
Escherichia
coli
infection

Renal cell
carcinoma

Chronic
myeloid
leukemia

Fc gamma
R-mediated
phagocytosis

AGE-RAGE
signaling pathway
in diabetic
complications

Ras
signaling
pathway

ALPELISIB X4 X4 X4 X4 X4 X4 X4

IDELALISIB X4 X4 X4 X4 X4 X4 X4

REGORAFENIB X4 X4 X4 X4 X4 X4

MIDOSTAURIN X4 X4 X4 X4 X4

DASATINIB X4 X4 X4 X4

CANAKINUMAB X4 X4 X4

LUSPATERCEPT X4 X4 X4

AFLIBERCEPT X4 X4 X4

RANIBIZUMAB X4 X4 X4

BENZIODARONE X4 X4

ETANERCEPT X4 X4

INFLIXIMAB X4 X4

COLLAGENASE
CLOSTRIDIUM
HISTOLYTICUM

X4 X4

CONBERCEPT X4 X4

TOFACITINIB X4 X4

IMATINIB X4 X4

NETARSUDIL X4 X4

NILOTINIB X4 X4

DIPYRIDAMOLE X4

ENTRECTINIB X4

INTERFERON ALFA-2B X4

INTERFERON BETA-1A X4

INTERFERON BETA-1B X4

PANOBINOSTAT X4

PEGINTERFERON
ALFA-2A

X4

PEGINTERFERON
ALFA-2B

X4

PEGINTERFERON
BETA-1A

X4

PENTOXIFYLLINE X4

ROMIDEPSIN X4

RONTALIZUMAB X4
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Table 2 (continued)

Drug name ECM-
receptor
interaction

Influenza
A

Salmonella
infection

Olfactory
transduction

Fc epsilon
RI
signaling
pathway

Pathogenic
Escherichia
coli
infection

Renal cell
carcinoma

Chronic
myeloid
leukemia

Fc gamma
R-mediated
phagocytosis

AGE-RAGE
signaling pathway
in diabetic
complications

Ras
signaling
pathway

SIFALIMUMAB X4

SUNITINIB X4

USTEKINUMAB X4

VORINOSTAT X4

ABEMACICLIB X

DOCETAXEL X4

PACLITAXEL X4

COLCHICINE X4

VEDOLIZUMAB X4

LEVETIRACETAM X4

OCRIPLASMIN X4

VINCRISTINE X4

HYDROXYCHLOROQUINE X4

NINTEDANIB X4

ROXADUSTAT X4

AMISULPRIDE X4

VALSARTAN X4

VINFLUNINE X4

ZOLEDRONIC ACID X4

LENVATINIB X4

LITHIUM CARBONATE X4

NATALIZUMAB X4

SORAFENIB X4

TIROFIBAN X4

VINORELBINE X4

ALENDRONIC ACID X4

DAPRODUSTAT X4

IMIQUIMOD X4

LOSARTAN X4

PAZOPANIB X4

ANLOTINIB X4

AXITINIB X4

CD24FC X4

ERDAFITINIB X4

(Continued)
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Table 2 (continued)

Drug name ECM-
receptor
interaction

Influenza
A

Salmonella
infection

Olfactory
transduction

Fc epsilon
RI
signaling
pathway

Pathogenic
Escherichia
coli
infection

Renal cell
carcinoma

Chronic
myeloid
leukemia

Fc gamma
R-mediated
phagocytosis

AGE-RAGE
signaling pathway
in diabetic
complications

Ras
signaling
pathway

ERIBULIN X4

INSULIN DETEMIR X4

INSULIN GLARGINE X4

IXABEPILONE X4

TELMISARTAN X4

VARESPLADIB METHYL X4

VINBLASTINE X4

BARICITINIB X4

CABAZITAXEL X4

CABOZANTINIB X4

ERLOTINIB X4

GEFITINIB X4

IBANDRONIC ACID X4

IBRUTINIB X4

INSULIN GLULISINE X4

INSULIN LISPRO X4

INSULIN PORK X4

INSULIN SUSP ISOPHANE
BEEF

X4

PONATINIB X4

RISEDRONIC ACID X4

TRASTUZUMAB
EMTANSINE

X4

VANDETANIB X4

G
ray

et
al.(2022),P

eerJ,D
O
I10.7717/p

eerj.13090
12/23

http://dx.doi.org/10.7717/peerj.13090
https://peerj.com/


Table 3 Predicted drug rankings by toxicity.

Drug name Type Clinically
tested*

Withdrawn** Virus
application+

FDA
approved

Chikungunya
studies ++

Toxicity
(Grayscale)
+++

Grade

TELMISARTAN Small molecule 4 Yes Yes Yes 7 23.857142864

SUNITINIB Small molecule 4 Yes Yes Yes 7 23.857142864

ETANERCEPT Biotech:
Protein base

4 Yes Yes Yes 6 23.833333334

VORINOSTAT Small molecule 3 Yes Yes Yes 6 23.833333334

DASATINIB Small molecule 4 Yes Yes Yes 5 23.84

REGORAFENIB Small molecule 4 Yes Yes 2 18.54

CANAKINUMAB Biotech:
Protein base

3 Yes Yes 5 8.83

DIPYRIDAMOLE Small molecule 4 Yes Yes 8 8.8753

PENTOXIFYLLINE Small molecule 4 Yes Yes 7 8.8571428573

INFLIXIMAB Biotech:
Protein base

4 Yes Yes 7 8.8571428573

ROMIDEPSIN Small molecule 3 Yes Yes 3 8.6666666673

LUSPATERCEPT Biotech:
Protein base

3 Yes 8 3.8752

ENTRECTINIB Small molecule 1 Yes 6 3.8333333332

MIDOSTAURIN Small molecule 2 Yes 5 3.82

ALPELISIB Small molecule 2 Yes 4 3.752

PANOBINOSTAT Small molecule 3 Yes 2 3.52

IDELALISIB Small molecule 3 Yes 2 3.52

BENZIODARONE Small molecule X Yes 1 −91

Grade Scale
1unacceptable (<4) 2poor (5–20) 3acceptable (21–35) 4exceptional (36<)

Notes:
* Clinical trial phase for drug’s original indication.
** Drug was withdrawn from market.
+ Drug has been involved in previous antiviral studies.
++ Prior publications discussing the drug’s effectiveness against CHIKV.
+++ Toxicity of the drug determined by FD50 values and/or recommended diet restrictions, manufacturer safety statements, requirements of administration, and

long-term impacts or risks that are included in drug consumption, all of these elements were evaluated by an assigned numerical value under the Grayscale (1–10
scale, where 1 is the most toxic).

Table 4 Top six ranked therapeutics for CHIKV.

Drug Type Clinically
tested

Used with
viruses

FDA
approved

Chikungunya
studies

Toxicity
(Grayscale)

Grade

TELMISARTAN Small molecule 4 Yes Yes Yes 7 23.857142864

SUNITINIB Small molecule 4 Yes Yes Yes 7 23.857142864

ETANERCEPT Biotech: Protein base 4 Yes Yes Yes 6 23.833333334

VORINOSTAT Small molecule 3 Yes Yes Yes 6 23.833333334

DASATINIB Small molecule 4 Yes Yes Yes 5 23.84

REGORAFENIB Small molecule 4 Yes Yes 2 18.54
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Interestingly, the lack of significant DEGs at eight hpi suggests at least two possible
explanations: (1) a potential lag in the intracellular macrophage response to CHIKV
infection, or (2) the selected MOI produced an infected macrophage population that
was too small to confidently detect differential expression. Since CHIKV has a positive-
sense genome, we do not expect this lagging response to be caused by a delay in viral
genome replication. Rather, we believe that this observation is more likely due to the
macrophages not initiating a response until after a sufficient number of CHIKV proteins
have been produced in the cell. Prior studies have observed approximately 106 plaque-
forming units per mL and 106 viral RNA copies per mL produced from cells infected at 0.1
MOI at 24 hpi in the same human monocyte-derived macrophage cell line (Guerrero-
Arguero et al., 2020). Future experiments could provide additional insight into this
hypothesis.

While this study focuses on the response of human macrophages infected with
Chikungunya virus, prior CHIKV studies have independently validated a subset of our
results. A mechanistic analysis of mouse samples identified various differentially expressed
genes that are also present in our results, namely MFSD1, and FAM49B (Nakaya et al.,
2012). Given that this prior study and ours were performed in different cell types, it is likely
that these shared genes represent similar antiviral responses across multiple cell types.

Although minimal prior work has directly measured gene expression in CHIKV-
infected macrophages, our observation of a larger number of DEGs being downregulated is
somewhat expected given the primary immune functions performed by these host cells.
Studies in other cell types have reported multiple cellular functions being inhibited by
CHIKV infection including immune response (Selvamani, Mishra & Singh, 2014; Sharma,
Balakathiresan & Maheshwari, 2015; Dhenni et al., 2021).

Prior studies examined the effect that CHIKV infection had on human skin fibroblast
(HSF) cells, which showed several significant modulated signaling pathways at 24 hpi,
particularly the “Wnt signaling”, “Stimuli-sensing channels”, and “ECM-receptor
interaction” pathways (Komiya & Habas, 2008; Parashar et al., 2018; Roy, Byrareddy &
Reid, 2020; Landers et al., 2021; Ghildiyal & Gabrani, 2021). These common pathways
partially validate the relevance of our findings and may represent shared intracellular
functions that contribute to the infected state of cells. The Olfactory Transduction
pathway, which affects Calcium signaling, has been observed in prior work with Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vesicular Stomatitis Virus
(Mishra, Byrareddy & Nayak, 2020; Krishnamoorthy et al., 2021). A previous study has
shown that Calcium modulation can affect CHIKV replication in macrophages (Sanjai
Kumar et al., 2021; Melton et al., 2002). The AGE-RAGE pathway, which contains
JAK-STAT components, interleukins, and other proteins has not, to our knowledge, been
directly reported in prior Chikungunya studies. Our findings are relevant given prior
work showing the CHIKV nsP2 protein inhibits JAK-STAT signaling to regulate aspects of
the inflammatory response (Fros et al., 2010), which contributes to many of the primary
symptoms of CHIKV (Lu et al., 2015; Elgner et al., 2016).

Our subsequent analysis of DEGs and the associated signaling pathways identified
potential therapeutic drugs that could be repurposed for CHIKV. Prior studies have
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reported progress on developing therapeutics that directly target viral proteins (Khan et al.,
2010; Scuotto et al., 2017; Ho et al., 2018). In contrast, our drug repurposing analysis
evaluated existing therapeutics that target human proteins that participate in key signaling
pathways. A benefit of this approach is the reduced likelihood of the virus becoming
resistant to such treatment since human genes mutate exponentially slower and are
involved in key processes that play a role in virus replication.

Our approach to prioritizing drugs incorporated a novel toxicity metric to facilitate
ranking of existing therapeutic drugs. Small molecules have been an area of active research
for their anti-viral properties, and were purposefully targeted in our analysis due to their
general chemical stability and minimal need for refrigeration during transport and/or
storage. This is particularly important given that many CHIKV infections occur in
geographical regions that may not have consistent access to cold-storage resources. Six of
our drug predictions have already been found to reduce the effects of Chikungunya virus in
cells including telmisartan, sunitinib, etanercept, vorinostat, and dasatinib (Bekerman
et al., 2017; Dye, Brannan & Geneva Foundation Tacoma United States, 2017; Broeckel
et al., 2019;Haese, Powers & Streblow, 2020) (Zaid et al., 2011; Roberts et al., 2015;Haridas
& Haridas, 2019; “U18666A inhibits classical swine fever virus replication through
interference with intracellular cholesterol trafficking,” 2019; Tripathi et al., 2020; De et al.,
2021; Liang et al., 2019).

Vorinostat, trade name Zolina, is used to treat Cutaneous T-cell Lymphoma (CTCL) as
a histone deacetylase inhibitor. Recently Vorinostat has performed well as an antiviral
therapy for HIV and West Nile Virus (Lu et al., 2015; Wichit et al., 2017). Vorinostat
enhances the antiviral qualities of U18666A, which is a multivesicular body (MVB)
inhibitor that hinders the release of cholesterol from lysosomes. This effect has been
observed to inhibit CHIKV replication in human skin fibroblasts (Lu et al., 2015; Elgner
et al., 2016; Wichit et al., 2017; Ghildiyal & Gabrani, 2021).

Telmisartan, an angiotensin II receptor antagonist commonly known as Micardis or
Pritor, was ranked the highest in our ranked results of repurposed drug candidates
(PubChem, 2021). Recently, Telmisartan has risen in popularity from severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) clinical testing (Duarte et al., 2020;
Rothlin et al., 2020). This drug has been shown to regulate glucose and lipid metabolism.
Further testing is needed to determine whether any possible anti-inflammatory response
effect is observed. A prior in silico drug repurposing study showed that Telistartan was
predicted to have a docking affinity of −9.3 ± 0.1 kcal/mol to the CHIKV nsP2 protein
(Montes-Grajales et al., 2020). Binding to a viral protein would be an added benefit as a
potential therapeutic, particularly when combined with Novobiocin to inhibit nsP2
protease activity which causes the eventual dampening of the antiviral response (Montes-
Grajales et al., 2020; Tripathi et al., 2020; Battisti, Urban & Langer, 2021).

Sunitinib, or Sutent, is a receptor tyrosine kinase inhibitor that affects protein
translation, and is currently used to treat renal cancer (Bekerman et al., 2017). The testing
of Sunitinib with Dengue virus showed reduced viral load in the serum and tissue (Pu et al.,
2018). Sunitinib combined with Erlotinib can modify the inflammatory cytokine responses
in models of dengue virus infection (Pu et al., 2018), which could also be relevant to
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CHIKV (Bekerman et al., 2017; Dye, Brannan & Geneva Foundation Tacoma United
States, 2017; Pu et al., 2018). Sunitinib is currently being investigated in conjunction with
oncolytic virotherapy (Kottke et al., 2010).

Dasatinib is a tyrosine kinase inhibitor that is commonly sold by the name Sprycel and
is used for treating leukemia. This compound has shown promise as a prophylactic
treatment for patients who are at-risk for HIV infection (Salgado et al., 2020). Results from
the “Src Family Kinase Inhibitors Block Translation of Alphavirus Subgenomic mRNAs”
demonstrated Dasatinib’s ability to directly affect viral RNA synthesis and decrease
CHIKV RNA association with polysomes, indicating the importance of Src Family Kinase
(SFK) activity in virus replication (Broeckel et al., 2019). Dasatinib has been found to block
CHIKV replication and reduces infection-induced apoptosis in cells (Bekerman et al.,
2017; Dye, Brannan & Geneva Foundation Tacoma United States, 2017; Haese, Powers &
Streblow, 2020; Broeckel et al., 2019).

A multi-kinase inhibitor, Regorafenib (Stivarga), is used for the treatment of
colorectal cancer and advanced gastrointestinal complications. It has a high level of
toxicity and is only used after other treatments such as chemotherapy have been exhausted.
This drug has anti-angiogenic properties and was shown to inhibit virus replication
when administered prophylactically (Roberts et al., 2015). Sorafenib and Regorafenib can
be used interchangeably, only differing in a single fluorine atom in their structures (Goel
et al., 2018). A prior study confirmed that Sorafenib-treated cells suppress CHIKV
replication (Roberts et al., 2015).

A variety of systemic clinical signs and symptoms are associated with CHIKV
which are not limited to headache, myalgia, arthralgia, retro-orbital pain (Leo et al.,
2009; Tan et al., 2018). Rash and other mucocutaneous signs, such as centrofacial
hyperpigmentation, have also been observed and used as retrospective diagnosis (Mattar
et al., 2015; Singal, 2017; Panigrahi, Chakraborty & Sil, 2021). Additional experiments will
be needed to determine whether minimizing the infection and antiviral response in
macrophages affects such systemic signs.

Past work has documented that patients infected with CHIKV can develop side effects
or adverse reactions while undergoing long-term pharmaceutical treatments (Kim et al.,
2016; Sil et al., 2021). We acknowledge that therapeutics can have unanticipated side
effects when used in vivo and expect that subsequent validation experiments will be needed
to show whether this is the case for the therapeutics we identified in this study.

Although this study primarily focused on predicting small molecule therapeutic
treatments, an exception was made for Etanercept, a biotech fusion protein, because of its
anti-inflammatory properties and acceptable safety profile (“Etanercept”; Jazwinski et al.,
2011). Etanercept (Enbrel) manages a variety of inflammatory conditions including
rheumatoid arthritis. Chikungunya virus has previously been characterized as having
significant DEG overlap with rheumatoid arthritis (Nakaya et al., 2012; Suhrbier, 2019;
Bautista-Vargas, Puerta-Sarmiento & Cañas, 2020). Although it is not recommended to
treat patients who have pre-existing rheumatoid arthritis and are infected with the
Chikungunya virus, otherwise-healthy patients could potentially benefit from receiving
Etanercept treatments (Zaid et al., 2011; Haridas & Haridas, 2019). Future experiments
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will be required to determine the most effective dosage in human cells and to test the ability
of these drugs to protect macrophages against CHIKV infection.

CONCLUSIONS
Our analysis found zero significant DEGs at eight hpi in human monocyte-derived
macrophages, but 9,676 genes, and eight GO terms in the macrophages at 24 hpi.
We identified 234 biological pathways that were significantly altered in human
monocyte-derived macrophages during CHIKV infection that represented AGE-RAGE,
innate immunity, cell cycle-related pathways, and Calcium signaling. Our drug
repurposing analysis predicted that a combination of Telmisartan, Sunitinib, and/or
Dasatinib could be used as a potential therapeutic for CHIKV infection since together they
modulate multiple intracellular host and viral processes in macrophages at 24 hpi.
We expect that this study will contribute to ongoing efforts to develop effective
prophylactic and/or therapeutic treatments for CHIKV.

ACKNOWLEDGEMENTS
We are grateful to Dr. Jonathan Miner at Washington University School of Medicine in St.
Louis for providing the La Reunion strain of CHIKV. We also thank the Office of Research
Computing at Brigham Young University for access to the campus high-performance
computing infrastructure.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by startup funds provided by Brigham Young University.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Brigham Young University.

Competing Interests
Brett E. Pickett is an Academic Editor for PeerJ.

Author Contributions
� Madison Gray performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the paper, and approved the final draft.

� Israel Guerrero-Arguero conceived and designed the experiments, performed the
experiments, authored or reviewed drafts of the paper, and approved the final draft.

� Antonio Solis-Leal conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

� Richard A. Robison conceived and designed the experiments, authored or reviewed
drafts of the paper, and approved the final draft.

Gray et al. (2022), PeerJ, DOI 10.7717/peerj.13090 17/23

http://dx.doi.org/10.7717/peerj.13090
https://peerj.com/


� Bradford K. Berges conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

� Brett E. Pickett conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The differentially expressed genes, Gene Ontology enrichments, intracellular
signaling pathways and the multiple hypothesis-corrected p-values are available in the
Supplemental Files.

The data is available at NCBI GEO: GSE182287.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13090#supplemental-information.

REFERENCES
Battisti V, Urban E, Langer T. 2021. Antivirals against the Chikungunya virus. Viruses 13(7):1307

DOI 10.3390/v13071307.

Bautista-Vargas M, Puerta-Sarmiento G, Cañas CA. 2020. Characteristics of Chikungunya virus
infection in patients with established rheumatoid arthritis. Clinical Rheumatology
39(12):3639–3642 DOI 10.1007/s10067-020-05198-x.

Bekerman E, Neveu G, Shulla A, Brannan J, Pu S-Y, Wang S, Xiao F, Barouch-Bentov R,
Bakken RR, Mateo R, Govero J, Nagamine CM, Diamond MS, De Jonghe S, Herdewijn P,
Dye JM, Randall G, Einav S. 2017. Anticancer kinase inhibitors impair intracellular viral
trafficking and exert broad-spectrum antiviral effects. The Journal of Clinical Investigation
127(4):1338–1352 DOI 10.1172/JCI89857.

Broeckel R, Sarkar S, May NA, Totonchy J, Kreklywich CN, Smith P, Graves L, DeFilippis VR,
Heise MT, Morrison TE, Moorman N, Streblow DN. 2019. Src family kinase inhibitors block
translation of alphavirus subgenomic mRNAs. Antimicrobial Agents and Chemotherapy
63(4):114 DOI 10.1128/AAC.02325-18.

Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT. 2013. Scotty: a web tool for designing
RNA-Seq experiments to measure differential gene expression. Bioinformatics 29(5):656–657
DOI 10.1093/bioinformatics/btt015.

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. 2018. Inflammatory
responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218
DOI 10.18632/oncotarget.23208.

De S, Mamidi P, Ghosh S, Keshry SS, Mahish C, Pani SS, Laha E, Ray A, Datey A, Chatterjee S,
Singh S, Mukherjee T, Khamaru S, Chattopadhyay S, Subudhi BB, Chattopadhyay S. 2021.
Telmisartan restricts Chikungunya virus infection in vitro and in vivo through the AT1/PPAR-
γ/MAPKs pathways. Antimicrobial Agents and Chemotherapy 66(1):e0148921
DOI 10.1128/AAC.01489-21.

Delatte H, Desvars A, Bouétard A, Bord S, Gimonneau G, Vourc’h G, Fontenille D. 2010.
Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector
Borne and Zoonotic Diseases 10:249–258 DOI 10.1089/vbz.2009.0026.

Gray et al. (2022), PeerJ, DOI 10.7717/peerj.13090 18/23

http://dx.doi.org/10.7717/peerj.13090#supplemental-information
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182287
http://dx.doi.org/10.7717/peerj.13090#supplemental-information
http://dx.doi.org/10.7717/peerj.13090#supplemental-information
http://dx.doi.org/10.3390/v13071307
http://dx.doi.org/10.1007/s10067-020-05198-x
http://dx.doi.org/10.1172/JCI89857
http://dx.doi.org/10.1128/AAC.02325-18
http://dx.doi.org/10.1093/bioinformatics/btt015
http://dx.doi.org/10.18632/oncotarget.23208
http://dx.doi.org/10.1128/AAC.01489-21
http://dx.doi.org/10.1089/vbz.2009.0026
http://dx.doi.org/10.7717/peerj.13090
https://peerj.com/


Dhenni R, Yohan B, Alisjahbana B, Lucanus A, Riswari SF, Megawati D, Haryanto S,
Gampamole D, Hayati RF, Sari K,Witari NPD, Myint KSA, Sasmono RT. 2021. Comparative
cytokine profiling identifies common and unique serum cytokine responses in acute
chikungunya and dengue virus infection. BMC Infectious Diseases 21:639
DOI 10.1186/s12879-021-06339-6.

Duarte M, Pelorosso F, Nicolosi L, Victoria Salgado M, Vetulli H, Aquieri A, Azzato F,
Basconcel M, Castro M, Coyle J, Davolos I, Esparza E, Criado IF, Gregori R,
Mastrodonato P, Rubio MC, Sarquis S, Wahlmann F, Rothlin RP. 2020. Telmisartan for
treatment vid-19 patiof Coents: an open randomized clinical trial-a preliminary report.
medRxiv. Available at https://www.medrxiv.org/content/10.1101/2020.08.04.20167205v2.

Dye J, Brannan J, Geneva Foundation Tacoma United States. 2017. Selective AAK1 and GAK
inhibitors for combating dengue and other emerging viral infections. Tacoma United States:
Geneva Foundation.

Elgner F, Ren H, Medvedev R, Ploen D, Himmelsbach K, Boller K, Hildt E. 2016. The
intracellular cholesterol transport inhibitor U18666A inhibits the exosome-dependent release of
mature hepatitis C virus. Journal of Virology 90:11181–11196 DOI 10.1128/JVI.01053.

Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M, Vanlandingham DL, Schnettler E,
Vlak JM, Suhrbier A, Khromykh AA, Pijlman GP. 2010. Chikungunya virus nonstructural
protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. Journal of Virology
84:10877–10887 DOI 10.1128/JVI.00949-10.

Ghildiyal R, Gabrani R. 2021. Computational approach to decipher cellular interactors and drug
targets during co-infection of SARS-CoV-2, Dengue, and Chikungunya virus. Virusdisease
32:1–10 DOI 10.1007/s13337-021-00665-8.

Goel G, Wang F, Bank T, Malnassy G, Qiu W. 2018. Figure 2 Chemical structure of Sorafenib (A)
and Regorafenib (B). Available at https://www.researchgate.net/figure/Chemical-structure-of-
Sorafenib-A-and-Regorafenib-B-Note-The-only-structural_fig1_323574672 (accessed 31 July
2021).

Goupil BA, Mores CN. 2016. A review of Chikungunya Virus-induced Arthralgia: clinical
manifestations, therapeutics, and pathogenesis. The Open Rheumatology Journal 10:129–140
DOI 10.2174/1874312901610010129.

Guerrero-Arguero I, Høj TR, Tass ES, Berges BK, Robison RA. 2020. A comparison of
Chikungunya virus infection, progression, and cytokine profiles in human PMA-differentiated
U937 and murine RAW264.7 monocyte derived macrophages. PLOS ONE 15:e0230328
DOI 10.1371/journal.pone.0230328.

Haese N, Powers J, Streblow DN. 2020. Small molecule inhibitors targeting chikungunya virus.
Current Topics in Microbiology and Immunology 435:107–139 DOI 10.1007/82_2020_195.

Haist KC, Burrack KS, Davenport BJ, Morrison TE. 2017. Inflammatory monocytes mediate
control of acute alphavirus infection in mice. PLOS Pathogens 13:e1006748
DOI 10.1371/journal.ppat.1006748.

Haridas VM, Haridas K. 2019.Managing chikungunya arthritis using etanercept. Internet Journal
of Rheumatology and Clinical Immunology 7(1):CS6 DOI 10.15305/ijrci/v7i1/307.

Her Z, Malleret B, Chan M, Ong EKS, Wong S-C, Kwek DJC, Tolou H, Lin RTP, Tambyah PA,
Rénia L, Ng LFP. 2010. Active infection of human blood monocytes by Chikungunya virus
triggers an innate immune response. The Journal of Immunology 184(10):5903–5913
DOI 10.4049/jimmunol.0904181.

Gray et al. (2022), PeerJ, DOI 10.7717/peerj.13090 19/23

http://dx.doi.org/10.1186/s12879-021-06339-6
https://www.medrxiv.org/content/10.1101/2020.08.04.20167205v2
http://dx.doi.org/10.1128/JVI.01053
http://dx.doi.org/10.1128/JVI.00949-10
http://dx.doi.org/10.1007/s13337-021-00665-8
https://www.researchgate.net/figure/Chemical-structure-of-Sorafenib-A-and-Regorafenib-B-Note-The-only-structural_fig1_323574672
https://www.researchgate.net/figure/Chemical-structure-of-Sorafenib-A-and-Regorafenib-B-Note-The-only-structural_fig1_323574672
http://dx.doi.org/10.2174/1874312901610010129
http://dx.doi.org/10.1371/journal.pone.0230328
http://dx.doi.org/10.1007/82_2020_195
http://dx.doi.org/10.1371/journal.ppat.1006748
http://dx.doi.org/10.15305/ijrci/v7i1/307
http://dx.doi.org/10.4049/jimmunol.0904181
http://dx.doi.org/10.7717/peerj.13090
https://peerj.com/


Ho Y-J, Liu F-C, Yeh C-T, Yang CM, Lin C-C, Lin T-Y, Hsieh P-S, Hu M-K, Gong Z, Lu J-W.
2018.Micafungin is a novel anti-viral agent of chikungunya virus through multiple mechanisms.
Antiviral Research 159(Suppl. 1):134–142 DOI 10.1016/j.antiviral.2018.10.005.

Jazwinski AB, Jezsik J, Ardoin SP, McCallum RM, Tillmann HL. 2011. Etanercept treatment to
enable successful hepatitis C virus clearance in a patient with rheumatoid arthritis.
Gastroenterology & Hepatology 7:772–774.

Khan M, Santhosh SR, Tiwari M, Lakshmana Rao PV, Parida M. 2010. Assessment of in vitro
prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells.
Journal of Medical Virology 82(5):817–824 DOI 10.1002/jmv.21663.

Kim DK, Lee SW, Nam HS, Jeon DS, Park NR, Nam YH, Lee SK, Baek YH, Han SY, Lee SW.
2016. A case of sorafenib-induced DRESS syndrome in hepatocelluar carcinoma. The Korean
Journal of Gastroenterology = Taehan Sohwagi Hakhoe chi 67(6):337–340
DOI 10.4166/kjg.2016.67.6.337.

Komiya Y, Habas R. 2008. Wnt signal transduction pathways. Organogenesis 4(2):68–75
DOI 10.4161/org.4.2.5851.

Kottke T, Hall G, Pulido J, Diaz RM, Thompson J, Chong H, Selby P, Coffey M, Pandha H,
Chester J, Melcher A, Harrington K, Vile R. 2010. Antiangiogenic cancer therapy combined
with oncolytic virotherapy leads to regression of established tumors in mice. The Journal of
Clinical Investigation 120(5):1551–1560 DOI 10.1172/JCI41431.

Krishnamoorthy P, Raj AS, Roy S, Kumar NS, Kumar H. 2021. Comparative transcriptome
analysis of SARS-CoV, MERS-CoV, and SARS-CoV-2 to identify potential pathways for drug
repurposing. Computers in Biology and Medicine 128(3):104123
DOI 10.1016/j.compbiomed.2020.104123.

Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B. 2021. FelixKrueger/TrimGalore:
v0.6.7 - DOI via Zenodo. Zenodo. Available at https://github.com/FelixKrueger/TrimGalore/
releases.

Köster J, Rahmann S. 2018. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics
34(20):3600 DOI 10.1093/bioinformatics/bty350.

Landers VD, Wilkey DW, Merchant ML, Mitchell TC, Sokoloski KJ. 2021. The alphaviral capsid
protein inhibits IRAK1-dependent TLR Signaling. Viruses 13(3):377 DOI 10.3390/v13030377.

Leo YS, Chow ALP, Tan LK, Lye DC, Lin L, Ng LC. 2009. Chikungunya outbreak, Singapore,
2008. Emerging Infectious Diseases 15(5):836–837 DOI 10.3201/eid1505.081390.

Liang XD, Zhang YN, Liu CC, Chen J, Chen XN, Baloch AS, Zhou B. 2019. U18666A inhibits
classical swine fever virus replication through interference with intracellular cholesterol
trafficking. Veterinary Microbiology 238:108436 DOI 10.1016/j.vetmic.2019.108436.

Lounibos LP, Kramer LD. 2016. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial
capacity for Chikungunya virus. The Journal of Infectious Diseases 214(suppl 5):S453–S458
DOI 10.1093/infdis/jiw285.

Lu F, Liang Q, Abi-Mosleh L, Das A, De Brabander JK, Goldstein JL, Brown MS. 2015.
Identification of NPC1 as the target of U18666A, an inhibitor of lysosomal cholesterol export
and Ebola infection. eLife 4:e12177 DOI 10.7554/eLife.12177.

Mattar S, Miranda J, Pinzon H, Tique V, Bolanos A, Aponte J, Arrieta G, Gonzalez M,
Barrios K, Contreras H, Alvarez J, Aleman A. 2015. Outbreak of Chikungunya virus in the
north Caribbean area of Colombia: clinical presentation and phylogenetic analysis. Journal of
Infection in Developing Countries 9(10):1126–1132 DOI 10.3855/jidc.6670.

Gray et al. (2022), PeerJ, DOI 10.7717/peerj.13090 20/23

http://dx.doi.org/10.1016/j.antiviral.2018.10.005
http://dx.doi.org/10.1002/jmv.21663
http://dx.doi.org/10.4166/kjg.2016.67.6.337
http://dx.doi.org/10.4161/org.4.2.5851
http://dx.doi.org/10.1172/JCI41431
http://dx.doi.org/10.1016/j.compbiomed.2020.104123
https://github.com/FelixKrueger/TrimGalore/releases
https://github.com/FelixKrueger/TrimGalore/releases
http://dx.doi.org/10.1093/bioinformatics/bty350
http://dx.doi.org/10.3390/v13030377
http://dx.doi.org/10.3201/eid1505.081390
http://dx.doi.org/10.1016/j.vetmic.2019.108436
http://dx.doi.org/10.1093/infdis/jiw285
http://dx.doi.org/10.7554/eLife.12177
http://dx.doi.org/10.3855/jidc.6670
http://dx.doi.org/10.7717/peerj.13090
https://peerj.com/


Melton JV, Ewart GD, Weir RC, Board PG, Lee E, Gage PW. 2002. Alphavirus 6K proteins form
ion channels. The Journal of Biological Chemistry 277(49):46923–46931
DOI 10.1074/jbc.M207847200.

Mishra AR, Byrareddy SN, Nayak D. 2020. IFN-I independent antiviral immune response to
vesicular stomatitis virus challenge in mouse brain. Vaccines 8(2):326
DOI 10.3390/vaccines8020326.

Montes-Grajales D, Puerta-Guardo H, Espinosa DA, Harris E, Caicedo-Torres W,
Olivero-Verbel J, Martínez-Romero E. 2020. In silico drug repurposing for the identification of
potential candidate molecules against arboviruses infection. Antiviral Research 173:104668
DOI 10.1016/j.antiviral.2019.104668.

Nakaya HI, Gardner J, Poo Y-S, Major L, Pulendran B, Suhrbier A. 2012. Gene profiling of
Chikungunya virus arthritis in a mouse model reveals significant overlap with rheumatoid
arthritis. Arthritis and Rheumatism 64(11):3553–3563 DOI 10.1002/art.34631.

Nasci RS. 2014. Movement of chikungunya virus into the Western hemisphere. Emerging
Infectious Diseases 20(8):1394–1395 DOI 10.3201/eid2008.140333.

Nowicka M, Robinson MD. 2016. DRIMSeq: a Dirichlet-multinomial framework for multivariate
count outcomes in genomics. F1000Research 5:1356 DOI 10.12688/f1000research.8900.2.

Nsoesie EO, Kraemer MU, Golding N, Pigott DM, Brady OJ, Moyes CL, Johansson MA,
Gething PW, Velayudhan R, Khan K, Hay SI, Brownstein JS. 2016. Global distribution and
environmental suitability for chikungunya virus, 1952 to 2015. Euro Surveillance: Bulletin
Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin
21:1560–7917 DOI 10.2807/1560-7917.ES.2016.21.20.30234.

Orjuela S, Huang R, Hembach KM, Robinson MD, Soneson C. 2019. ARMOR: an utomated
eproducible dular workflow for preprocessing and differential analysis of NA-seq data. G3
9:2089–2096 DOI 10.1534/g3.119.400185.

Pagès F, Peyrefitte CN, Mve MT, Jarjaval F, Brisse S, Iteman I, Gravier P, Tolou H, Nkoghe D,
Grandadam M. 2009. Aedes albopictus mosquito: the main vector of the 2007 Chikungunya
outbreak in Gabon. PLOS ONE 4:e4691 DOI 10.1371/journal.pone.0004691.

Panigrahi A, Chakraborty S, Sil A. 2021. Chik sign in chikungunya fever. Infection 49:1075–1076
DOI 10.1007/s15010-020-01472-x.

Parashar D, Paingankar MS, More A, Patil P, Amdekar S. 2018. Altered microRNA expression
signature in Chikungunya-infected mammalian fibroblast cells. Virus Genes 54:502–513
DOI 10.1007/s11262-018-1578-8.

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and
bias-aware quantification of transcript expression. Nature Methods 14(4):417–419
DOI 10.1038/nmeth.4197.

Pu S-Y, Xiao F, Schor S, Bekerman E, Zanini F, Barouch-Bentov R, Nagamine CM, Einav S.
2018. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue
treatment. Antiviral Research 155(2):67–75 DOI 10.1016/j.antiviral.2018.05.001.

PubChem. 2021. Telmisartan. Available at https://pubchem.ncbi.nlm.nih.gov/compound/65999
(accessed 31 July 2021).

Roberts JL, Tavallai M, Nourbakhsh A, Fidanza A, Cruz-Luna T, Smith E, Siembida P,
Plamondon P, Cycon KA, Doern CD, Booth L, Dent P. 2015. GRP78/Dna K is a target for
Nexavar/Stivarga/Votrient in the treatment of human malignancies, viral infections and
bacterial diseases. Journal of Cellular Physiology 230:2552–2578 DOI 10.1002/jcp.25014.

Gray et al. (2022), PeerJ, DOI 10.7717/peerj.13090 21/23

http://dx.doi.org/10.1074/jbc.M207847200
http://dx.doi.org/10.3390/vaccines8020326
http://dx.doi.org/10.1016/j.antiviral.2019.104668
http://dx.doi.org/10.1002/art.34631
http://dx.doi.org/10.3201/eid2008.140333
http://dx.doi.org/10.12688/f1000research.8900.2
http://dx.doi.org/10.2807/1560-7917.ES.2016.21.20.30234
http://dx.doi.org/10.1534/g3.119.400185
http://dx.doi.org/10.1371/journal.pone.0004691
http://dx.doi.org/10.1007/s15010-020-01472-x
http://dx.doi.org/10.1007/s11262-018-1578-8
http://dx.doi.org/10.1038/nmeth.4197
http://dx.doi.org/10.1016/j.antiviral.2018.05.001
https://pubchem.ncbi.nlm.nih.gov/compound/65999
http://dx.doi.org/10.1002/jcp.25014
http://dx.doi.org/10.7717/peerj.13090
https://peerj.com/


Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26(1):139–140
DOI 10.1093/bioinformatics/btp616.

Rothlin RP, Vetulli HM, Duarte M, Pelorosso FG. 2020. Telmisartan as tentative angiotensin
receptor blocker therapeutic for COVID-19. Drug Development Research 81(7):768–770
DOI 10.1002/ddr.21679.

Roy E, Byrareddy SN, Reid SP. 2020. Role of microRNAs in bone pathology during chikungunya
virus infection. Viruses 12(11):1207 DOI 10.3390/v12111207.

s-andrews. 2021. GitHub-s-andrews/FastQC: a quality control analysis tool for high throughput
sequencing data. Available at https://github.com/s-andrews/FastQC (accessed 23 November
2021).

Salgado M, Martinez-Picado J, Gálvez C, Rodríguez-Mora S, Rivaya B, Urrea V, Mateos E,
Alcamí J, Coiras M. 2020. Dasatinib protects humanized mice from acute HIV-1 infection.
Biochemical Pharmacology 174:113625 DOI 10.1016/j.bcp.2019.113625.

Sanjai Kumar P, Nayak TK, Mahish C, Sahoo SS, Radhakrishnan A, De S, Datey A, Sahu RP,
Goswami C, Chattopadhyay S, Chattopadhyay S. 2021. Inhibition of transient receptor
potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages.
Archives of Virology 166:139–155 DOI 10.1007/s00705-020-04852-8.

Scuotto M, Abdelnabi R, Collarile S, Schiraldi C, Delang L, Massa A, Ferla S, Brancale A,
Leyssen P, Neyts J, Filosa R. 2017. Discovery of novel multi-target indole-based derivatives as
potent and selective inhibitors of chikungunya virus replication. Bioorganic & Medicinal
Chemistry 25:327–337 DOI 10.1016/j.bmc.2016.10.037.

Selvamani SP, Mishra R, Singh SK. 2014. Chikungunya virus exploits miR-146a to regulate NF-κB
pathway in human synovial fibroblasts. PLOS ONE 9:e103624
DOI 10.1371/journal.pone.0103624.

Sharma A, Balakathiresan NS, Maheshwari RK. 2015. Chikungunya virus infection alters
expression of microRNAs involved in cellular proliferation, immune response and apoptosis.
Intervirology 58:332–341 DOI 10.1159/000441309.

Sil A, Bhattacharjee MS, Chandra A, Pramanik JD. 2021. Sulfasalazine-induced drug reaction
with eosinophilia and systemic symptoms (DRESS) with concomitant acute chikungunya virus
infection: possible role of new viral trigger. BMJ Case Reports 14(10):e244063
DOI 10.1136/bcr-2021-244063.

Singal A. 2017. Chikungunya and skin: current perspective. Indian Dermatology Online Journal
8(5):307–309 DOI 10.4103/idoj.IDOJ_93_17.

Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F, Rudnicka D,
Sol-Foulon N, Le Roux K, Prevost M-C, Fsihi H, Frenkiel M-P, Blanchet F, Afonso PV,
Ceccaldi P-E, Ozden S, Gessain A, Schuffenecker I, Verhasselt B, Zamborlini A, Saïb A,
Rey FA, Arenzana-Seisdedos F, Desprès P, Michault A, Albert ML, Schwartz O. 2007.
Characterization of reemerging chikungunya virus. PLOS Pathogens 3(6):e89
DOI 10.1371/journal.ppat.0030089.

Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. 2020. Disease
resolution in Chikungunya—what decides the outcome? Frontiers in Immunology 11:420
DOI 10.3389/fimmu.2020.00695.

Suhrbier A. 2019. Rheumatic manifestations of chikungunya: emerging concepts and
interventions. Nature Reviews Rheumatology 15(10):597–611 DOI 10.1038/s41584-019-0276-9.

Tan Y, Pickett BE, Shrivastava S, Gresh L, Balmaseda A, Amedeo P, Hu L, Puri V, Fedorova NB,
Halpin RA, LaPointe MP, Cone MR, Heberlein-Larson L, Kramer LD, Ciota AT, Gordon A,

Gray et al. (2022), PeerJ, DOI 10.7717/peerj.13090 22/23

http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1002/ddr.21679
http://dx.doi.org/10.3390/v12111207
https://github.com/s-andrews/FastQC
http://dx.doi.org/10.1016/j.bcp.2019.113625
http://dx.doi.org/10.1007/s00705-020-04852-8
http://dx.doi.org/10.1016/j.bmc.2016.10.037
http://dx.doi.org/10.1371/journal.pone.0103624
http://dx.doi.org/10.1159/000441309
http://dx.doi.org/10.1136/bcr-2021-244063
http://dx.doi.org/10.4103/idoj.IDOJ_93_17
http://dx.doi.org/10.1371/journal.ppat.0030089
http://dx.doi.org/10.3389/fimmu.2020.00695
http://dx.doi.org/10.1038/s41584-019-0276-9
http://dx.doi.org/10.7717/peerj.13090
https://peerj.com/


Shabman RS, Das SR, Harris E. 2018. Differing epidemiological dynamics of Chikungunya
virus in the Americas during the 2014–2015 epidemic. PLOS Neglected Tropical Diseases
12(7):e0006670 DOI 10.1371/journal.pntd.0006670.

Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, Kim CJ, Kusanovic JP, Romero R.
2009. A novel signaling pathway impact analysis. Bioinformatics 25(1):75–82
DOI 10.1093/bioinformatics/btn577.

Tripathi PK, Soni A, Singh Yadav SP, Kumar A, Gaurav N, Raghavendhar S, Sharma P, Sunil S,
Ashish, Jayaram B, Patel AK. 2020. Evaluation of novobiocin and telmisartan for anti-CHIKV
activity. Virology 548:250–260 DOI 10.1016/j.virol.2020.05.010.

Wichit S, Hamel R, Bernard E, Talignani L, Diop F, Ferraris P, Liegeois F, Ekchariyawat P,
Luplertlop N, Surasombatpattana P, Thomas F, Merits A, Choumet V, Roques P, Yssel H,
Briant L, Missé D. 2017. Imipramine inhibits chikungunya virus replication in human skin
fibroblasts through interference with intracellular cholesterol trafficking. Scientific Reports
7:3145 DOI 10.1038/s41598-017-03316-5.

Wikan N, Sakoonwatanyoo P, Ubol S, Yoksan S, Smith DR. 2012. Chikungunya virus infection
of cell lines: analysis of the East, Central and South African Lineage. PLOS ONE 7:e31102
DOI 10.1371/journal.pone.0031102.

Wu D, Smyth GK. 2012. Camera: a competitive gene set test accounting for inter-gene correlation.
Nucleic Acids Research 40(17):e133 DOI 10.1093/nar/gks461.

Zaid A, Rulli NE, Rolph MS, Suhrbier A, Mahalingam S. 2011. Disease exacerbation by
etanercept in a mouse model of alphaviral arthritis and myositis. Arthritis and Rheumatism
63(2):488–491 DOI 10.1002/art.30112.

Gray et al. (2022), PeerJ, DOI 10.7717/peerj.13090 23/23

http://dx.doi.org/10.1371/journal.pntd.0006670
http://dx.doi.org/10.1093/bioinformatics/btn577
http://dx.doi.org/10.1016/j.virol.2020.05.010
http://dx.doi.org/10.1038/s41598-017-03316-5
http://dx.doi.org/10.1371/journal.pone.0031102
http://dx.doi.org/10.1093/nar/gks461
http://dx.doi.org/10.1002/art.30112
https://peerj.com/
http://dx.doi.org/10.7717/peerj.13090

	Chikungunya virus time course infection of human macrophages reveals intracellular signaling pathways relevant to repurposed therapeutics ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


