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Psoriasis, which is a common chronic inflammatory skin disease, endangers human 
health and brings about a major economic burden worldwide. To date, treatments for 
psoriasis remain unsatisfied because of their clinical limitations and various side effects. 
Thus, developing a safer and more effective therapy for psoriasis is compelling. Previous 
studies have explicitly shown that psoriasis is an autoimmune disease that is predomi-
nantly mediated by T helper 17 (Th17) cells, which express high levels of interleukin-17 
(IL-17) in response to interleukin-23 (IL-23). The discovery of the IL-23–Th17–IL-17 axis 
in the development of psoriasis has led to the paradigm shift of understanding patho-
genesis of psoriasis. Although anti-IL-17 antibodies show marked clinical efficacy in 
treating psoriasis, compared with antibodies targeting IL-17A or IL-17R alone, targeting 
Th17 cells themselves may have a maximal benefit by affecting multiple proinflamma-
tory cytokines, including IL-17A, IL-17F, IL-22, and granulocyte-macrophage colony- 
stimulating factor, which likely act synergistically to drive skin inflammation in psoriasis. 
In this review, we mainly focus on the critical role of Th17 cells in the pathogenesis of 
psoriasis. Especially, we explore the small molecules that target retinoid-related orphan 
receptor γt (RORγt), a vital transcription factor for Th17 cells. Given that RORγt is the 
lineage-defining transcription factor for Th17  cell differentiation, targeting RORγt via 
small molecular inverse agonists may be a promising strategy for the treatment of Th17-
mediated psoriasis.

Keywords: autoimmune disorder, psoriasis, T helper 17 cells, retinoid-related orphan receptor γt nuclear receptor, 
retinoid-related orphan receptor γt inverse agonist

inTRODUCTiOn

Psoriasis is an autoimmune disease with chronic skin inflammation (1), affecting over 125 million 
people worldwide (up to 2–4% of the world’s population) (2). It is predominantly a skin disease, 
which can manifest itself as various phenotypes, including plaque-type psoriasis or psoriasis vulgaris, 
guttate psoriasis, pustular psoriasis such as palmoplantar pustulosis, and erythrodermic psoriasis.
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TAble 1 | Traditional treatment for psoriasis.

Traditional treatments Molecular mechanisms Adverse reactions

Corticosteroids Vascular permeability ↓
Skin edema ↓
Neutrophil infiltration ↓
Cell proliferation ↓

Skin atrophy, hair thinning, hypopigmentation, allergic contact dermatitis

Vitamin D3 analogs Immune modulation
Keratinocyte maturation ↓

Hypercalcemia, urinary calcium concentrations increased, tissue calcification

Victoria A acid The activity of Th1 and Th17 cells ↓
Keratinocyte differentiation

External medicine: itching and burning sensation and erythema, friction at the 
erythema

Oral administration: dry and exfoliated skin, diffuse baldness, denaturation, and 
skin adhesion

Methotrexate Inhibition of the enzyme 5-aminoimidazole- 
4-carboxamide ribonucleotide transformylase
Adenosine ↓
Tumor necrosis factor (TNF) and two nuclear factor-κB 
subunits ↓

Bone marrow toxicity, cirrhosis, nausea, and macrocytic anemia

Cyclosporine T cell activity ↓ Nephrotoxicity, numerous drug–drug interactions; hypertension, hyperkalemia, 
increased risk of lymphoma, and squamous cell carcinoma with long-term use

Fumarates TNF, IL-12, and interleukin-23 production ↓ Gastrointestinal disturbances, flushing, eosinophilia, and proteinuria
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Psoriasis vulgaris, a most common type of psoriasis, is char-
acterized by well-defined areas of erythematous and plaques 
with overlying silvery scale. The main histopathological changes 
of psoriasis vulgaris include abnormal cell proliferation, par-
akeratosis, hyperkeratosis, angiogenesis, and inflammatory cell 
infiltration (1, 3).

Increasing evidence has shown that comorbid cardiovascular 
diseases are the leading causes of death among patients with  
psoriasis (4). In addition, a high prevalence of metabolic synd-
rome, psychosocial distress or psychiatric disorders, chronic kid-
ney disease, and gastrointestinal disease has been demonstrated 
in individuals with psoriasis (5, 6). The global financial burden 
associated with the care of psoriatic patients is substantial and 
significant (7–10). It was reported that the annual costs for treat-
ing psoriasis in USA amounted to approximately $112 billion in 
2013 (11). As for individuals, patients with psoriasis would incur 
a lifetime medical expense for relief of physical symptoms and 
emotional health (12).

THeRAPeUTiC CHAllenGeS  
FOR PSORiASiS

Based on the immunological characteristics of psoriasis, resear-
chers have developed topical treatments, including corticos-
teroids, vitamin D3 analogs and Victoria A acid, and systemic 
therapies, including methotrexate and cyclosporine, for psoriasis. 
In clinic, patients with mild-to-moderate plaque psoriasis are 
usually treated topically with corticosteroids and vitamin D3 
analogs, whereas those with moderate-to-severe psoriasis are 
systemically treated with methotrexate and cyclosporine (13, 14). 
However, these treatments exhibit low efficacies, poor tolerability, 
and various adverse reactions (15) (Table 1).

Although the introduction of biological treatments, including 
tumor necrosis factor (TNF)-α antagonists (Efalizumab), anti- 
TNF antibody (Adalimumab) (16), IL-12/interleukin-23 (IL-23)  

antagonists (Ustekinumab) (17), and interleukin-17 (IL-17) anta-
gonists (Secukinumab, Ixekizumab, and Brodalumab) (18, 19), has 
revolutionized the short-term treatment of moderate-to-severe  
plaque psoriasis, the long-term use of biological therapies may 
cause loss of efficacy as well as severe adverse reactions, such 
as infection, cancer, and hepatic dysfunction (20, 21) (Table 2). 
These clinical side effects of existing treatments strongly suggest 
that it is still urgent to discover safer and more effective thera-
peutic drugs for psoriasis.

PATHOGeneSiS OF AUTOiMMUne 
PSORiASiS

To develop a better, safer, and more effective therapy for pso-
riasis, it is imperative to understand psoriatic pathogenesis. Pre-
vious studies have indicated that psoriasis is a skin disease mainly 
mediated by dendritic cells and T cells although macrophages, 
neutrophilic granulocytes, keratinocytes, vascular endothelial 
cells, and the cutaneous nervous system are involved in its patho-
genesis (22, 23).

Epidermis-produced antimicrobial peptide LL-37 (catheli-
cidin), which acts as a dendritic cell activator, is upregulated in 
the initial phase of psoriasis (24). LL-37 stimulates dermal plas-
macytoid dendritic cells to produce interferon-γ (IFN-γ), which  
in turn activates myeloid dendritic cells (mDCs) to secrete IL-12 
and IL-23. IL-12 promotes the differentiation of Th1 cells, whereas 
IL-23 enhances T helper 17 (Th17) cell development. Th1 cells 
secrete more IFN-γ and TNF-α to further stimulate mDCs. In 
addition, Th17  cells secrete IL-17 to stimulate keratinocytes to 
over-proliferate, causing psoriasis-like lesions (25). Furthermore, 
the lesion cells secrete a series of chemokines, attracting more 
immune cells to inflamed tissue, while the damaged cells are 
digested by macrophages and produce LL-37, forming a positive 
feedback path that accelerates the development of psoriasis. 
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TAble 2 | Biologic therapies for psoriasis.

biologic therapies Molecular targets Adverse reactions

Efalizumab Tumor necrosis factor (TNF) receptor fusion 
protein antagonist

Infections, certain malignancies, particularly cutaneous squamous cell carcinoma

Adalimumab Anti-TNF human monoclonal antibody Infections and certain malignancies, particularly cutaneous squamous cell carcinoma
Serious adverse reactions: active tuberculosis, myocardial infarction, optic neuritis, 

pancytopenia, lymphoma, etc.

Ustekinumab Anti-IL-12 and anti-interleukin-23 human 
monoclonal antibody

Nasopharyngitis, upper respiratory tract infection, headache, diarrhea, muscle  
pain, dizziness, etc.

Secukinumab Anti-IL17A human monoclonal antibody The development of Candida infections
Special adverse reaction: neutropenia

Ixekizumab Anti-IL-17A human monoclonal antibody The development of Candida infections

Brodalumab Anti-IL-17A receptor human monoclonal  
antibody

The development of Candida infections suicidal ideation
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Recently, LL-37 has been proved to be a T-cell-reactive autoanti-
gen in psoriasis. LL37-specific CD4+ T cells can produce Th17-
related cytokines (26). In summary, these results indicate that 
psoriasis is an autoimmune disease mediated by dendritic cells 
and T-cells (Figure 1).

THe MAin ROle OF PATHOGeniC  
Th17 CellS in PSORiASiS

T helper 17 cells are a distinct subset of T helper cells that mainly 
produce IL-17A, IL-17F, and IL-22. Mounting evidence shows that 
there are two subsets of Th17 lineages. A non-pathogenic subset 
of Th17 cells induced by TGF-β1 and IL-6 has an important role 
in host defense against specific pathogens by producing IL-17 and 
IL-10 (27). The production of IL-10 by non-pathogenic Th17 cells 
restrains Th17 cell-mediated pathology so that they are incapable 
of promoting autoimmune inflammation. On the other hand, 
differentiation of highly pathogenic Th17 cells from naïve T cells 
occurs in the presence of IL-23, IL-6, and TGF-β1 (28, 29). More 
precisely, exposure to IL-23 diminishes the anti-inflammatory 
cytokine IL-10 in developing Th17 cells (27). In addition, IL-23  
stabilizes and reinforces Th17 phenotypes by increasing exp-
ression of IL-23 receptor (30, 31) and endowing Th17 cells with 
patho genic effector functions (32–34). These pathogenic Th17  
cells contribute to various autoimmune diseases (35, 36).

Psoriasis is primarily characterized as a Th1-driven disease 
because the levels of Th1 cytokines, such as IFN-γ, TNF-α, and 
interleukin (IL)-12, are markedly elevated in psoriatic lesions, 
while there is no such an increase in expression of Th2 cytokines 
(IL-4, IL-5, and IL-13) (37–39). With the characterization of a 
distinct subset of Th17 cells, the research field of psoriasis has 
experienced a major paradigm shift.

Indeed, previous results have confirmed that pathogenic Th17  
cells play a central role in the development of psoriasis(40, 41). 
Pathological or immunohistochemical studies on psoriasis have 
shown that skin lesions are mainly infiltrated by Th17 cells. In 
addition, IL-23, which is produced by activated mDCs, drives 
naïve T cells to develop into pathogenic Th17 cells (42). IL-17, 
which is predominantly produced by pathogenic Th17 (43), is 
significantly elevated in patients with psoriasis compared with 

healthy subjects. Upregulated IL-17 has potent ability to recruit 
neutrophils (44, 45), to activate T cells, to stimulate fibroblasts (46), 
and to promote development of multiple lineages of macro phages 
(47, 48). Moreover, pathogenic Th17-secreted IL-17 induces 
proliferation of keratinocytes and secretion of antimic robial 
peptides, cytokines, and chemokines, which in turn recruit 
more immune cells to inflamed tissue. This positive feedback 
loop between Th17  cells and keratinocytes has been proved to 
contribute to the chronic inflammatory phase of psoriasis (43, 
49, 50). Other proinflammatory factors released by pathogenic 
Th17  cells, such as IL-22, TNF-α, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF), stimulate keratinocytes to 
release chemokines, further sustaining the inflammatory cycle 
to promote the development of psoriasis (51, 52).

ReTinOiD-RelATeD ORPHAn  
ReCePTOR γt (RORγt): A lineAGe-
DeFininG TRAnSCRiPTiOn FACTOR  
FOR Th17 CellS

The differentiation of Th17 cells, similar to that of Th1 and Th2 
subsets (53, 54), relies on the action of a lineage-specific tran-
scription factor, identified as the orphan nuclear receptor RORγt 
(55). RORγt, encoded by RORC2, is an isoform of RORγ that 
belongs to the NR1F subfamily of orphan receptors, including 
RORα and RORβ. Previous studies have indicated that RORγt 
is both necessary and sufficient for Th17  cell differentiation in 
mouse and human CD4+ T cells. Ivanov et al. reported that T cells 
lacking RORγt (Rorc−/−) failed to differentiate into Th17 cells even 
under Th17-polarizing culture conditions, while over-expression 
of Rorc in naïve CD4+ T  cells was sufficient to accelerate the 
expression of Th17-related cytokines and chemokines, including 
IL-17A, IL-17F, IL-22, IL-26, CCR6, and CCL20. Moreover, mice 
lacking RORγt were much less susceptible to experimental auto-
immune encephalomyelitis (EAE), and CD4+ splenocytes from 
those mice could not induce the disease (55). A similarly crucial 
role for RORγt in human Th17 cells was also demonstrated (56). 
IL-6 and IL-23 signals strongly phosphorylated and dimerized 
signal transducer and activator of transcription 3 (STAT3), result-
ing in enhanced expression and nuclear translocation of RORγt, 
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FiGURe 1 | Pathogenesis of psoriasis. Upon activation, keratinocytes secrete LL-37 that in turn activates dendritic cells, which then produce IL-23 and IL-12. IL-23 
induces differentiation of naive T cells into Th17 cells that then overproduce IL-17 and IL-22. IL-17 activates keratinocytes, promotes epidermal hyperplasia and 
recruits proinflammatory cells, resulting in a positive proinflammatory feedback that accelerates the development of psoriasis. Moreover, IL-12 produced by dendritic 
cells also promotes the differentiation of Th1 cells that in turn produce Th1 cytokines, including IFN-γ. Abbreviations: IL, interleukin; TNF, tumor necrosis factor; 
IFN-γ, interferon-γ; Th17, T helper 17; IL-23, interleukin-23; IL-17, interleukin-17.
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which then promoted Th17 responses by activating Th17 gene 
promoters, including Il17a, Il17f, Il22, Il26, Il23r, Csf-2, Ccr6, and  
Ccl20. In addition, IL-23 signaling-induced transcription factor 
Blimp-1 enhanced pathogenic Th17 function by co-localizes RORγt  
and STAT-3 at Il17a, Il23r, and Csf-2 enhancer sites (34, 57, 58) 
(Figure 2). Interestingly, neither IL-23 nor IL-6 alone was suffi-
cient to effectively generate Th17 cells (59). Nevertheless, either 
IL-23 or IL-6 induced IL-17 production by naïve precursors in the 
presence of IL-1β rather than TGF-β. T-bet + RORγt + Th17 cells 
were generated without TGF-β and were pathogenic in an EAE 
animal model, indicating an alternative pathway for Th17 diffe-
rentiation (59).

Taken together, previous studies have confirmed an essential 
role of RORγt in the differentiation of pathogenic Th17  cells. 
Given that pathogenic Th17 cells play such a pivotal role in the 
pathogenesis of psoriasis, targeting Th17 cells, especially via bloc-
king RORγt, may be a good option for treating psoriasis. In addi-
tion, RORγt might be a uniquely tractable drug target by virtue 
of being a nuclear receptor. Therefore, RORγt can be an attractive 
pharmacologic target for the treatment of Th17-mediated auto-
immune diseases, including psoriasis.

SMAll MOleCUleS TARGeTinG RORγt

Retinoid-related orphan receptor γt contains identical DNA-
binding domain and ligand-binding domain (LBD). Like other 
nuclear receptors, the binding of ligands to the region LBD causes 

a conformational change, which results in recruiting transcrip-
tional co-activators as well as activating transcriptional activity.

Since RORγt receptor was initially identified as an orphan 
receptor, its endogenous ligands attracted more attention at first. 
Previous studies have revealed that several oxysterols are endo-
genous modulators of RORγt activity with high-affinity. For 
example, 7-oxygenated sterols function as high-affinity ligands for 
RORγt via directly binding their LBDs, modulating co-activator 
binding, and suppressing the transcriptional activity of the recep-
tors (60). In addition, 24S-hydroxycholestrol acts as an inverse 
agonist that suppresses the transcriptional activity of RORγt (61).

To develop potent synthetic RORγt ligands that selectively 
sup press pathogenic effector functions of Th17 cells, researchers 
have used many strategies to screen for potentially regulatory 
drug candidates, as described below.

Digoxin, the cardiotonic glycoside extracted mainly from 
Digitalis lanata, has been identified as a specific inhibitor of RORγ 
transcriptional activity without affecting other nuclear hormone 
receptors, including human androgen receptor (AR) and liver 
X receptor α (62). It specifically inhibits IL-17 production by 
Th17  cells. Moreover, it is effective in attenuating EAE in mice 
and decreasing the disease severity in a rat model of arthritis 
(62–64). However, it is toxic for human cells at high doses and 
may cause some adverse reactions, including arrhythmia, nausea, 
vomiting, blurred vision, diarrhea, depression, and even lethargy. 
Further studies have shown that derivatives of digoxin, such as 
Dig(dhd) 20,22-dihydrodigoxin-21,23-diol, and Dig(sal) digoxin-
21-salicylidene, specifically inhibit the differentiation of Th17 cells in 
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FiGURe 2 | Interplays of interleukin-23 (IL-23), IL-6, signal transducer and activator of transcription 3 (STAT3), and retinoid-related orphan receptor γt (RORγt) in  
the differentiation of pathogenic T helper 17 (Th17) cells. IL-23 and IL-6 signals activate the JAK–STAT signaling pathway, inducing a strong phosphorylation and 
dimerization of STAT3. STAT3 homodimers induce the expression and nuclear translocation of RORγt, which in turn promotes Th17 responses by activating  
Th17 gene promoters, including Il17a, Il17f, Il22, Il26, Il23r, Csf-2, Ccr6, and Ccl20. In addition, IL-23 signaling-induced transcription factor Blimp-1  
enhances pathogenic Th17 function by co-localizes RORγt and STAT-3 at Il17a, Il23r, and Csf-2 enhancer sites.
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human CD4+ T cells without significant toxicity (62), indicating 
that nontoxic derivatives of digoxin may be utilized as chemical 
templates for the development of RORγt negative regulators.

SR1001, a derivative of liver X receptor agonist, is capable of 
suppressing the transcriptional activity of RORα and RORγ (65).  
It is a high-affinity synthetic ligand that can bind the LBD of 
RORα and RORγ, resulting in inhibition of murine Th17 cell 
differentiation and IL-17 expression by inducing conformational 
changes that in turn suppress the receptors’ transcriptional acti-
vity. Thence, SR1001 might be an attractive lead compound for 
drug development to treat Th17-mediated autoimmune diseases, 
such as psoriasis as well as RORα- and RORγ-mediated metabolic 
diseases (66, 67).

SR2211, a derivative of SR1001, only binds the LBD of RORγ 
and inhibits the transcriptional activity of RORγ without affec-
ting RORα function (68). In addition, SR2211 suppresses the 
intracellular expression of IL-17 and has potential utility for the  
treatment of inflammatory diseases, such as experimental arth-
ritis (69, 70). SR2211 has been shown to diminish genome-wide 
AR binding, H3K27ac abundance and expression of the AR target 
gene networks, and it could serve as a potential drug for the treat-
ment of castration-resistant prostate cancer (71).

Ursolic acid (UA), a small molecule present in medicinal 
herbs such as Prunella vulgaris L., effectively inhibits the func-
tion of RORγt, resulting in greatly reduced IL-17 expression in 

both developing and differentiated Th17 cells (72, 73). However, 
UA also has other cellular targets, including the liver kinase 
B1–AMP-activated protein kinase (74), the NFE2-related factor 
2 (75), nuclear factor-κB (76), and STAT3 pathway (77, 78), sug-
gesting that it is not RORγt-specific in vivo.

TMP920, which can displace RORγt from its target loci, 
suppresses Th17 cell differentiation and Th17 signature gene exp-
ression (79). Based on TMP920, additional inverse agonists are 
developed, including TMP778, which exhibits an increase in 
potency and specificity. It predominantly affects RORγt tran-
scription without removing DNA binding (79). Interestingly, 
the diastereomer of TMP778 or TMP776 displays no inverse 
agonist activity against RORγt. In experiments in vivo, TMP778 
suppresses imiquimod-induced cutaneous inflammation and 
attenuates EAE. Furthermore, TMP778 also reduces expression 
of Th17-signature genes in cells isolated from the blood and skin 
of psoriatic patients (80).

Other RORγt inverse agonists have also been discovered. Using  
a scaffold hybridization strategy, a series of carbazole carbox-
amides are found to be potent RORγt inverse agonists (81). In 
addition, MG 2778, a cyclopenta[a]phenanthrene derivative, is 
identified as a lead compound for developing synthetic steroidal 
inverse agonists of RORγt (82). Furthermore, TAK-828F, a potent 
and selective RORγt inverse agonist, strongly inhibits Tc17 and 
Th17 cell differentiation from naive T cells and memory CD4+ 
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T cells without affecting Th1 cell differentiation (83). In another 
study, Barbay et  al. have identified 6-substituted quinolines as 
modulators of RORγt using a RORγt-driven cell-based reporter 
assay. They have further elucidated the interaction between 
6-substituted quinolones and RORγt in an X-ray crystal struc-
ture (84). Moreover, A213, a potent and selective antagonist of 
RORγt, is found to inhibit Th17 cell differentiation in vitro. It also 
attenuates psoriatic skin lesion in two different mouse models by 
suppressing IL-17 production (85).

Taken together, previous studies have implicated a potential 
therapeutic application of RORγt antagonist for the treatment of 
Th17-mediated diseases, including psoriasis. Especially, targeting 
RORγt for the treatment of cutaneous inflammatory disorders may 
afford additional therapeutic benefits over existing modalities, in 
which only one Th17 cytokine such as IL-17A is targeted. However, 
the small molecules targeting RORγt could generate unwanted 
or unexpected results given that they may exert off-target effects 
in  vivo. Those molecules must undergo rigorous clinical trials 
prior to a clinical application to carefully evaluate their potential 
side effects. In addition, other types of immune cells, including 
type 3 innate lymphoid cells, CD8+ IL-17-producing (Tc17) cells, 
γδT, and even Treg cells, may also express RORγt. Target RORγt 
could affect these cells as well. Thus, strategies targeting RORγt in 
Th17 cells are preferred so that we can attenuate Th17-mediated 
inflammation while limiting potential side effects.

SUMMARY AnD OUTlOOK

Since there are many limitations of traditional and biological 
treatments for psoriasis, it is important to develop more effective 
and safer therapies of psoriasis. The finding of RORγt/Th17/
IL-17 signaling pathway has provided further insights into the 
pathogenesis of psoriasis. Compared with antibodies targeting 
IL-17A or IL-17R alone, targeting Th17  cells themselves might 
benefit psoriatic patients to a greatest extent by impacting multiple 

pro inflammatory cytokines (IL-17A, IL-17F, IL-22, and GM-CSF) 
that are likely to act synergistically to drive psoriatic inflammation. 
Hence, targeting RORγt via small molecule inverse agonists is a 
promising strategy for treating psoriasis via suppressing Th17 cell 
differentiation. Furthermore, small molecules disrupting RORγt 
are also expected to be safer than global immuno suppressive 
agents, such as cyclosporine. However, there are several challenges 
that need to be overcome. Researchers should generate safer and 
more potent compounds. Moreover, rigorous clinical studies are 
needed to assess their actual clinical efficacy and side effects since 
they could generate off-target effects. In conclusion, given the 
importance of Th17 cells and their proinflammatory cytokines in 
the pathogenesis of psoriasis, targeting RORγt seems to be a promis-
ing approach to treating psoriasis effectively and perhaps safely.
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