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Abstract: Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency
is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of
calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling
pathways involved in the control of cell proliferation. In addition, calcitriol combined with different
kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive
or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating
patients with breast cancer has not yet been fully established. Accordingly, in the present work,
we review and discuss the preclinical and clinical studies about the combination of calcitriol with
different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for
the treatment of this pathology.
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1. Introduction
1.1. Vitamin D Metabolism

Vitamin D (VD) is a generic name encompassing different lipidic metabolites derived
from 7-dehydrocholesterol in animals or ergosterol in fungi and plants. These metabolites
are considered secosteroids due to the breakage of the B ring of the cyclopentanoperhy-
drophenanthrene structure by sunlight exposure. Examples of these naturally occurring
secosteroids include lumisterol (VD1), ergosterol (VD2), cholecalciferol (VD3), calcidiol
(25-hydroxyvitamin D2), and calcitriol (1,25-dihydroxyvitamin D3). Calcitriol represents
the most active VD metabolite and hormonal form, which modulates calcium homeosta-
sis through actions on the kidney, bone, and intestinal tract [1]. VD3 is formed in the
skin after a complex series of steps. The process begins with the photoisomerization
of 7-dehydrocolesterol to pre-VD3 under the influence of UV B radiation (wavelength,
280–315 nm). Once formed in the skin, VD3 is transported in the blood by the VD binding
protein (DBP) and can be 25-hydroxylated in the liver to calcidiol by the mitochondrial
and microsomal enzymes CYP27A1 and CYP2R1, respectively. Afterward, this interme-
diate metabolite may be activated by CYP27B1 in the kidney, producing calcitriol. This
hormone enters into the cells by passive diffusion and binds to the intracellular vitamin D
receptor (VDR), forming a complex with the retinoid-X receptor (RXR) [2]. The resulting
heterodimer binds to vitamin D response elements (VDREs) sequences in the DNA to
either promote or suppress the gene expression, depending on the type of co-activators or
co-repressors recruited.

VDR is expressed in several tissues and cells; it has a higher affinity towards calcitriol
than any other VD metabolite. Among the effects that this hormone induces in cancer cells
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are the arrest of the cell cycle, associated with cyclin-dependent kinases (CDK) inhibition,
and apoptosis (modulation of Bcl-2 protein family) [3–7]. In addition, calcitriol can also
activate different non-genomic actions such as protein kinase C, modulate phospholipid
metabolism, stimulate the formation of cyclic nucleotides, trigger calcium transport, and
regulate Raf and mitogen-activated protein kinase (MAPK) extracellular signal-regulated
kinases (ERK) signaling, all in a manner independent of VDR/DNA binding [6,8–12].

Additionally, calcitriol or its different synthetic analogs (e.g., alfacalcidol, paracalcitol)
inhibit cancer cell proliferation [13,14]. The mechanisms so far reported by which calcitriol
acts in cancer cells are diverse. Standing out among these are the promotion of cell
differentiation, anti-inflammatory effects, apoptotic actions, among others [15–17]. Diverse
preclinical and clinical studies have focused on studying combinations of calcitriol with
a variety of agents with and without chemotherapeutic action in different cancer cells,
including breast cancer [18–22]. Unfortunately, the use of calcitriol or its analogs in cancer
treatment as single agents or in combination with other antineoplastic compounds has been
hindered by the failure to achieve outstanding outcomes. However, its possible application
in the clinic is being actively studied, and several approaches may be considered, including
optimal and intermittent doses of therapy, appropriate clinical regimens, and efficient
selection of patients who could benefit of this strategy, as was previously discussed by
Trump in his recent review [23].

1.2. Breast Cancer Disease and VD

Breast cancer (BC) is the most frequent neoplasm in women around the world [24].
This disease can be mainly divided into three different types according to the expression
of specific molecular targets. The most common BC subtypes are estrogen receptor (ER)
positive, epidermal growth factor receptor type 2 (HER2) -positive, and triple-negative
(TNBC) [25,26]. Among these, the ER subtype is commonly found in around 70% of
BC cases. It has been linked with a better prognosis when compared with other BC
varieties [27]. Noteworthy, calcitriol has an essential role in normal mammary gland devel-
opment. Animal models based on VDR knockout mice have confirmed this assumption, as
alterations in mammary morphogenesis have been observed, as well as increased growth,
in response to exogenous estrogen and progesterone compared to wild-type mice [28,29].

Epidemiological studies have pointed out a close relationship between VD3 deficiency
and the development of BC. Different studies have also correlated higher serum calcitriol
levels in the early stage of BC compared to more advanced stages and metastatic progres-
sion of this disease. VD3 deficiency is diagnosed when serum calcidiol levels are below
20 ng/mL (50 nmol/L) [30]. In addition, not only have low levels of calcidiol been associ-
ated with the development of BC, but deregulated components of the VD3 biosynthetic
pathway and altered VD3 transcriptional functions also participate in the development and
establishment of this pathology. For instance, the aberrant amplification of the CYP24A1
gene in BC has been reported. This gene encodes the 24-hydroxylase enzyme, which is
responsible for calcitriol degradation. Therefore, CYP24A1 overexpression could lead to
abrogation of growth control mediated by calcitriol [31,32]. On the other hand, CYP27B1,
responsible for calcidiol activation, has been detected in normal human breast as well as
in breast carcinoma samples [33], indicating that normal and malignant breast tissue can
locally synthesize the active form of VD3. However, CYP27B1 degradation has been found
enhanced in tumors, precluding the antineoplastic effects of calcitriol. In addition, the
expression of VDR has been reported in normal and malignant BC cells, corroborating that
transformed cells are also under the control of VD metabolites [34]. Of note, the loss of
VDR has a critical impact on the survival of patients with BC [35].

The antineoplastic effects of calcitriol or its different analogs administered alone or
in combination with chemotherapeutics agents have also been widely reported in in vitro
and in vivo models using different BC cells. Nevertheless, the optimal response depends
on different factors, including molecular type and stage of BC, kind of therapy, the status
of VDR, among others [36–38].
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In the section below, we will describe the types of therapeutic agents that have been
combined with calcitriol taking into consideration their mechanism of action in BC, to
lay the bases that can assist for the establishment of calcitriol as an adjuvant agent in
this pathology.

2. Calcitriol in Combination with Chemo/Radiotherapy in BC

Most cancer cells can respond to calcitriol by expressing the VDR. In particular, BC cells
have shown higher VDR protein levels compared to benign breast tissue [39]. Through this
transcription factor, calcitriol exerts many anticancer effects, including growth inhibition,
induction of cell differentiation, anti-inflammatory activity, cell cycle arrest, oncogenes
downregulation, and many others that place calcitriol as a natural endogenous cancer-
preventive antineoplastic factor [40,41]. This has been the basis of the vast number of
studies designed to study calcitriol and its analogs as pharmacological options in the
oncological setting [42]. Notably, calcitriol not only acts as an antineoplastic agent, but
also can help to overcome drug resistance, increase the susceptibility to chemotherapy and
even potentiate the effects of conventional chemotherapeutic agents and radiation therapy.
We will address this last subject in this section, focusing on BC.

A vast number of preclinical studies has explored the potential enhancement of cal-
citriol anticancer effects by its combination with conventional chemotherapeutic regimens.
This, of course, has the additional benefit of allowing for dose reduction of the chemothera-
peutic drug, while at the same time minimizing unwanted side effects.

2.1. Enhancement of BC Responsiveness to Chemotherapeutic Agents and Radiation by Calcitriol

TNBC tumors are challenging to treat since they do not express druggable targets
such as ER, progesterone receptor (PR), or HER2, precluding a tailored therapy. Therefore,
TNBC tumors are preferentially treated with chemotherapeutic agents such as platinum
compounds (e.g., cisplatin, carboplatin), taxanes (e.g., paclitaxel, docetaxel), anthracyclines
(e.g., doxorubicin, epirubicin), antimetabolites (e.g., 5-fluorouracil, methotrexate), alky-
lating agents (e.g., cyclophosphamide) or their combinations [43,44]. Interestingly, it has
been described that approximately one-third of TNBCs express the VDR, which inversely
correlates with the mitotic score, histological grade, proliferation index, and recurrence [45].
At the same time, patients with VDR-positive tumors have shown more prolonged overall
survival (26 months) than VDR-negative ones [45]. More recently, RNA-sequencing data
analysis of different basal-like patient-derived xenografts has shown that one of the most
highly expressed genes in TNBC is the VDR [46]. Notably, other BC subtypes such as
ER-positive, PR-positive, and HER2-positive also express VDR in a high percentage of
tumor cells, a feature found to be associated with more favorable prognostic characteristics
and less aggressive phenotypes [47]. The choice of treatment in each of these cases is based
on tumor histopathological features, molecular markers and clinical characteristics, and
may include chemotherapy in conjunction with a targeted therapy [48,49]. Therefore, given
the high rate of VDR expression in BC tumors, it is feasible to target this receptor in conjunc-
tion with chemotherapeutic drugs in the different BC subtypes. In this regard, more than
20 years ago, Koshizuka and colleagues demonstrated the ability of three VD compounds to
enhance paclitaxel antineoplastic effects in vivo in BC. They showed that calcitriol and two
of its analogs, EB1089 and 1,25(OH)2-16-ene-23-yne-19-nor-26,27-F6-D3, produced greater
antitumor activity than paclitaxel alone and exerted an additive effect when administered
with the taxane. EB1089 was the most potent compound by itself and the one to produce the
most active antitumorigenic combination, which was promising considering that EB1089 is
a non-calcemic calcitriol analog [50]. The same laboratory obtained similar results with
another VD analog: CB1093, which enhanced paclitaxel antitumor activity in mice carrying
MCF-7 xenografts. Cisplatin was also tested with this VD analog, but the results were
greater using the taxane [51]. These studies were undertaken using a luminal A-type BC
cell line, which is ER-positive. However, similar results have also been demonstrated in
TNBC cells and other ER-positive cell lines. Notably, Wang et al. showed that pretreating
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MDA-MB-231, MCF-7, and T-47D cells with calcitriol before exposing them to paclitaxel or
doxorubicin, decreased the half-maximal inhibitory concentration (IC50) by up to 2 logs for
paclitaxel and up to 1 log for doxorubicin, when considering as endpoints colony formation
inhibition and cell death induction. The mechanism behind these effects resulted to be
apoptosis, and in the case of paclitaxel, the pretreatment of cells with calcitriol improved
the taxane-dependent B cell CLL/lymphoma-2 (Bcl-2) phosphorylation [52]. Noteworthy,
the co-treatment was more effective in ER-positive cells compared to TNBC cells. However,
and very interesting, Wilhelm and colleagues showed that the effect of calcitriol or its
precursor calcidiol on paclitaxel efficacy differed within the TNBC subtypes and depended
on p53-positivity and VDR status [53].

More recently, Klopotowska and Matuszyk compared the ability of calcitriol and its
analog tacalcitol to improve the antineoplastic activity of 5-fluorouracil in different BC
cell lines representing various molecular subtypes. They found that among the six BC cell
lines tested, the VDR agonists more efficiently enhanced 5-fluorouracil anticancer activity
in the luminal subtypes [54]; thus, showing similar results to those just described with
calcitriol and paclitaxel. In accordance, other studies have shown that calcitriol, by inducing
metabolic reprogramming, renders BC cells more susceptible to chemotherapy. In particular,
the addition of calcitriol to MCF-7 cells was found to improve 5-fluorouracil and CBR-
5884 antiproliferative effects significantly [55]. Of note, CBR-5884 is a phosphoglycerate
dehydrogenase inhibitor that decreases de novo serine synthesis in cancer cells.

One major drawback of chemotherapy is the possibility of metastasis formation.
In a recent preclinical study, Zheng and colleagues described a methodology to deliver
paclitaxel along with calcitriol by pH-sensitive micelles, allowing for an efficient tumor
uptake of the paclitaxel+calcitriol combination. This treatment suppressed primary tumor
growth and inhibited lung metastasis formation in 4T1 tumor-bearing mice as a result of
matrix metalloproteinase-9 (MMP)-9 and Bcl-2 level downregulation as well as E-cadherin
upregulation [56]. 4T1 is an animal model for stage IV human BC. The authors suggested
the possibility to translate this finding into the clinic to counteract the pro-metastatic effect
of paclitaxel in TNBC therapy.

Cancer stem cells (CSCs) have unlimited potential for self-renewal, they are able to
drive tumorigenesis and may give rise to a phenotypically diverse progeny resulting in tu-
mor heterogeneity with differential sensitivity to chemotherapeutic agents [57]. Specifically,
BC stem cells (BCSC) are implicated in cancer recurrence, tumor initiation and progression,
distant metastasis, and resistance to therapy. Regarding this, CSCs are known to be less sen-
sitive to chemotherapy, thus, remaining viable after treatment rounds. Considering all of
this, it is of utmost importance to target BCSCs in order to avoid tumor resurgence. BCSCs
are known to express some distinctive cell surface markers, such as aldehyde dehydroge-
nase 1 (ALDH1), cluster of differentiation (CD) 44 (CD44), CD133, CD49f, CD24, and others
which are commonly associated with chemotherapy and radiotherapy resistance [58]. A
higher expression of these markers is associated with increased resistance to treatment and
poor prognosis, as in TNBC cells [59,60]. In this regard, it has been shown that calcitriol
and the VD analog BXL0124 can suppress ductal carcinoma progression in vivo and inhibit
cancer stem-like cells in mammospheres [61]. In addition, these compounds have also
been shown to inhibit BCSCs enrichment by inducing their differentiation, which was
accompanied by the reduction of key markers of pluripotency and CSC-like phenotype in
TNBC [62]. This ability of calcitriol has been exploited to sensitize BC cells to chemotherapy,
opening the possibility to use it as an adjuvant treatment in cancer patients. Indeed, a study
using BC in in vitro and in vivo approaches recently showed that combining calcitriol
(100 nM) with cisplatin, methotrexate, or doxorubicin significantly diminished their IC50.
This interaction resulted in a synergic inhibition (combination index value < 1.0) of cell pro-
liferation and resulted in cell cycle arrest at the G2/M phase. Mechanistically, both in vitro
and in vivo outcomes showed that the co-treatment significantly decreased ALDH1 levels
(35–47%, depending on the chemotherapeutic agent) in MCF-7 and MDA-MB-231 cells
and tumor tissues, suggesting the targeting of BCSCs by the combination, which resulted
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in necrosis and tumor growth inhibition [18]. The same research group has also shown
that calcitriol enhanced the cytotoxic effect of paclitaxel in MCF-7 BC cells and murine
mammary adenocarcinoma in vivo, which correlated with ALDH1 [63]. Similarly, using
MMTV-Wnt1 mammary tumors (expressing both ER and VDR) in a murine model, it was
shown that calcitriol was able to inhibit BCSCs self-renewal and tumor spheroid formation
dose-dependently and that the combination of calcitriol with ionizing radiation inhibited
spheroid formation to a greater extent than either treatment alone [64]. It was suggested
that the Wnt/β-catenin pathway was implicated in this effect, which is important given
the well-known overactivation of the Wnt/β-catenin pathway in TNBC and its correlation
with poor survival [65].

2.2. Mechanism of Action of Calcitriol and Its Analogs to Potentiate the Response to Ionizing
Radiation in BC Cells

Various mechanisms of action behind the enhancing properties of calcitriol upon
radiation therapy in BC cells have been described. Here, we discuss some of them.

(a) Induction of cytotoxic autophagy. In MCF-7, HER2-overexpressing, p53 wild-type
ER-positive ZR-75-1 and p53 mutant Hs578t cells (a breast tumor cell line intrinsically
radioresistant), calcitriol and its analog EB1089 have been shown to sensitize cells to
radiation by promoting cytotoxic autophagy. In particular, calcitriol inhibited the ability of
the cells to recover after radiation. However, in BT-474 cells expressing low VDR levels,
cytotoxic autophagy was not induced by calcitriol; thus, radiosensitivity was not modified
by this hormone. Notably, radiation alone reduced MCF-7 colony formation by 74%, while
calcitriol in combination with radiation further reduced this parameter in 87% [66–69].

(b) Reduction of RelB. RelB, a subunit of the nuclear factor-κβ (NFκβ), is known to be
expressed at high levels in aggressive BC, especially in TNBC, resulting in the induction of
Bcl-2 and cyclin D1 (CCND1) expression as well as promotion of cell cycle progression and
cell proliferation [70]. Notably, RelB expression in BC cells also confers resistance to gamma
radiation. Interestingly, one way by which calcitriol improves the prognosis of patients
with BC is by inhibiting RelB expression, with in turn downregulates Bcl-2 and increases
BC cell sensitivity to gamma-irradiation, as shown in Hs578T and HER2 overexpressing
NF639 BC cells [71].

(c) Sensitization of BCSCs to ionizing radiation through the inhibition of the Wnt/β-
catenin signaling pathway. As mentioned before, the Wnt/β-catenin signaling pathway
is inhibited by calcitriol in BCSCs cells, a process that was associated with the potentia-
tion of a clinically relevant dose of ionizing irradiation (2 Gy) to inhibit BCSC-spheroid
formation [64].

(d) Enhancement of the antiproliferative and apoptotic effects of ionizing radiation.
The co-administration of fractionated radiation with the VD analog ILX-23-7553 has

shown to exert an additive pro-apoptotic effect as well as a preventive recovery effect in
MCF-7 cells. Notably, this outcome had no impact on non-malignant control cells. ILX-23-
7553 has been shown to be able to increase MCF-7 cells sensitivity to radiation as much
as four-fold times [64]. EB1089 has also been shown to increase BC cells sensitivity to
radiation in vitro and in vivo by promoting apoptosis and increasing radiation-dependent
DNA fragmentation. Importantly, this treatment had no apoptotic effect in healthy non-
cancerous cells, further highlighting the feasibility to translate this therapeutic scheme to
the clinic [72].

A good review on the utilization of calcitriol and its analogs as radiosensitizers in
different cell lines, including the various schemes of radiation dose, mode of delivery, and
radiation type, has been recently published [73].

In conclusion, calcitriol can sensitize/potentiate chemotherapeutic drugs antitumori-
genic effects. Similarly, calcitriol may improve the impact of radiation on BC therapy.
Thus, oncologists should consider recommending patients to assess their VD levels and
supplement accordingly in the case of deficiency/insufficiency, as well as before and during
chemotherapy and radiation treatment.
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3. Combined Antitumoral Effect of Calcitriol with Natural Compounds in BC

The conventional cytotoxic agents commonly used to treat BC may cause significant
unwanted side effects. An alternative to avoid the above inconvenience could be the
establishment of different therapeutic strategies that involve drug combinations, targeting
in this way different signaling pathways that could be used by the neoplastic cells to
escape the treatment. In this regard, calcitriol, a negative growth regulator of BC cells,
represents an alternative treatment approach for human cancer. Substantial evidence
supports that calcitriol antineoplastic effects may be increased by its concomitant use with
naturally derived compounds [63,74–76], including vitamins [77,78], fatty acids [79], and
anti-inflammatory compounds [21,80–83], which are described below.

Natural compounds exert protective effects against cancer due to the presence of
phytochemicals that act via different mechanisms of action. Calcitriol has been extensively
evaluated in combination with several natural agents in leukemia [84–87]. Regarding BC,
there are only a few studies, including combinations with resveratrol, curcumin, melatonin,
and genistein [63,74–76].

3.1. Increased Antitumoral Effect of Calcitriol Combined with Resveratrol in BC

Resveratrol, a natural compound present in medicinal plants, peanuts, grapes, and
mulberries [88], has many biological activities, including regulation of lipid metabolism, in-
hibition of platelet aggregation, prevention of cardiovascular disease, and hepato-protection.
In addition, resveratrol has antioxidant, antimutagenic, anti-inflammatory, and antitumoral
properties [89]. Regarding the last point, the antitumoral effect of resveratrol has been
evaluated both in vitro and in vivo in several neoplasms, and it has been determined that
this compound intervenes in the three stages of carcinogenesis: initiation, promotion, and
progression [89]. In BC cell lines, resveratrol inhibits cell proliferation independently of
the cancer cell phenotype [90–92]. In ER-positive cells, resveratrol exerts antiestrogen
actions, triggering parallel pathways that counteract the cellular outcomes induced by
estrogens [91]. In the ER-positive MCF-7 and ER-negative MDA-MB-468 BC cell lines,
resveratrol has been shown to inhibit proliferation in a dose-dependent manner, altering
autocrine growth modulator pathways [92]. In MDA-MB-231 TNBC cells, part of the
mechanisms involved in the cell proliferation and migration inhibition by resveratrol
includes decreasing the expression and secretion of MMP-2 and MMP-9, and reversing
the transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transi-
tion (EMT), possibly through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(AKT) signaling pathway. This activity has also been observed in vivo in mice bearing
MDA-MB-231 xenografts, where resveratrol inhibited tumor growth and lung metasta-
sis [93]. Likewise, a natural methoxylated resveratrol analog has shown similar effects,
inhibiting the proliferation, invasion, and migration of MCF-7 cells by down-regulating
the PI3K/AKT and Wnt/β-catenin signaling pathways [94]. Additionally, resveratrol and
its analogs revert EMT in tumors [95]. In T-47D BC cells, resveratrol has been shown to
induce apoptotic cell death via caspase activation, CD95 ligand expression enhancement,
and induction of CD95 signaling-dependent cell death, which initiates apoptosis [88]. The
antitumoral effect of resveratrol has been studied in conjoint with other antineoplastic
agents in BC, including tamoxifen [96], and calcitriol [74]. In this regard, resveratrol per se
has been shown to inhibit the proliferation of the TNBC cell line MBCDF-Tum in a dose-
dependent manner, while this effect was potentiated by calcitriol. In vivo, the concomitant
administration of resveratrol with calcitriol to mice bearing triple-negative breast tumor
xenografts inhibited tumor neo-angiogenesis significantly and to a greater extent than each
drug alone [74]. A possible mechanism behind these effects is the enhancement of calcitriol
signaling by resveratrol, which was reported to occur at nanomolar concentrations medi-
ated by a resveratrol-dependent VDR expression stimulation in ER-postivie BC cells [97].
This data support that dietary resveratrol sensitizes BC cells to the antiproliferative effects
of calcitriol.
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3.2. Combined Antitumoral Effect of Calcitriol and Curcumin in BC

Curcumin, a polyphenol derived from turmeric, a traditional Indian spice, has been
reported as an antioxidant, anti-inflammatory, anticancer, and chemo-preventive agent
for BC [98]. This natural compound exerts its anticancer effects inhibiting cell prolifera-
tion and invasiveness, through regulation of multiple intracellular signaling pathways,
including modulation of NFKβ, fatty acid synthase, insulin-like growth factor I (IGF-1)
axis, ER, HER-2, epidermal growth factor receptor (EGFR), among others. Curcumin also
promotes apoptosis by regulating the expression of apoptosis-related genes and proteins,
inducing reactive oxygen species (ROS) accumulation, inducing cell cycle arrest, acting
as an antiangiogenic and anti-invasive compound, inhibiting metastasis, and modulating
microRNAs involved in oncogenesis [98]. The antineoplastic effects of curcumin have
been evaluated alone and in combination with other drugs, including chemotherapeutic
agents [99,100], other natural compounds [101], and calcitriol [74]. Regarding the latter,
the combination of calcitriol and curcumin also has been studied in conjoint with the
chemotherapeutic agent paclitaxel in MCF-7 BC cells, where the triple therapy showed syn-
ergistic cytotoxic interaction, enhanced apoptotic potential, and in vivo, reduced tumor size
compared to mono-treatments [63]. Similarly, the combination of curcumin with calcitriol
has shown an enhanced antiproliferative effect in cultured TNBC cells compared to each
drug alone. Likewise, in vivo, the coadministration of calcitriol and curcumin significantly
reduced tumor onset, tumor volume, and microvessel count, which was associated with less
tumor-activated endothelium, suggesting an antiangiogenic promoting effect of the drug
combination. Additionally, the co-treatment increased calcitriol bioactivity, as suggested by
the renal modulation of Cyp24a1 and Cyp27b1 [74]. The above suggests that the combined
treatment affects each drug metabolism, resulting in increased anticancer activity.

3.3. Combination of Melatonin and Calcitriol in BC

Melatonin is a hormone secreted by the pineal gland at night under normal light/dark
conditions; however, this compound may also be found at widely variable concentrations in
beans, leaves, and roots of medicinal plants, as well as seeds, flowers, and fruits. Therefore,
melatonin from plant origin represents a significant melatonin source for humans [102].
The main functions of melatonin are to mediate dark signals, with possible implications
in the control of circadian rhythmicity, seasonality, mammalian immune system modula-
tion, blood pressure control, hemostasis, and glucose regulation [103]. Additionally, it is
considered a potent antioxidant [104]. In cancer cells, melatonin inhibits cell proliferation,
angiogenesis, invasiveness, and metastasis, induces differentiation, and promotes apop-
tosis [105,106]. Disturbance of melatonin production may influence cancer genesis and
growth. Regarding BC, low levels of melatonin might be a risk factor for this neoplasm;
accordingly, melatonin plasma concentrations are diminished in patients with BC [107].
The mechanisms by which melatonin exerts its antitumor actions include antiestrogenic
actions such as regulation of ER expression, transactivation, and modulation of enzymes
involved in the local synthesis of estrogens, as well as modulation of the cell cycle, stimula-
tion of cell differentiation and apoptosis, suppression of telomerase activity, antioxidant
effects, anti-angiogenesis, prevention of circadian disruption, inhibition of metastasis,
modulation of epigenetic factors, suppression of tumor metabolism and activation of the
immune system [105]. The anticancer effects of melatonin have often been observed on
estrogen-responsive human BC cell lines. In MCF-7 BC cells, melatonin per se enhances
p53 acetylation by down-regulating murine double minute 2 (MDM2) gene expression, a
key regulator of p53 [76]. Notably, when melatonin is combined with VD3, a synergistic
proliferation inhibition has been observed, whose mechanisms involve the activation of
the TGF-β1 pathway and downregulation of both MDM2 and AKT phosphorylation [75].

3.4. Relationship between Genistein and VD Derivatives in BC

Genistein is one of the most important isoflavones, present mainly in soybeans, fol-
lowed by legumes, fruit, nuts, and vegetables, whose intake has been associated with
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a lower incidence of breast and prostate cancer in Asian populations [108]. Addition-
ally, other studies in vitro support that genistein can be considered a promising chemo-
preventive agent for treating different types of cancer [109,110]. The mechanism of action of
this isoflavone to inhibit cancer cell growth involves cell cycle arrest [111] and modulation
of genes related to apoptosis. Specifically, genistein inhibits the activation of NFκβ and
AKT signaling pathways [112,113], inhibits the topoisomerase I and II, 5α-reductase, and
protein histidine kinase. In addition, genistein acts as an antioxidant and is considered
a potent inhibitor of angiogenesis and metastasis [114]. In BC cells, the isoflavone de-
creases the stem-like cell population through the Hedgehog pathway and inhibits total
HER2 protein expression and phosphorylation [115,116]. Interestingly, genistein has weak
estrogenic activity and bears structural similarity to 17β-estradiol, competing with it for
the ER, blocking the binding of more potent estrogens, affecting estrogen metabolism,
and restoring ERα expression, thereby contributing to a favorable role in the treatment
of hormone-related cancers [114,117]. To study the effects of phytoestrogens on BC cell
sensitivity to VD3 compounds, Wietzke and Welsh transiently transfected a VDR promoter-
luciferase construct into the ER-positive BC cells T-47D and MCF-7. In this model, genistein
treatment upregulated the transcription of VDR promoter and increased VDR protein
expression, suggesting the sensitization of BC cells to calcitriol by this isoflavone. Interest-
ingly, these effects were mediated by the ER [97] and in MCF-7 cells by reducing CYP24A1
and stimulating CYP27B1 expression and activity; thus, increasing the bioavailability and
reducing the catabolism of the active hormone [118]. This might help to explain why the
combination of genistein and the VD3 analog 27-hydroxy-BCI-210 acts synergistically to
reduce MCF-7 cells proliferation [119].

Since combination therapy is more efficacious than single treatment, the antineoplastic
effect of calcitriol also has been studied with other antineoplastic compounds, such as
vitamins, including vitamin A metabolites and vitamin K, whose action is described below.

3.5. Synergistic Antitumoral Effects of Retinoids and Calcitriol in BC

The most active metabolite of vitamin A in the family of retinoids is all-trans-retinoic
acid (ATRA), commonly referred as retinoic acid, tretinoin, and vitamin A acid [120]. ATRA
helps cells grow and develop, especially in the embryo, controlling the segmentation in de-
veloping organisms and the homeostasis of various tissues in the adult [121]. The biological
activity of retinoids is primarily mediated by members of the nuclear retinoid acid recep-
tors (RARs) that form heterodimers with members of the RXR, acting as ligand-activated
transcription factors that translocate to the nucleus and bind to Retinoic-Acid-Response-
Elements (RAREs) in the promoter of target genes, regulating the transcription of genes
involved in cell growth and differentiation [122]. Based on the above, the deregulation
of retinoids signaling pathways, including the malfunction of RARs, have been closely
related to tumorigenesis, while retinoid administration is related to the inhibition or re-
version of carcinogenic process in hematological cancers, premalignant lesions in the oral
cavity, head and neck squamous cell carcinoma, neuroblastoma, ovarian, bladder, liver,
skin, prostate, and BC [120–124]. ATRA exerts anti-inflammatory, antiangiogenic, and
anticancer effects. The anticancer effects of retinoids include inhibition of proliferation,
induction of apoptosis, and differentiation of cancer cells [120]. ATRA was first clinically
useful as a differentiation agent to treat acute promyelocytic leukemia [125]; however, its
therapeutic use is limited, since it may generate systemic toxicity, induce teratogenicity
or chemical hepatitis. These unwanted side effects could be avoided by agents capable
of preserving/increasing its antitumoral effects while allowing to reduce its dose. In this
regard, the antitumoral effect of ATRA has been evaluated in combination with calcitriol in
BC cells, showing a synergistically growth inhibitory effect upon T-47D [126], and MCF-7
cells [82]. Moreover, the combination of ATRA with calcitriol acted synergistically to
inhibit the clonogenicity of MCF-7 and T-47D cell lines, both expressing ER, VDR, RAR,
and RXR. Interestingly, in MDA-MB-231 TNBC cells, which lack the expression of RARα
and RARβ, the combinatorial effect of ATRA and calcitriol was additive. In addition, the
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treatment of calcitriol and ATRA, either individually or combined, sensitized BC cells to
the effects of paclitaxel and adriamycin, chemotherapeutic agents commonly used in the
treatment of BC [52]. Additionally, the combination of calcitriol and ATRA induced a more
differentiated phenotype in BC cells, with additive effects in a function and cell-specific
manner [127].

3.6. Vitamin K3 (Menadione) Sensitizes BC Cells to the Growth Inhibitory Effects of Calcitriol

Vitamin K, an essential nutrient, is identified as a cofactor that participates in normal
blood coagulation and bone metabolism and has exhibited potent anticancer activity.
The members of the vitamin K family are phylloquinone (K1), menaquinone (K2), and
menadione (K3). The latter is not properly considered a natural vitamin K, but rather a
synthetic analog that cannot exert all the functions of vitamin K [128]. While all vitamin
K family members exhibit antineoplastic effects, most anticancer research has focused
on menadione, whose effectiveness has been studied in different neoplasms including
those of the breast, prostate, bladder, liver, blood, and oral cavity [128–130]. Regarding BC,
menadione inhibits cell growth, promotes apoptosis, and arrests the cell cycle regardless
of BC molecular subtype. Menadione mechanism of action involves the generation of
ROS, damaging the mitochondria, inducing apoptosis, and reducing cell survival factors.
Additionally, this vitamin modifies cellular nucleophiles such as cysteine residues on
proteins and promotes apoptosis through caspase-3 or poly (ADP-ribose) polymerase
(PARP) cleavage, arresting the cell cycle [77,129]. The combination of menadione with
different chemotherapeutic agents has been shown to elicit additive and synergistic effects.
When menadione and calcitriol are combined, the antiproliferative effect in MCF-7 BC
cells is enhanced compared to each drug alone, which may be caused, at least in part, by
triggering oxidative stress, as suggested by increased ROS production [77]. In vivo, the
combined treatment of menadione with calcitriol delayed murine TNBC tumor growth
more efficiently than mono-treatments, which was associated with increased tumor cells
death [131]. Similarly, the co-treatment of menadione with calcitriol has shown to increase
the antiproliferative effect in MCF-7 BC cells by promoting oxidative/nitrosative stress,
mitochondrial alteration, and autophagy [78].

3.7. Combined Use of Calcitriol and Fatty Acid in BC

Both omega-3 free fatty acids and VD3 play a positive role in the reduction of BC inci-
dence. Based on the above, Yang and colleagues evaluated in 2017 the combinatorial effect
of omega-3 free fatty acids and calcitriol. This combination suppressed cell proliferation
and enhanced cell apoptosis among three subtypes of BC cell lines: ER and PR-positive,
HER2-positive, and TNBC. The mechanism of action depended on caspase signals and
Raf-MAPK signaling pathway activation [79]. Despite the beneficial effects of aromatase
inhibitors (AIs) in the treatment and survival outcomes in BC, its use induces arthralgia,
leading to drug discontinuation. Fortunately, the use of omega-3-fatty acids has been
associated with significantly lower pain scores in obese patients with BC. Additionally,
some studies have demonstrated that patients with insufficient or deficient levels of VD are
more likely to experience arthralgia during AIs treatment [132]. Therefore, the combination
of VD or its derivates with omega-3-fatty acids could be beneficial in adjuvancy withAIs.

The concluding remarks to the above combinatorial strategies are: (a) Combining
calcitriol with natural compounds increase antineoplastic effects (b) the described com-
pounds are not cytotoxic; therefore, could be used at their optimal doses to exert the
therapeutic effect without developing undesirable side effect and decreasing the possi-
bility that resistance will generate. (c) The combined treatment of calcitriol with specific
natural compounds, such as curcumin, modulates drug metabolism resulting in increased
anticancer activity.
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4. Calcitriol in Combination with Endocrine Therapy

Endocrine therapy has been used for the management of early and advanced hormone-
positive BC. This therapy functions by blocking the estrogen signaling or by inhibiting
estrogen synthesis. Among the most commonly used endocrine therapeutic factors are
tamoxifen, raloxifene; fulvestrant; and AIs [133].

The antiestrogens tamoxifen and fulvestrant competitively inhibit the binding of estra-
diol to the ER. Tamoxifen induces changes in ER conformation resulting in the recruitment
of coactivators or corepressors. Depending on the interaction of ER-tamoxifen complex,
tamoxifen can act as either partial agonists or antagonists of ER function in a tissue-, cell-,
and promoter-specific manner. Due to these selective activities, tamoxifen is classified
as a selective estrogen receptor modulator (SERM). Based on its antagonist action, it is
used for the treatment of women with metastatic BC, as adjuvant therapy of primary BC,
as well as for the reduction of BC risk [134–136]. Fulvestrant, on the other hand, has no
agonistic effects, since it interrupts ER dimerization and nuclear localization, blocking ER-
mediated transcriptional activity associated with tumor progression, invasion, metastasis,
and angiogenesis. This antiestrogen also accelerates receptor degradation, and therefore is
considered as a selective estrogen receptor down-regulator (SERD) [137]. Fulvestrant is
used to treat hormone receptor-positive advanced BC in postmenopausal women without
previous endocrine therapy or with disease progression following endocrine therapy [138].

In vitro studies in MCF-7 and ZR-75-1 BC cell lines have shown that the combined
treatment of calcitriol and tamoxifen inhibited, in a cytostatic way, cell proliferation to a
greater extent than either compound alone [139], through inducing apoptosis [140]. This
combination allowed reducing the doses of calcitriol. Moreover, calcitriol diminished
the estradiol-stimulated growth of the two ER-positive cell lines. The pharmacological
effect of both compounds was classified as an additive interaction [139–141]. Interestingly,
tamoxifen treatment increased in a dose-dependent fashion the levels of VDR, thus favoring
calcitriol biological effects [142].

Notably, theVD3 analog EB1089 is more potent to inhibit the proliferation of MCF-7
cells compared to calcitriol. In MCF-7 cells stimulated with estradiol, the co-treatment
of EB1089 with fulvestrant suppressed the estradiol-stimulated growth of MCF-7 cells
and produced a higher inhibitory effect than either compound alone [143]. 22-oxa-l,25-
dihydroxyvitamin D3, (22-oxa-calcitriol) is another synthetic analog of calcitriol that in-
hibits BC cell growth regardless of ER status without raising serum calcium concentra-
tions [144,145]. Combining this analog with tamoxifen enhanced the 22-oxa-calcitriol
antitumor effect in an ER-positive BC model [145]. In addition, Ro24-553, another calcitriol
analog, inhibits mammary carcinogenesis by extending tumor latency and reducing tumor
incidence. Its combination with tamoxifen in a murine model increased the anti-estrogenic
actions of tamoxifen, resulting in the reduction of tumor burden and incidence [146].

On the other hand, within the pathophysiology of BC, it is known that it can metasta-
size to the bones. A risk factor related to this is the increase of bone resorption [147]. In this
sense, it was demonstrated that calcitriol and its analogs, EB1089 and KH1060, stimulated
calcium release in a dose-dependent manner from long bones of fetal mice. Significantly,
tamoxifen, or fulvestrant treatment inhibited the bone resorption promoted by calcitriol
and its analogs [141,148]. Hence, the potential side effect of treating BC patients with
calcitriol or its analogs is the increased risk of skeletal metastases due to the stimulation
of bone resorption, which could be reduced by combining them with antiestrogens, thus
taking advantage of the antiproliferative proprieties of VD compounds.

An important antitumoral mechanism of tamoxifen is the reduction of glucose up-
take. However, calcitriol co-treatment was found to significantly attenuate this effect
in MCF-7 cells. In order to avoid this, combining calcitriol with Glucose-6-phosohate
dehydrogenase-inhibiting regimens could improve substantial antitumor effects observed
by the combination [55].
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4.1. Calcitriol or Its Analogs in Combination with AIs

The AIs anastrozole, letrozole, and exemestane are prescribed to postmenopausal
women with hormone receptor-positive BC. They inhibit the expression of aromatase,
the enzyme that catalyzes the conversion of androgens to estrogens, thereby decreasing
circulating estrogens’ levels [149].

Several studies have demonstrated that calcitriol or EB1089 can also suppress aro-
matase expression and activity, resulting in the reduction of estrogen synthesis in different
ER-positive BC cell lines (MCF-7, ZR-75-1, and T-47D) [150–154]. The combination of
calcitriol or its analog EB1089 with exemestane, anastrozole, and letrozole has been shown
to inhibit the growth of the MCF-7 cell line [152,153]. Moreover, the combined treatment of
calcitriol and the AIs also reduced the tumor growth of MCF-7 xenografts, as compared
to the administration of compounds alone. The mechanism involved was the downreg-
ulation of aromatase and ER expression. The combination of calcitriol with AIsalso has
anti-inflammatory and antiproliferative effects mediated by the negative modulation of
the cyclooxygenase (COX)-2 and the upregulation of insulin-like growth factor binding
protein 3 (IGFBP-3), and p21 gene expression [154].

Another study has demonstrated that the VD active metabolite (24R)1,24-
dihydroxycholecalciferol (PRI-2191) and the analog PRI-2205 significantly enhanced the
antitumor activity of anastrozole in BC tumors and cells [155].

4.2. Calcitriol and Resistance to Endocrine Therapy

The development of resistance towards antiestrogens may occur de novo or may be
acquired during the treatment, representing a significant clinical problem. The mechanisms
implicated in endocrine resistance include regulation of signal transduction pathways,
the balance of co-regulatory proteins, loss or modification in ERα expression, altered
expression of specific microRNAs, and genetic polymorphisms involved in tamoxifen
metabolic activity [156].

Interestingly, in BC cell lines resistant to antiestrogens, calcitriol and EB1089 inhibit
cell proliferation by inducing growth arrest and apoptosis [157,158]. In fact, EB1089 was
more potent to inhibit cell proliferation in antiestrogens-resistant cell lines than in parent
cells [157,159]. These studies indicated that the sensitivity to VD analogs might increase
after developing antiestrogen resistance and vice versa [159]. Another study demonstrated
that calcitriol decreased the cell growth of tamoxifen-sensitive and -resistant BC cells
by inhibiting the NFκβ pathway through increased gene expression of NFκβ inhibiting
protein IκB, with a concomitant reduction of tumor necrosis factor alpha (TNFα)-induced
p65 phosphorylation, as well as its translocation into the nucleus [160].

In addition to the downregulation of aromatase by calcitriol and EB1089 [150–154],
these compounds can decrease ER expression in BC cells, attenuating the estrogen signal-
ing [55,143,154,161–164]. Consequently, these antineoplastic proprieties can improve the
antiproliferative inhibitory response of endocrine therapy in ER-positive BC. Interestingly,
in cultured ER-negative breast tumor-derived cells and in an endocrine therapy-non-
responsive BC cell line, previous work from our laboratory demonstrated that calcitriol
pre-treatment restored the ability of antiestrogens to inhibit cell proliferation in the ER-
negative BC cells, through inducing ERα expression. Moreover, calcitriol combined with
fulvestrant downregulated ether-a-go-go-1 potassium channel (EAG1) and CCND1 gene ex-
pression; both molecules are important in cell cycle regulation and tumor progression [165].
The mechanism involved in the calcitriol-dependent ERα induction in ER-negative BC
cells implicates the direct interaction of the VDR-RXR complex to VDREs in the ERα
gene promoter region, including the inhibition of histone deacetylases (HDAC) and DNA
methyltransferase (DNMT) enzymatic activity [166].

As a summary of this section, calcitriol and endocrine therapies in combination
provide several potential advantages, such as increasing growth arrest, inducing apoptosis,
and evoking anti-inflammatory and antiproliferative effects. In addition, the ability of
calcitriol to induce ER expression in ER-negative tumor cells plays a primordial role in the
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re-sensitization to endocrine therapies, and implies the reduction of adverse events such as
bone loss, genitourinary atrophy and musculoskeletal symptoms.

5. Calcitriol in Combination with Histone Modifiers

Histone modification can be defined as a post-translational alterations at the N-
terminal histone tails; acetylation and methylation are the two most recognized mechanisms
regulating the epigenetic effects of gene expression, genomic stability, DNA damage re-
sponse, and cell cycle checkpoint integrity. Both mechanisms are importantly related to
cancer development [167].

HDACs are enzymes associated with transcriptional repression. Histone deacetylase
inhibitors (HDACI) are a class of compounds that interfere with the function of HDAC,
inducing a hyperacetylation status of chromatin; the above disturbs the gene expression
through modulating the chromatin structure [168]. It has been widely reported that changes
in cancer cells lead to hypomethylation and hypermethylation of specific DNA regions,
mainly within the promoters of tumor suppressor genes [169]. Trichostatin A (TSA or
7-(4-(dimethylamino)phenyl)-N-hydroxy-4,6-dimethyl-7-oxohepta-2,4-dienamide) is the
most potent HDACI chemical agent that has been discovered and widely employed in BC
models [170]. In different BC cell lines, this compound increases CYP24A1 expression in
concentrations between 3 to 400 nM [171]. The latter points out that the use of HDACI can
perturb the effects of VD-derived compounds by decreasing its bioavailability, and with
this its antineoplastic effects.

6. Calcitriol in Combination with Kinase Inhibitors in BC

Different types of kinases are implicated in the growth of BC cells. MAPK, PI3K/AKT
signaling pathway, Janus kinase (JAK)–signal transducer, and activator of transcription
(STAT) pathway are mitogenic routes that have outstanding participation in cancer cell pro-
liferation. These and other cellular signaling pathways are stimulated after the activation
of various growth receptors [172,173]. Specifically, in HER2-positive and TNBC cells, the
overexpression and hyperactivation of different epidermal growth factor receptor family
members such as EGFR and HER2 are common. The co-expression of these receptors
confers poor outcomes and a high rate of metastasis. It is important to mention that these
receptors are activated by a series of phosphorylations in their tyrosine kinase residues.
Thus, drugs known as TKIs are generally employed to counter their activation. It has
been reported that the combination of calcitriol or different analogs with tyrosine kinase
inhibitors such as gefitinib, lapatinib, or neratinib resulted in a greater antiproliferative
and apoptotic effect than either drug alone in TNBC and HER2-positive BC cells [20,174].
Notably, the combination of calcitriol with different TKIs downregulated the MAPK and
PI3K phosphorylation [175]. The overall synergistic effect of the combined treatment of
calcitriol with TKIs can be attributed to the presence of VDREs in EGFR promoter, which
regulate the expression of growth factor receptors. Moreover, calcitriol can avoid the
binding of different ligands to EGFR [175,176]. Regarding this point, it has been described
that calcitriol can modulate the activation of MAPK by non-genomic routes [6,177]. The
coadministration of calcitriol with gefitinib and with gefitinib plus dexamethasone has also
been probed in clinical trials involving solid tumors such as BC [178,179]. However, these
studies were focused on evaluating the maximum tolerated dose (MTD) of calcitriol in a
combined scheme administration. The authors reported no antitumor activity in patients
with solid tumors when the drugs were administered together.

In combination with dovitinib, a multi-kinase inhibitor, calcitriol has also been demon-
strated to have a synergistic antiproliferative effect in TNBC in in vitro and in vivo models.
At the molecular level, the combination of these compounds induced cell death and inhib-
ited tumor growth of BC cells to a greater extent than each compound alone [22]. Of note,
at clinically achievable and safe concentrations, the combination of calcitriol with dovitinib
allowed reducing the dose of the kinase inhibitor while preserving its antiproliferative
effect. The latter suggested that lower dovitinib dosing is feasible by the co-treatment,
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which may decrease its adverse effects and avoid the generation of resistance in therapeu-
tic applications.

On the other hand, the synergistic effect on cell proliferation of calcitriol in combination
with ruxolitinib, a JAK1 and JAK2 inhibitor, was also demonstrated in BC cells with or
without the presence of ER [180]. The combined treatment negatively modulated the
protein levels of JAK2, phosphorylated JAK2, c-Myc protein, CCND1m and induced
the apoptosis regulator Bcl-2, Bcl-2-like protein 1, and caspase-3 [181]. These findings
indicate that the combination of TKIs with calcitriol can be favored in ER-negative BC cells,
while its combination with other kinds of inhibitors such as ruxolitinib can be helpful to
both panoramas. In fact, the combination of calcitriol with kinase inhibitors has shown
promising results in different types of cancer [181].

In conclusion, the simultaneous treatment of calcitriol or its analogs with TKI’s in
TNBC and HER2-positive BC cells is significantly better than monotherapy as antineoplastic
treatment, resulting in a greater antiproliferative and pro-apoptotic effect. Part of the
increased effect could be attributed to the regulation of growth factor receptors expression
and activation by calcitriol. The overall preclinical evidence provides the basis for the
potential use of this therapeutic combination in BC patients whose tumors overexpress
TK receptors.

7. Calcitriol in Combination with Non-Steroidal Analgesic Drugs in BC

The sustained inflammatory environment in the cancer context is associated with
enhanced cell proliferation and carcinogenesis promotion. In fact, the employment of
different anti-inflammatory molecules, including nonsteroidal anti-inflammatory drugs
(NSAIDs), for counteracting the inflammatory status has contributed to reducing the risk
and incidence of several cancers and to inhibit cancer growth [182,183]. The NSAIDs
inhibit COX enzyme activity, which exists as two isoforms: COX-1 and COX-2. The first is
expressed ubiquitously in many tissues and cell types, while the second one is induced by
a variety of stimuli and is involved in inflammatory processes. COX-1 and COX-2 convert
arachidonic acid to prostaglandins, which promote proliferation, inflammation and play
an essential role in neoplasms development and progression, including BC [184–186]. On
the other hand, calcitriol exhibits significant anti-inflammatory actions that contribute to its
antineoplastic effects [187]. For many years, different kinds of pro-inflammatory molecules
such as prostaglandins and thromboxanes have been associated with bad prognosis, re-
currence of the disease, and poor survival rate in patients with BC [188–190]. Different
studies have reported that the combination of calcitriol with celecoxib, an inhibitor of
COX-2, significantly reduced BC cell proliferation in a synergistic manner as compared
to each single agent; an effect that was independent of ER presence [81,191]. In addition,
calcitriol can downregulate COX-2 protein and gene expression in BC cell lines with or
without ER expression [81,191], an effect that was attributed to its immunomodulatory role
and the link between VD3 and prostaglandin metabolism [192,193].

Related to the above, the antiangiogenic effects of calcitriol may be mediated by the
inhibition of prostaglandins, which are important proangiogenic factors [187], in addition
to the modulation of vascular endothelial growth factor (VEGF) [194].

In conclusion and considering that inflammation is considered one of the hallmarks of
cancer, the anti-inflammatory compounds have been widely evaluated as antineoplastic
agents alone or combined with calcitriol, resulting in synergistic antiproliferative effects
independently of the BC phenotype. Therefore, further studies are necessary to determine
the benefit of this therapeutic strategy.

8. Calcitriol in Combination with Immunomodulatory Agents in BC

There are few reports on the combination of calcitriol with immunomodulatory agents
in BC. However, in order to counteract the hypercalcemic effect evoked by calcitriol,
schemes based on glucocorticoids have emerged regarding this point [195,196]. In addition,
glucocorticoids enhance VDR transcription in many cell types [197,198]. Thus, different
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combinations of calcitriol with these agents have been explored, specifically in prostate
cancer. The results are controversial, some of them pointing out that the combination of
dexamethasone is safe, feasible, and has antitumor activity [195], while others report a lack
of significant antitumoral activity in prostate cancer [199]. However, in BC cells, pre-clinical
studies demonstrated that the combination of dexamethasone synergizes the antitumoral
effects of calcitriol [82].

On the other hand, the role of calcitriol and its receptor has shown crucial activity in the
proper activation of the immune system, particularly for T-cell development, differentiation,
polarization, and function [200,201]. In BC, tumor-infiltrating lymphocytes (TIL) play an
important role against cancer cells in the tumor microenvironment; however, depending on
the cellular signals, TILs can modify their phenotype and exhibit pro-tumoral actions [202].
In this regard, in an orthotopic BC mouse model, it has been demonstrated that VD3
supplementation accompanied with a low-fat diet can avoid the progression of BC tumors.
In contrast, in a regimen based on a high-fat diet also combined with VD3 supplementation,
the growth of mammary tumors was evident. The above was correlated with changes in
the activation status and infiltration of T CD8+ lymphocytes promoted by the inflammatory
conditions associated with overweight. Importantly, VD supplementation also showed
a reduction of both adipogenic markers and pro-inflammatory cytokines [203]. These
findings add different mechanisms of action of how VD3 supplementation can slow down
the growth and development of tumors of mammary origin.

In addition, a vast number of immune cells express the CYP27B1 enzyme and the
VDR, which favor both the conversion of circulating calcidiol into the active form and
its intracellular signaling, respectively [204–206]. In relation to this, it is important to
remark that VD3 deficiency has correlated with a lack of successful response to immune
checkpoint inhibitors (anti-PD-1, anti-PD-L1, or anti-CTLA4) in patients with metastatic
renal carcinoma as compared with patients with high VD3 serum levels [207]. The above
prompts to consider that VD3 supplementation is an important adjuvant strategy to avoid
the prevalence of cancer. In addition, VD3 supplementation could favor the therapeutic
response in the onco-immuno-biological background. Of note, the relationship between
hypovitaminosis of VD3 with immunotherapy in the BC context has been scarcely explored.

It has been demonstrated that CB1093 analog improves the responsiveness of BC
cells to TNFα-induced cell death by promoting TNFα-induced cytosolic phospholipase
A2 (PLA2) activation [208]. Similarly, results from our laboratory demonstrated that the
combination of calcitriol with TNFα resulted in a more significant antiproliferative effect
than the drug alone in ER-positive and ER-negative BC cells [209].

Considering the magnitude of the problems generated by VD deficiency, and taking
into account all the benefits of calcitriol as an antineoplastic and immunomodulatory agent,
it is highly recommended to assess VD serum levels followed by its supplementation when
necessary, in women with high risk of BC development or in-treatment for this pathology.

9. Calcitriol in Combination with Histamine Inhibitors in BC

Histamine is one of the first proinflammatory mediators to be described, and its
primary sources are basophils and mast cells, which are distributed widely in the skin and
mucosa. In response to allergic stimuli, a complex interaction between inflammatory cells
is activated, and several inflammatory mediators are produced; among these, histamine,
which regulates the maturation and activation of leukocytes and directs their migration
to target sites where they cause chronic inflammation [210]. Additionally, in vivo and
in vitro studies have described that histamine is involved in cell proliferation, migration,
and invasion of several cancers [211]. Accordingly, the use of antihistamines has shown
promising effects to fight this pathology, as in the case of astemizole, a non-sedating
second-generation antihistamine, commonly prescribed for the treatment of allergies. This
drug has been repurposed as an antineoplastic agent, since in addition to H1-histamine
receptors blockade, it targets several other molecules involved in cancer development,
such as P-glycoprotein and the voltage-gated potassium channels EAG1 and human EAG
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related genes (HERG) [212]. Regarding BC, astemizole has shown to exert antiproliferative
effects against both hormone-dependent and non-hormone-dependent BC cell lines, as
well as in primary cell cultures derived from breast tumors [21,83]. The antineoplastic
effects of astemizole also have been evaluated in conjoint with other antineoplastic agents,
including calcitriol [21,83,213]. In BC cells, this antihistamine compound synergized the
antiproliferative activity of calcitriol by downregulating CYP24A1, upregulating the VDR,
and targeting EAG1 [83]. Moreover, in vivo studies showed that the co-administration
of astemizole and calcitriol to mice xenografted with human BC cells inhibited tumor
growth more efficiently than each drug alone [213]. In summary, the therapeutic use of this
antihistamine with calcitriol could be beneficial as adjuvant therapy for BC, independently
of the tumor phenotype, since the molecular targets of these compounds are the VDR and
EAG1 channel, both of them highly expressed in BC.

In Figure 1 below, we provide a scheme of the different combination regimens of
calcitriol with the agents mentioned in this review in BC.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 16 of 41 
 

 

 
Figure 1. Combination schemes of calcitriol with different anti-cancer treatments. The combination of calcitriol with dif-
ferent chemotherapeutic drugs, radiation, hormones, vitamins, chromatin remodelers, target therapy, nonsteroidal anti-
inflammatory drugs, or immune therapy has been evaluated in hormone and non-hormone dependent breast cancer mod-
els. Most of these combinations have reported synergistic effects to decrease cancer cell proliferation, induce apoptosis, 
avoid angiogenesis and invasion, increase radiosensitivity, inhibit the stem cell phenotype, change the cell metabolism 
and inhibit mitogenic pathways. 

10. In vivo Preclinical and Clinical Studies with Calcitriol-Based Regimens in BC 
Calcitriol has shown significant antitumor activity in preclinical BC research in ani-

mal models. Furthermore, many antineoplastic mechanisms previously reported in vitro 
have been corroborated at the preclinical level in vivo. The animal models have allowed 
establishing the concept that the administration of calcitriol in intermittent doses is fun-
damental to avoid its unwanted calcemic effects. In fact, different schemes of doses of 
calcitriol have also been tested in rat and murine mammary carcinogenesis models. Ad-
ditionally, in vivo experiments have also pointed out the importance of developing dif-
ferent calcitriol analogs able to maintain its antiproliferative activities without inducing 
hypercalcemia (Table 1). 

Since the 90s, the effect of calcitriol in BC models has been investigated. For instance, 
a rat mammary cancer model induced by N-methylnitrosourea (NMU) was used by Col-
ston et al. in 1992 to study the antitumor effect of calcitriol or its synthetic analogs alfacal-
cidol and calcipotriol in BC-tumor bearing rats, showing a decrease in tumor growth in 
all cases. The development of hypercalcemia was reported in the case of calcitriol and 
alfacalcidol at the doses tested, but only a slight increase was observed when using cal-
cipotriol [214]. Accordingly, different studies employing xenograft models with ER-posi-
tive and ER-negative BC cells have reported that the supplementation with VD3 as well 
as the administration of calcitriol or different analogs exert antitumor effects 
[37,38,74,154,215,216]. 

In the case of ER-positive BC xenografts, the antitumor effects of calcitriol have been 
evaluated alone or in combination with AIs such as anastrozole and letrozole. Calcitriol 
alone demonstrated a great reduction in the tumor growth, although its combination with 
anastrozole and letrozole caused a statistically significant tumor inhibition compared to 
the single agents. Interestingly, calcitriol decreased the aromatase expression and estrogen 
levels in xenograft tumors and mammary adipose tissue, reflecting its ability to disrupt 

Figure 1. Combination schemes of calcitriol with different anti-cancer treatments. The combination of calcitriol with
different chemotherapeutic drugs, radiation, hormones, vitamins, chromatin remodelers, target therapy, nonsteroidal
anti-inflammatory drugs, or immune therapy has been evaluated in hormone and non-hormone dependent breast cancer
models. Most of these combinations have reported synergistic effects to decrease cancer cell proliferation, induce apoptosis,
avoid angiogenesis and invasion, increase radiosensitivity, inhibit the stem cell phenotype, change the cell metabolism and
inhibit mitogenic pathways.

10. In Vivo Preclinical and Clinical Studies with Calcitriol-Based Regimens in BC

Calcitriol has shown significant antitumor activity in preclinical BC research in animal
models. Furthermore, many antineoplastic mechanisms previously reported in vitro have
been corroborated at the preclinical level in vivo. The animal models have allowed estab-
lishing the concept that the administration of calcitriol in intermittent doses is fundamental
to avoid its unwanted calcemic effects. In fact, different schemes of doses of calcitriol have
also been tested in rat and murine mammary carcinogenesis models. Additionally, in vivo
experiments have also pointed out the importance of developing different calcitriol analogs
able to maintain its antiproliferative activities without inducing hypercalcemia (Table 1).

Since the 90s, the effect of calcitriol in BC models has been investigated. For instance, a
rat mammary cancer model induced by N-methylnitrosourea (NMU) was used by Colston
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et al. in 1992 to study the antitumor effect of calcitriol or its synthetic analogs alfacalcidol
and calcipotriol in BC-tumor bearing rats, showing a decrease in tumor growth in all cases.
The development of hypercalcemia was reported in the case of calcitriol and alfacalcidol at
the doses tested, but only a slight increase was observed when using calcipotriol [214]. Ac-
cordingly, different studies employing xenograft models with ER-positive and ER-negative
BC cells have reported that the supplementation with VD3 as well as the administration of
calcitriol or different analogs exert antitumor effects [37,38,74,154,215,216].

In the case of ER-positive BC xenografts, the antitumor effects of calcitriol have been
evaluated alone or in combination with AIs such as anastrozole and letrozole. Calcitriol
alone demonstrated a great reduction in the tumor growth, although its combination with
anastrozole and letrozole caused a statistically significant tumor inhibition compared to
the single agents. Interestingly, calcitriol decreased the aromatase expression and estrogen
levels in xenograft tumors and mammary adipose tissue, reflecting its ability to disrupt
estrogen survival signals. Different doses of calcitriol were administered intraperitoneally
in an intermittent scheme (0.025, 0.05, and 0.1 µg doses three times a week), while the AIs
were administered six days a week, for four weeks. The growth was greatly reduced in the
combined scheme as compared with calcitriol alone [154].

On the other hand, the antitumoral action of VD3 has also been evaluated in different
models. In this regard, the ingestion of a VD3-supplemented diet (5000 IU/kg) compared
with a control diet (1000 IU/kg) was tested on immunocompromised mice bearing ER-
positive BC xenografts. This regimen of dietary VD3 intake was also compared with
different doses of calcitriol, including 0.025, 0.05, or 0.1 µg/mouse, three times a week.
Both treatments displayed similar effects in the inhibition of tumor growth in mice. In
addition, both calcitriol and dietary VD3 were equipotent in suppressing estrogen synthesis
(inhibiting aromatase expression) and signaling (reduction of serum levels of estradiol).
In addition, the VD3-compounds also reduced proinflammatory factors and growth sig-
naling pathways such as COX-2, 15-hydroxyprostaglandin dehydrogenase (15-PGDH),
prostaglandin E receptor (EP), prostaglandin F receptor (FP), p21 among other proteins [37],
which suggested that VD3 or calcitriol administration may have a beneficial antitumor
effect. Of note, as previously discussed, different analogs of calcitriol have been demon-
strated to elicit antitumor action in mice bearing human ER-positive BC cells. Nevertheless,
these effects were not reproducible in ER-positive mammary tumor cells of murine origin,
such as the 4T1 cell line. Regarding this point, two analogs of calcitriol, PRI-2191, and PRI-
2205 were administered in BALB/c female mice orthotopically inoculated with 4T1 cells.
The analogs of calcitriol were administered subcutaneously thrice a week starting from
day 7 after tumor cell inoculation. The single dose of compounds was as follows: calcitriol,
0.5 µg/kg; PRI-2191, 1.0 µg/kg; and PRI-2205, 10.0 µg/kg. Of note, no evident antitumoral
effect was reported in this study [217], pointing out that mammary characteristics between
murine and human tumors are different and deserve to be carefully considered.

Regarding the effects of calcitriol in TNBC in vivo models, different articles have also
demonstrated that calcitriol or its analogs can inhibit tumor growth as in xenograft models
where ER-positive BC cells have been used [216]. The antitumoral actions of calcitriol or
different analogs in TNBC cell lines have been associated with the elevation of protein
levels of cyclin-dependent kinase inhibitors including p27 and p21 as well as induction of
apoptosis mediated by PARP cleavage.

Moreover, the use of different analogs of calcitriol has emerged in recent years to
avoid its possible calcemic effects. EB1089 was demonstrated to inhibit the tumor growth
of estrogen-independent invasive cells and tumors, retaining the antiproliferative and
proapoptotic effects of calcitriol. EB1089 was tested in two ways, implanted pellets, and
subcutaneous injection for four weeks. Both routes of administration showed to reduce
tumor growth; however, the data suggested that pellet delivery may minimize the calcemic
side effects of VD3, as mice treated with this form presented lower calcium serum levels
compared with the subcutaneous injection [216]. Another analog of calcitriol that has also
probed antitumoral actions in TNBC xenograft models is Gemini 0097. This compound
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demonstrated to reduce tumor growth by 60% without causing hypercalcemia [38]. The
dose of Gemini 0097 administered to the immunocompromised mice was 0.1 µg/kg body
weight in 0.1 mL vehicle, which was daily injected intraperitoneally from day 4 until the
termination of the experiment. Gemini 0097 upregulated the protein expression of an
inhibitor of cell cycle p21 and IGFBP-3 [38]. Thus, analogs of calcitriol may represent useful
alternatives, either alone or in combination with other therapeutic agents, for treating
ER-positive BC.

Combinations of calcitriol with other agents such as curcumin and resveratrol have
been performed in a TNBC cell xenograft model [74]. In this study, calcitriol was intraperi-
toneally administrated 0.25 µg in 100 µL once a week. Curcumin was administered daily
in the drinking water at 40 mg/kg (throughout the experiment), and resveratrol was orally
administered 1.2 g/kg three times a week. All treatments alone or in combination were
given for three weeks. The general results showed decreased tumor onset, volume, and
micro-vessel density in mice co-administered with calcitriol and either curcumin or resver-
atrol [74]. This work highlighted the importance of spaced calcitriol administration gener-
ating a good antitumor response without causing calcemic effects. In addition, calcitriol
has also been recently evaluated in combination with dovitinib in a human-derived TNBC
xenograft mice model. Calcitriol was also intraperitoneally administered 0.25 µg/100 µL
every week, while dovitinib was intraperitoneally administered at 20 mg/kg twice per
week. The treatment was followed for three weeks. Again, the results indicated that
this administration scheme allowed antitumoral effects without hypercalcemia in the
experimental animal groups that received calcitriol alone or combined with dovitinib [22].

On the preclinical studies, different schemes of calcitriol administration and combi-
nations with several therapeutic drugs have been tested to reduce its side effects while
trying to achieve the antitumor effects of this hormone. In general, the conclusions are that
the antineoplastic activity of calcitriol is dose-dependent and, in most systems, concen-
trations of 1 nM or higher are associated with significant antineoplastic activity in vitro.
Many reports support that the daily oral administration of calcitriol is not recommended to
achieve similar effective concentrations as found in vitro due to calcemic effects [218]. Thus,
different intermittent doses and the route of administration of calcitriol are affordable ways
to achieve peak blood concentrations of calcitriol of approximately 0.7 nM, similar to that
reported in in vitro studies. Supporting this fact, Smith et al. evaluated the subcutaneous
calcitriol administration every other day in doses ranging from 2 to 10 µg for four months
in patients with advanced malignancies. They assessed the pharmacokinetics of calcitriol
on days 1 and 7 in the first week, and other blood parameters were weekly monitored
until the end of the study. The authors reported that hypercalciuria was a common side
effect found in most enrolled participants. Moreover, when the patients received 10 µg
calcitriol, all of them presented hypercalcemia. The authors indicated that substantial doses
of calcitriol could be administered subcutaneously with tolerable toxicity [218]. In addition
to the above, Beer and colleagues reported the feasibility of dose escalation of calcitriol in
patients with refractory malignancies. The aim of their work was to determine the range of
escalation doses of calcitriol administrated orally to cancer patients and establish an ideal
dose of it for future evaluations. According to this, the patients received four weeks of oral,
weekly calcitriol treatment from 0.06–2.8 µg/kg. The authors concluded that the dose of
0.5 µg/kg was selected for future evaluations in Phase II studies, avoiding the side effects
of calcitriol [219].

Escalation dose of calcitriol has also been evaluated in combination with paclitaxel
in patients with advanced solid tumors. Muindi et al. considered low (4, 6, 8 µg/kg),
medium (11, 13, 17, 22 µg/kg), and high (29 and 38 µg/kg) profiles of doses of calcitriol for
escalation. Patients received oral calcitriol on days 1, 2, and 3 every week, while paclitaxel
(80 mg/m2) was intravenously infused on day 1 in the first week or day 3 for the following
weeks. The treatment was divided into cycles consisting of 6 weeks followed by two-week
period without treatment; nevertheless, the total duration of the study was not mentioned.
The authors reported that there was no dose-limiting toxicity in the trial. Even the higher
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dose of calcitriol (38 µg), which was administered for three days each week, did not show
clinically significant hypercalcemia [220]. The authors concluded that very high doses of
calcitriol can be safely administered in combination with paclitaxel, and that the achieved
high serum calcitriol levels approached those previously reported to potentiate taxanes
and platinum analogs cytotoxicity. Nevertheless, it is noteworthy to mention that the
authors pointed out an outstanding interpatient variability in serum concentrations of
calcitriol after oral administration. However, serum concentrations of this hormone were
maintained 24 h after its administration. Some limitations of this study can be highlighted.
First, the patients needed to swallow around 22–76 capsules of calcitriol to achieve serum
concentrations of 11 to 38 µg of calcitriol, which surely resulted in a lack of adherence to
treatment. Second, the study was stopped; thus, the MTD of calcitriol was not determined,
and no dose-limiting toxicity has been encountered under this escalation scheme [220]. The
authors did not precisely discuss the antitumor effect of calcitriol in patients with advanced
solid tumors.

Complementing the previous study, the research group of Muindi et al. in 2005 inves-
tigated the pharmacokinetics of a liquid formulation of calcitriol in patients with advanced
solid tumors compared to a caplet formulation that they previously evaluated in 2002 [221].
They employed a weekly intermittent schedule based on calcitriol administration 1–3 days
a week (QDx3). In conclusion, the authors demonstrated that the clinical use of liquid
formulation to deliver high doses of calcitriol is associated with diarrhea and does not offer
greater advantages in pharmacokinetic or bioavailability terms over the use of the caplet
formulation. Additionally, they confirmed that hypercalcemia was not the dose-limiting
toxicity on a QDx3 weekly intermittent treatment of calcitriol schedule [221].

On the other hand, the research group of Beer et al. evaluated a different oral high
dose formulation of calcitriol (DN-101, which contains 15 or 45 µg per capsule) in patients
with advanced cancer. Different cohorts of patients received doses of 15, 30, 45, 60, 75,
90, 105, 135, 165, 210, 270 and 345 µg of calcitriol. In this report, the dose of 45 µg was
established as the MTD. With this regimen, there were no patients with hypercalcemia as
limiting toxicity, whereas in patients treated with 60 µg of calcitriol, hypercalcemia was
reported as a common side effect. Thus, the authors assumed that weekly doses of DN101
at 45 µg were well tolerated in patients with cancer [222].

Specifically, in patients with BC, calcitriol administration independently or in com-
bination has been scarcely studied. Observational studies, systematic reviews, and meta-
analyses have established a strong inverse association between circulating calcidiol and BC
risk [223,224]. In fact, data derived from these studies suggested that calcidiol serum levels
around 52 ng/mL or more were associated with a 50% reduction in BC risk [225,226]. How-
ever, many other works have reported non-conclusive associations, with a better outcome
related to changes in mammography density of patients with BC [219–224,227,228]. As we
mentioned previously, different clinical studies employing calcitriol have been performed
in patients with cancer, specifically in solid tumors [229]. However, few studies performed
on patients with BC have focused on finding the MTD of calcitriol. As an example of
the above, Fakih et al. and Muindi et al. studied calcitriol administration in combination
withTKIs. They have mainly reported that the administration of gefitinib in patients with
BC allowed the safe escalation of calcitriol to the MTD of 125 µg/week [178,179].

On the other hand, AIs suppress the peripheral conversion of androgen to estrogen
by inhibiting the aromatase enzyme, which results in a significant estrogen decrease.
Accordingly, accelerated bone loss due to the absence of estrogen leads to a lower bone
density and increased fracture risk. On the other hand, and as mentioned earlier, calcitriol
has been shown to inhibit aromatase expression in vitro and in vivo [154]. Thus, the
combination of AIsand calcitriol has resulted in a better tumor growth inhibition at the
preclinical level [151]. Bisphosphonates are drugs usually employed in the prevention
of loss of bone mass. This was the rationale of a study that evaluated the combination
of bisphosphonate, alendronate, and calcitriol in postmenopausal women with early BC
receiving AIs [230], since these compounds commonly cause a loss of bone mass and
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density [231]. The results demonstrated that the combination of 5 mg of alendronate and
0.5 µg of calcitriol effectively prevented bone loss due to the aromatase inhibitor regimen in
postmenopausal women with early BC. Of note, this study did not evaluate the antitumoral
effect of the combination.

In postmenopausal women, treatment with tamoxifen has an estrogenic effect on
maintaining bone mineral density in the lumbar spine and femoral neck with reduced frac-
ture risk [232–234]. In contrast, in pre-menopausal women, bone loss is increased during
tamoxifen treatment [235]. Similarly, a longer duration of aromatase inhibitor use has been
associated with increased odds of developing cardiovascular disease, accelerated bone loss,
and bone fractures [236,237]. Through disease-progression modeling, the analysis of the
change of bone mineral density in postmenopausal patients with early BC who received
postoperative hormonal therapy found that VD3 supplementation had a protective effect
on osteoporosis [238].

It has been reported that the administration of 5 mg alendronate, used to treat and pre-
vent osteoporosis, with 0.5 µg calcitriol can prevent bone loss due to AIsin postmenopausal
women with early ER-positive BC [230]. Similarly, Hadji et al. recommend that women with
BC under aromatase inhibitor therapy should receive calcium and VD3 supplements [239].

Interestingly, VD3 may contribute to the modification of plasma concentrations of
different antineoplastics. In this regard, it has been demonstrated that calcidiol, used as
a measure of VD3 status, upregulated the expression of the CYP3A4 drug-metabolizing
enzyme, which in turn reduced serum levels of CYP3A4-metabolized drugs, such as
letrozole [240]. However, there was no association between serum calcidiol levels, body
mass index, or related markers (insulin, C-reactive protein, and leptin) and estrogen
levels in patients who received standard-dose letrozole therapy [241]. In the patients
who received adjuvant tamoxifen therapy, it was demonstrated that plasma levels of
the tamoxifen metabolites, endoxifen, and 4-hydroxytamoxifen were reduced during
winter months than across seasons [242,243], which has been associated with lower VD3
levels [242]. While in another study, no correlation was found between calcidiol plasma
levels and CYP3A4 activity [243]. However, patients who received tamoxifen therapy had
significantly increased serum calcidiol levels [244].

AIs, by suppressing estrogens, can cause a loss in bone mineral density and increase
the risk of fractures [149,245]. They also exacerbate musculoskeletal symptoms, increasing
the incidences of arthralgia and myalgia [246]. Considering the musculoskeletal adverse
effects induced byAIs, the use of high doses of VD3 supplementation (50,000 IU VD3 per
week) has been investigated in patients receiving letrozole. VD3 supplementation was
safe and resulted in clinically significant improvement, reducing the arthralgia derived
from the aromatase inhibitor pharmacological scheme [246,247]. Moreover, Altundag et al.
have suggested that the combined use of VD3 and omega-3 fatty acids is a good option for
reducing AIsinduced arthralgia in patients with BC [248]. Moreover, women who received
adjuvant AIsand premenopausal women treated with tamoxifen with accelerated bone
loss and increased fracture risk were recommended to perform weight-bearing exercise
and VD3 and calcium supplementation [249].

Vaginal atrophy is one of the adverse events in BC women receiving tamoxifen therapy.
A clinical trial in women with BC with tamoxifen-induced vaginal atrophy, demonstrated
that the use of VD3 and vitamin E vaginal suppositories increased the vaginal maturation
index, reduced vaginal pH, and improved symptoms of genitourinary atrophy compared
with the placebo group. These data indicated that local VD3 and vitamin E improved
vaginal atrophy in women with BC receiving tamoxifen [250].

It should be noted that few studies have evaluated the antitumor effect of calcitriol
supplementation in postmenopausal patients with BC. In this regard, Urata et al. used
samples from patients with BC before and after a short-term oral calcitriol supplementation
(0.50 µg/day for 30 days) to study the expression of Ki67 protein, which is an important
marker of cell proliferation. They found that Ki67 expression was reduced in 10/32 post-
calcitriol samples. The authors concluded that even if calcitriol was able to modulate the
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expression of targets genes in some samples, it was neither sufficient to elicit an adequate
antiproliferative response nor to induce the hormone transcriptional signaling pathway in
BC specimens [227]. The results of this study highlighted that calcitriol supplementation
deserves better attention, due to a high rate of VD3 deficiency found in the enrolled
patients. We consider that the latter study has some limitations, the first is that calcitriol
supplementation was performed for a short time. A second one would be that the authors
did not employ an intermittent scheme of supplementation with higher doses of calcitriol,
which as previously discussed, has been associated with better results. Finally, the study
considered only few patients and did not consider different parameters involved in the
catabolism of calcitriol, such as polymorphism of VD3 metabolic enzymes.

As summary, in Table 1 we include preclinical studies performed in animals as well as
clinical studies, undertaken with calcitriol and/or its analogs, alone and in combination
with different agents in BC.

Table 1. In vivo preclinical and clinical studies with calcitriol and/or its analogs, alone and in combination with different
agents in BC.

Preclinical In Vivo Models

Drug Model Doses Aim Results Ref.

Calcitriol/
calcipotriol/
alfacalcidol

Rat mammary cancer
model induced by N-
Methyl-nitrosourea

Intraperitoneal
administration of
0.25 µg/kg and

1.25 µg/kg thrice
weekly for 28 days of

calcitriol, and
administration of

calcipotriol (50 µg/kg)
in the same time

To evaluate the effects on
calcium metabolism and
mammary tumor growth
in adult female rats, and
compare the antitumoral
effects of calcitriol and its

analogs calcipotriol
and alfacalcidol.

All VD3 metabolites
inhibited tumor growth of

mammary carcinoma.
However, calcitriol and
alfacalcidol at the doses

tested provoked
hypercalcemia

[214]

Calcitriol,
anastrozole,

and letrozole

Murine model
(control and

ovariectomized mice)

Anastrozole was
administered at 5 µg

and letrozole at 2.5 µg
six days a week.
Calcitriol was

administered at 0.025,
0.05, and 0.1 µg doses

three times a week. All
substances were given
intraperitoneally for

four weeks.

To investigate whether
calcitriol would enhance

AIs activity in vivo to
inhibit the growth of

MCF-7 tumor xenografts.

All three concentrations of
calcitriol tested exerted

significant tumor inhibitory
effects, and maximal

inhibition was seen with
the highest dose used

(0.1 µg/mouse). Of note,
the combined treatments

caused higher inhibition of
estrogen synthesis in the

tumor microenvironment as
reflected by estrogen levels

measured in the tumors
and surrounding

mammary fat.
Calcitriol decreased

aromatase expression in
various tissues.

[154]

VD3 and calcitriol
Murine model
(control and

ovariectomized mice)

Oral VD3
supplemented diet
(5000 IU/kg) and

injections of calcitriol
0.025, 0.05, or

0.1 µg/mouse, three
times a week).

To investigate the
beneficial effects dietary
VD3 in comparison with

injections of calcitriol
using xenograft models

of ER-positive BC.

Both treatments displayed
similar effects in the

inhibition of tumor growth
in mice. Both calcitriol and

dietary VD3 were
equipotent in suppressing

estrogen synthesis and
signaling, and reduction of

proinflammatory factors
and growth

signaling pathways.

[37]
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Table 1. Cont.

Preclinical In Vivo Models

Drug Model Doses Aim Results Ref.

EB1089
Six-week-old

ovariectomized
female NCr-nu mice

EB1089 was
administered in a daily
subcutaneous injection

(45 pmol EB1089 in
propylene glycol/PBS,
4:1) or via implanted
continuous release

pellets delivering either
60 or 120 pmol of

EB1089 per day. The
total treatment lasted

4–5 weeks.

To determine the effects
of calcitriol and EB1089
on the ER-negative, cell

line SUM-159PT, in vitro.
To determine whether

EB1089 could modulate
growth and/or apoptosis

of ER-xenografts.

In mice implanted with
EB1089 pellets, average

tumor volume decreased
gradually over the four

weeks of treatment.
The treatment with EB1089
decreased PCNA protein
expression. Both forms of
administration of EB1089
showed to reduce tumor

growth; however, the data
suggested that pellet

delivery may minimize the
calcemic side effects.

[216]

Calcitriol, PRI-2191,
or PRI-2205

Immune-competent
BALB/c female mice

The analogs of calcitriol
were administered

subcutaneously thrice a
week starting from day

7 after tumor cell
inoculation. The single

dose of compounds
was as follows:

calcitriol, 0.5 µg/kg;
PRI-2191, 1.0 µg/kg;

and PRI-2205,
10.0 µg/kg.

To investigate the effect
of calcitriol and its

analogs on the growth
and metastasis of murine

mammary cancer at
various progression

stages (days 14, 21, 28,
and 33)

Treatment with calcitriol at
initial stages showed

moderate lung metastasis as
compared with its analogs.
Nevertheless, the treatment

with calcitriol or both
analogs resulted in the

stimulation of
lung metastases.

The treatments did not alter
antiangiogenic and
angiogenic factors

thrombospondin 1 (TSP-1)
and VEGF, respectively.

However, they positively
affected the protein

expression of OPN, TGF-β,
serum levels of E2 and

diminished the expression
of VDR.

Calcitriol or its analogs
downregulated the

expression of some genes
encoding for growth factors.

[217]

Calcitriol + curcumin
Calcitriol + resveratrol

TNBC xenografts
performed in nude

female mice

Calcitriol was
intraperitoneally

administrated 0.25 µg
in 100 µL once a week.

Curcumin was
administered daily in

the drinking water
40 mg/kg throughout

the experiment.
Resveratrol was given
orally (1.2 g/kg) three

times a week.
All treatments alone or

in combination were
given for three weeks.

To determine the
antiproliferative and

antitumoral effect of the
combination of calcitriol

with two phytochemicals,
curcumin or resveratrol.

In vitro: The combined
treatment presented better
antiproliferative properties

than treatments alone
In vivo: tumor onset,

volume and micro-vessel
density were significantly

reduced in mice
co-administered

with calcitriol
and curcumin

Vessel count was also
reduced in mice

simultaneously treated with
calcitriol and resveratrol

The concomitant
administration of calcitriol

with curcumin or resveratrol
synergistically promoted
anticancer effects in vitro
and in vivo in the human

mammary tumor cell model.

[74]
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Table 1. Cont.

Preclinical In Vivo Models

Drug Model Doses Aim Results Ref.

Calcitriol alone or
with dovitinib

Six-week-old female
athymic female

nude mice

Calcitriol was
intraperitoneally

administered
0.25 µg/100 µL each
week. Dovitinib was

intraperitoneally
administered

20 mg/kg twice
a week.

To evaluate whether an
improved antineoplastic
effect could be achieved
in vitro and in vivo in
TNBC by combining

dovitinib, a multi-kinase
inhibitor, with calcitriol.

In vitro and in vivo, the
drug combination elicited a

synergistically improved
antiproliferative effect in

TNBC-derived cells, which
allowed a 7-fold dovitinib

dose-reduction.

[22]

Clinical Trials

Drugs Clinical Trial Doses Aim Results Ref.

Calcitriol

Phase I
(Patients with

advanced
malignancy)

2 to 10 µg of calcitriol
subcutaneously for

4 months.

To determine if a
subcutaneous

administration of
calcitriol can achieve

tolerable toxicity in order
to ameliorate the

hypercalcemia as a major
side effect.

The subcutaneous
administration led to three

pharmacokinetic phases: the
initial rapid absorption

(Cpmax at two h) of
calcitriol from s.c. tissues, a

second phase in which
plasma calcitriol remained

constant for ~6 h, and a
third phase starting 8 h after

administration in which
calcitriol plasma levels

declined. The half-life of s.c.
calcitriol administration was
significantly longer than that

reported after oral
administration.

This study demonstrated
that s.c. calcitriol can be

administered safely at doses
up to 4–5-fold higher than

the usual oral dose of
1.5–2.0 µg per day.

The MTD for this trial was
>5 times the 1.5 µg oral

daily dose.
No significant antitumor

responses were
demonstrated in this trial.

[218]

Calcitriol
Phase I trial patients

with refractory
malignancies

Four weeks of oral,
weekly treatment of

calcitriol from
0.06–2.8 µg/kg.

To determine the range of
escalation doses of

calcitriol administrated
orally and to establish an

ideal dose of it for
future evaluations.

The dose of 0.5 microg/kg
was selected for future

evaluation in
Phase II studies.

[219]

Calcitriol/Paclitaxel Phase I

Calcitriol was given
orally for three

consecutive days each
week at escalating

doses, and paclitaxel
(80 mg/m2) was given
intravenously weekly.
The starting dose of

calcitriol was 4 µg for
three consecutive days

each week, and the
maximum dose

administered was 38 µg
for three consecutive

days each week.

To determine the
MTDand

pharmacokinetics of
calcitriol when

administered with
paclitaxel in patients with

advanced cancer.
To evaluate the

relationship between
calcitriol dose and

hypercalcemia.

Calcitriol plasma
concentrations of 600 to

1440 pg/mL were achieved.
No dose-limiting

toxicity occurred in this trial.
Despite variability in

absorption, very high doses
of calcitriol can be safely

administered with paclitaxel.
No dose-limiting

hypercalcemia or other
toxicity was observed in

patients with cancer
who received

high doses of calcitriol
plus paclitaxel

[220]
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Table 1. Cont.

Clinical Trials

Drugs Clinical Trial Doses Aim Results Ref.

Calcitriol

Phase I:
Patients were divided
into two cohorts: (A)
calcitriol + paclitaxel

in patients with
advanced solid

tumors; (B) calcitriol
± dexamethasone in

patients with
androgen-

independent
prostate cancer

Oral administration of
12 µg to 21 µg/capsule
of calcitriol were tested

in 12 patients with
advanced solid tumor,

while doses from 13 µg
to 36 µg of the liquid

formulation of calcitriol
were tested in

16 patients advanced
solid tumor.

Cohort A received
calcitriol

QDx3 (day l–3) +
paclitaxel 80 mg/m2 on

day 3; cohort B
received calcitriol alone

QDx3 on week
1, and in subsequent

weeks, calcitriol QDx3
(days 1–3)

and dexamethasone
QDx4 (days 0–3).
Treatment was

continued until disease
progression or
occurrence of

dose-limiting toxicity.
Serum calcium,

phosphorus, creatinine,
BUN, albumin, and

glucose were
determined weekly.

To determine whether a
liquid calcitriol

formulation had a
more favorable

pharmacokinetic profile
than a caplet formulation.

There were no differences
in Cmax

and AUC0–24h between the
two formulations.

The result of the use of
calcitriol in capsule or

liquid form was indistinct;
however, at some point, the
liquid formulation had the

disadvantage of causing
transient episodes

of diarrhea.
The use of dexamethasone

is based on previous
articles where it is shown
that this agent decreases

1,25-D3-induced
hypercalcemia and
enhances 1,25-D3
antitumor activity.

The combination with
paclitaxel is based on the
fact that no dose-limiting
hypercalcemia or other

toxicity was observed in
patients with cancer who

received calcitriol plus
paclitaxel in a

previous study.

[220,221]

High dose
formulation of

calcitriol (DN-101)

Patients with different
adenocarcinomas
including prostate,

colon, rectum,
gastric, squamous

cell carcinoma)

Different oral, weekly
doses of a high dose of

a commercial
presentation of

calcitriol (DN-101)
were given to patients
with cancer (15, 30, 45,
60, 75, 90, 105, 135, 165,
210, 270, and 345 µg)

To establish a safe dose
for weekly repeat dosing

of DN-101.
To compare the

pharmacokinetic profile
of DN-101 and rocaltrol.

Calcium and serum
chemistry were monitored

every two weeks. In
general, DN-101 was very
well tolerated on a weekly

schedule. However,
hypercalcemia was found

at 60 µg.
Thus, 45 µg is

recommended as a safe
dose for phase II studies in

patients with different
adenocarcionamas. Of note,
this study did not include

patients with BC.

[222]

Calcitriol/Gefitinib Phase I

Calcitriol was given i.v.
over 1 h on weeks 1, 3,
and weekly after that.

Gefitinib was given at a
fixed oral daily dose of

250 mg starting at
week 2 (day 8)

To evaluate MTD of this
combination.

High doses of weekly i.v.
calcitriol can be

administered safely in
combination with gefitinib.

The MTD for calcitriol
was 74 µg.

The study design did not
permit the evaluation of the

effects of calcitriol
on gefitinib.

[178]
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Table 1. Cont.

Clinical Trials

Drugs Clinical Trial Doses Aim Results Ref.

Calcitriol/
Gefitinib/

Dexamethazone
Phase I

A fixed oral dose of
dexamethasone of

4 mg/day was given.
Calcitriol was

administered i.v. over
1 h on weeks 1, 3, and
weekly after that. The
starting calcitriol dose
level was 57 µg, and

escalation occurred in
cohorts of three

patients until the MTD
was defined. Gefitinib

was given at a fixed
oral daily dose of

250 mg starting at week
2 (day 8).

To determine the MTD of
i.v. calcitriol administered

in combination with a
fixed oral dose of

dexamethasone and
gefitinib in patients with
refractory solid tumors

including, colorectal,
head and neck, prostate,

sarcoma, breast, stomach,
non-small cell lung

cancer, gastrointestinal
stromal tumor
and urachal.

The addition of a low dose
of dexamethasone allowed

the safe escalation of
calcitriol to the MTD of

125 µg/week. However, no
antitumor activity was

observed in patients with
different solid tumors. Of
note, the study included

only one patient with BC.

[179]

Alendronate and
calcitriol

Double-blind,
prospective,

placebo-controlled
24-week trial with a
daily combination

of alendronate
and calcitriol

in Hormone- positive
patients with early BC.

Daily, oral
administration of

Maxmarvil®® (5 mg of
alendronate and 0.5 µg

of calcitriol) for
24 weeks.

To determine whether a
lower dosage of

alendronate
in oral form combined

with calcitriol can
effectively manage

AI-induced bone loss.

The study
demonstrated that a
combination of 5 mg

alendronate and 0.5 µg
calcitriol is effective to

prevent bone loss due to
aromatase inhibitor

regimen in
post-menopausal women

with early BC.

[230]

Calcitriol

Post-menopausal
patients (33) with

operable BC, without
distant metastasis.

Oral administration of
0.50 µg/day
(Rocaltrol).

To evaluate the antitumor
effects of a short period of

VD3 supplementation.

The blood analysis
demonstrated that 87.5% of
patients had a deficiency of
calcitriol, as determined by

calcidiol serum levels.
Interestingly in paired

samples collected before
and after calcitriol

supplementation, no
differences were detected in

calcidiol serum
concentration.

Data from pre- and post-
calcitriol supplementation

showed a modest reduction,
around 35%, of
Ki67 expression.

Enriched molecular probes
demonstrated that target

genes of calcitriol were not
modulated after the

calcitriol supplementation.

[227]

11. Conclusions

Several studies have addressed the effects of calcitriol and its analogs in BC, showing
different outcomes. However, many support that the combination of calcitriol with conven-
tional BC drugs or with endocrine therapy provide potential therapeutic advantages, due
to the proprieties that VD3 compounds exert in combination, such as increasing growth
arrest, apoptosis, and anti-inflammatory and antiproliferative effects. Additional outcomes
include the regulation of ER expression by VD3 metabolites, which play a role in enhancing
antitumor activity of the therapies in both ER-positive and ER-negative cells; re-establishing
antiestrogens response, reducing adverse events such as loss of bone, genitourinary atrophy
and musculoskeletal symptoms, inhibiting estradiol-stimulated proliferation, suppressing
aromatase expression, and disruption of estrogen-dependent signaling.
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Although various clinical studies have focused on administering calcitriol in patients
with BC to find the MTD of this compound alone or in different combination schemes,
these studies have not specifically evaluated their antitumor activity or in many of them, a
clear effect was not reported. Other works suggested that VD3 supplementation in terms of
prevention of BC risk may be overestimated [251]. However, a great number of preclinical
studies have demonstrated a clear antitumor effect of calcitriol or its analogs in different
hormone-responsive or non-hormone-responsive BC models. The focus should be on
avoiding its calcemic effects and maintaining adequate calcium plasma concentrations
in vivo, which can be achieved by intermittent administration of calcitriol. In addition,
other factors should be taken into consideration in clinical and preclinical studies con-
cerning calcitriol antitumoral effects in patients with BC, including different populations,
VDR polymorphisms, and the status of the enzymes involved in VD3 activation, such as
CYP2R1, CYP27A1, CYP27B1, and CYP24A1 [224], all this due to the presence of mutations
in these enzymatic components [252] or pharmacological interactions [253].

Interestingly, the antitumor therapy that has recently gained clinical relevance focuses
on new routes of direct administration of antiproliferative agents intratumorally [254,255].
In this regard, few studies at the preclinical level have evaluated new forms of calcitriol
release into the tumors [256,257]. Thus, we encourage the use of novel routes of calcitriol
administration that could allow reaching significant intratumoral concentrations of this
hormone, avoiding its main side effects related to calcium. In addition, the use of different
combinations of calcitriol with other agents provides potential advantages, increasing
the therapeutic effect, reducing the doses of specific drugs in combined schemes, and
decreasing the undesirable side effects and drug resistance.
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15-PGDH 15-hydroxyprostaglandin dehydrogenase
AIs Aromatase inhibitors
AKT Protein kinase B
ALDH1ATRA Aldehyde dehydrogenase 1All-trans-retinoic acid
BC Breast cancer
Bcl-2 B cell CLL/lymphoma-2
BCSC Breast cancer stem cells
CCND1 Cyclin D1
CD Cluster of differentiation
CDK Cyclin-dependent kinases
COX Cyclooxygenase
CSCsDBP Cancer stem cellsVitamin D binding protein
DNMT DNA methyltransferase
EAG1 Ether-a-go-go-1 potassium channel
EGFR Epidermal growth factor receptor
EMT Epithelial-mesenchymal transition
EP Prostaglandin E receptor
ER Estrogen receptor
ERK Extracellular signal-regulated kinases
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FP Prostaglandin F receptor
HDAC Histone deacetylases
HDACI Histone deacetylase inhibitors
HER2 Epidermal growth factor receptor type 2
HERG Human EAG related genes
i.v. Intravenous
IGF-1 Insulin-like growth factor 1
IGFBP-3 Insulin-like growth factor binding protein 3
JAK Janus kinase
MAPK Mitogen-activated protein kinase
MDM2 Murine double minute 2
MMP Metalloproteinase
MTD Maximum tolerated dose
NFκβ Nuclear factor-kappa beta
NMU N-methylnitrosourea
NSAIDs Nonsteroidal anti-inflammatory drugs
OVX Ovariectomized
PARP Poly (ADP-ribose) polymerase
PI3K Phosphatidylinositol 3-kinase
PLA Phospholipase A2
PR Progesterone receptor
QDR Days a week
RARs Retinoid acid receptors
RAREs Retinoic-Acid-Response-Elements
ROS Reactive oxygen species
RXR Retinoid-X receptor
SERD Selective estrogen receptor down-
SERM Selective estrogen receptor modulator
STAT Activator of transcription
TGF-β1 Transforming growth factor-beta 1
TIL Tumor-infiltrating lymphocytes
TKI Tyrosine kinase inhibitors
TNBC Triple-negative breast cancer
TNFα Tumor necrosis factor alpha
TSA Trichostatin A
TSP-1 Thrombospondin 1
VD Vitamin D
VD3 Vitamin D3
VDR Vitamin D receptor
VDREs Vitamin D response elements
VEGF Vascular endothelial growth factor
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