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ABSTRACT The recent discovery of complete ammonia oxidizers (comammox) con-
tradicts the paradigm that chemolithoautotrophic nitrification is always catalyzed by
two different microorganisms. However, our knowledge of the survival strategies of
comammox in complex ecosystems, such as full-scale wastewater treatment plants
(WWTPs), remains limited. Analyses of genomes and in situ transcriptomes of four
comammox organisms from two full-scale WWTPs revealed that comammox were
active and showed a surprisingly high metabolic versatility. A gene cluster for the
utilization of urea and a gene encoding cyanase suggest that comammox may use
diverse organic nitrogen compounds in addition to free ammonia as the substrates.
The comammox organisms also encoded the genomic potential for multiple alterna-
tive energy metabolisms, including respiration with hydrogen, formate, and sulfite as
electron donors. Pathways for the biosynthesis and degradation of polyphosphate,
glycogen, and polyhydroxyalkanoates as intracellular storage compounds likely help
comammox survive unfavorable conditions and facilitate switches between lifestyles
in fluctuating environments. One of the comammox strains acquired from the anaer-
obic tank encoded and transcribed genes involved in homoacetate fermentation or
in the utilization of exogenous acetate, both pathways being unexpected in a nitrify-
ing bacterium. Surprisingly, this strain also encoded a respiratory nitrate reductase
which has not yet been found in any other Nitrospira genome and might confer a
selective advantage to this strain over other Nitrospira strains in anoxic conditions.

IMPORTANCE The discovery of comammox in the genus Nitrospira changes our per-
ception of nitrification. However, genomes of comammox organisms have not been ac-
quired from full-scale WWTPs, and very little is known about their survival strategies and
potential metabolisms in complex wastewater treatment systems. Here, four comammox
metagenome-assembled genomes and metatranscriptomic data sets were retrieved from
two full-scale WWTPs. Their impressive and—among nitrifiers—unsurpassed ecophysi-
ological versatility could make comammox Nitrospira an interesting target for optimizing
nitrification in current and future bioreactor configurations.

KEYWORDS comammox Nitrospira, cyanase, full-scale WWTPs, homoacetate
fermentation, metabolic versatility

erobic chemolithoautotrophic nitrification, the biological oxidation of ammonia to
nitrate, is a crucial process of the nitrogen cycle in natural and engineered systems.
Throughout the last century, nitrification was considered to be performed by two
different guilds of microorganisms in cooperation. The first step, ammonia oxidation to
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nitrite, is carried out by the ammonia-oxidizing microorganisms, ammonia-oxidizing
bacteria (AOB) and archaea (AOA). The second step, nitrite oxidation to nitrate, is
catalyzed by nitrite-oxidizing bacteria (NOB). The long-standing paradigm that this
division of labor in nitrification would be obligate was questioned in a theoretical
analysis (1) and finally refuted by the discovery of complete ammonia oxidizers
(comammox organisms), members of the NOB-harboring genus Nitrospira, which cat-
alyze both steps of nitrification on their own (2, 3). A subsequent physiological study (4)
revealed a very high affinity for ammonia and a high specific growth yield of comam-
mox Nitrospira, suggesting an oligotrophic lifestyle and yield-optimized survival strat-
egy that is consistent with theoretical metabolic models of complete ammonia oxida-
tion (1). Accordingly, comammox have been detected by metagenomics and PCR-
based analyses in oligotrophic drinking water treatment systems, groundwater wells,
and terrestrial subsurfaces (2, 5-9). Comammox Nitrospira have also been found in
full-scale wastewater treatment plants (WWTPs) (2, 8, 10-12), but the extent of their
contribution to nitrification in WWTPs remains to be determined.

Traditionally, Nitrospira were regarded as obligate chemolithoautotrophs that ac-
quire energy for growth solely from nitrite oxidation. However, several Nitrospira are
physiologically more versatile and can utilize various organic substrates in the presence
of ammonia or nitrite (see, for example, references 13, 14, and 15). Moreover, the nitrite
oxidizer Nitrospira moscoviensis can grow aerobically by hydrogen (H,) (16) and formate
(14) oxidation in the absence of nitrite, and utilization of formate was also observed for
other Nitrospira members (17, 18). Altogether, these findings demonstrated a much
greater ecological flexibility of canonical nitrifiers than previously perceived. Therefore,
in addition to analyses of comammox using markers, such as ammonia monooxygenase
(amoA) genes (7, 8), whole-genome studies and gene expression or protein analyses are
crucial to improving our understanding of comammox ecophysiology. Recently, the co-
mammox organism Nitrospira inopinata was isolated, and the annotation of its genome
revealed possible alternative lifestyles such as hydrogen and sulfide oxidation, the fermen-
tation of carbohydrates, and dissimilatory nitrite reduction to ammonium (4). A metag-
enomic analysis of comammox in a nitrifying laboratory-scale reactor also identified H,
oxidation as a putative additional energy metabolism (19). However, in-depth genome- and
gene expression-based analyses of comammox in full-scale WWTPs are still lacking. Here,
four comammox Nitrospira genomes were recovered from metagenomic data sets of
activated sludge from two full-scale WWTPs. The gene content of reconstructed genomes,
combined with metatranscriptomic data, revealed a surprisingly high metabolic versatility
of comammox Nitrospira in wastewater treatment systems.

RESULTS AND DISCUSSION

Recovery of comammox clade A Nitrospira MAGs from full-scale WWTPs. The
AmoA sequences from the four new comammox metagenome-assembled genomes
(MAGs)—Linkou 70 (LK70), LK265, Wenshan 110 (WS110), and WS238 —clustered
together with clade A comammox AmoA sequences from published fully or partially
sequenced comammox genomes (Fig. 1a). Phylogenetic analyses of concatenated
ribosomal protein (RP) sequences, which could be performed for MAGs LK70, LK265,
and WS110, also confirmed the placement of the MAGs within comammox clade A
(Fig. 1b). Close phylogenetic relationships between LK70 and LK265 recovered from
plant LK, as well as between WS110 and WS238, recovered from plant WS were
suggested by the AmoA, hydroxylamine oxidoreductase (HAO), and RP (only LK)
phylogenies (Fig. S1a). In agreement with previous results (2, 3), comammox Nitrospira
did not form a monophyletic group in an analysis based on the alpha subunit of nitrite
oxidoreductase (NXR) (NxrA) from Nitrospira (Fig. S1b).

The four newly recovered comammox MAGs range in size from 2.4 to 4.5 Mb, with
a completeness of 65 to 93% and a G+C content of 55.1 to 55.8% (Table S2). LK70 and
WS110 are nearly complete MAGs with a low degree of contamination (Table S2). In
comparison to 16 published comammox genomes (Table S2), the four MAGs had the
highest ANI with “Candidatus Nitrospira nitrificans” (LK70, 80.9%; LK265, 80.3%; WS110,
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FIG 1 Phylogenetic analyses of comammox Nitrospira. (a) Maximum-likelihood tree of AmoA protein sequences showing the affiliation
of the four comammox genomes acquired in this study (red) and previously published comammox genomes (black). The nodes with a
bootstrap value of >85% are indicated as black solid dots. AmoA sequences of ammonia-oxidizing bacteria and archaea were used as
outgroup. In all, 374 amino acid sequence alignment positions and 131 taxa (including outgroups) were considered. (b) Maximum-
likelihood tree based on a concatenated sequence data set of 15 ribosomal proteins extracted from MAGs of LK70, LK265, and WS110
acquired in this study (red) (WS238 was excluded because of high contamination), previously published comammox genomes (blue), and
genomes of nitrite-oxidizing Nitrospira (black). The nodes with a bootstrap value of >85% are indicated as black solid dots. Ribosomal
proteins sequences of other members of the phylum Nitrospirae were used as outgroup. In total 48,088 amino acid sequence alignment
positions and 69 taxa (including outgroups) were considered.

76.2%; WS238, 75.3%) (Fig. S2). Consistent with the phylogenetic analyses, the MAGs
from the same WWTP shared the highest ANI with each other (Fig. S2). However, their
ANIs were still below the proposed species cutoff of 95% (20), suggesting that each
MAG represents a novel comammox Nitrospira species. These four comammox strains
have tentatively been named “Ca. Nitrospira sp. strain LK70,” “Ca. Nitrospira sp. LK265,”
“Ca. Nitrospira sp. WS110,” and “Ca. Nitrospira sp. WS238.” Notably, WS238 was ex-
cluded from further analyses due to the high contamination level detected in this MAG.

Comammox Nitrospira are active in full-scale WWTPs. Combined metagenomic
and metatranscriptomic analyses provided the first holistic insights into the potential
metabolic activities of comammox Nitrospira in full-scale WWTPs. To the best of our
knowledge, this is the first in situ transcriptomic study of comammox in full-scale
WWTPs. It serves as a source of hypotheses on the biology of comammox Nitrospira,
and thus it provides a valuable starting point for follow-up research to explore how the
genomic features and transcriptional activities discussed here are reflected by pheno-
typic traits of these mostly uncultured nitrifiers.
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FIG 2 Cell metabolic cartoon constructed from the annotation of the nearly completely sequenced LK70 and WS110 comammox genomes and the
metatranscriptomic data. Numbers at pathway steps match the numeric enzyme identifiers in Table S3. The diameters of circles represent the transcript

abundances of the respective genes.

All four wastewater comammox strains transcribed amo, hao, and nxr genes (see the
supplemental material), suggesting that they were actively oxidizing ammonia to nitrate.
Transcripts of the respiratory chain complexes |, I, and IIl and the F-type ATP synthase were
all detected in the two nearly complete MAGs LK70 and WS110 (Fig. 2; Table S3). Interest-
ingly, in addition to the F-type ATP synthase, the two MAGs from plant LK (LK70 and LK265)
also encode a V-type ATPase. To date, the occurrence of both an F-type and a V-type ATP
synthase has been reported only for one other Nitrospira draft genome from a terrestrial
subsurface sample (9). However, only the transcript of its subunit | was detected in strain
LK70. A V-type ATPase in acid-tolerant AOA contributes to pH homeostasis (21), but its role
in neutrophilic comammox organisms remains unknown. Like the other NOB and comam-
mox Nitrospira (see, for example, references 4, 14, and 15), these comammox strains do not
encode any canonical heme-copper oxidase. Instead, they code for and transcribed a novel
cytochrome bd-like heme-copper oxidase (Fig. 2; Table S3) that is most likely complex IV of
Nitrospira (4, 15).

Nitrogen metabolism of comammox in WWTPs. As expected, the genes of the
known key enzymes for ammonia oxidation (amoABCDE and haoAB-cycAB) and for
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FIG 3 Distribution of key pathways, including nitrification, the use of organic nitrogen compounds,
alternative energy metabolisms, and storage compound metabolisms, in the two almost completely
reconstructed comammox genomes acquired in this study (names highlighted in red), previously
published comammox Nitrospira genomes, and three completely sequenced genomes of canonical
Nitrospira (NOB). Blue indicates the presence and gray indicates the absence of the respective pathway.
PhaA, acetyl-CoA C-acyltransferase; PhaB, acetoacetyl-CoA reductase; PhaCE, class Il poly(R)-
hydroxyalkanoic acid synthase subunits C and E; PhaZ, poly(3-hydroxybutyrate) depolymerase.
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nitrite oxidation (nxrABC) by comammox Nitrospira (2, 3) were identified (see the
supplemental material and Table S3), and their transcripts were detected in the four
comammox MAGs (Fig. S3a to d). Because the low completeness and relative high
contamination of MAGs LK265 and WS238 (Table S2) could introduce biases in physi-
ological interpretations, we now focused our analysis on the almost complete MAGs
LK70 and WS110. Further information on the nitrogen metabolism-related genes in
LK265 and WS238 can be found in Table S3. In addition to the aforementioned core
genes of nitrification, the two almost complete MAGs, LK70 and WS110, code for urease
(ureABC) with gene transcription (Fig. 2; Table S3). Although free ammonia is very likely
the main substrate for nitrification in domestic WWTPs, the presence and transcription
of urease genes are consistent with the possible availability of urea as an additional
source of ammonia in wastewater and support the previous notion that urea may be
utilized for energy conservation and nitrogen assimilation by comammox Nitrospira in
WWTPs (3, 4, 19, 22). However, only LK70 encodes a known urea ATP-binding cassette
transporter (urtABCDE) (Fig. 2). Interestingly, the gene of a putative short-chain amide
porin that may be involved in exogenous urea acquisition (23) was found in LK70 and
WS110 (Table S3) and was transcribed by WS110 (Fig. 2). Urease genes have also been
found in other comammox genomes (Fig. 3) (4, 9, 22) including data sets from nitrifying
bioreactors (3, 19), and urea cleavage has been observed for an enrichment culture of
the comammox strains “Ca. Nitrospira nitrosa” and “Ca. Nitrospira nitrificans” (3).
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FIG 4 Phylogenetic analysis of cyanase sequences. (a) Unrooted maximum-likelihood tree highlighting the lineages that contain cyanases
from canonical NOB (blue). Note that the Nitrospira lineage also contains the cyanase of the AOA Nitrososphaera gargensis (24). Branches
including only cyanases from nonnitrifiers are not labeled. (b) Expanded view showing the placement of the comammox Nitrospira
cyanase from LK70 (red) within the Nitrospira/Nitrososphaera cyanase family. In all, 340 amino acid sequence alignment positions and 93
taxa were considered.

Recent studies demonstrated the utilization of cyanate as a substrate for ammonia
oxidation and nitrogen assimilation by thermophilic and marine AOA and marine
anammox organisms (24-26). In the AOA strain Nitrososphaera gargensis, this capability
is based on the release of ammonia from cyanate by the enzymatic activity of cyanate
hydratase (cyanase) (24). Cyanase genes commonly occur in canonical NOB, including
strictly nitrite-oxidizing Nitrospira members (Fig. 3). However, cyanase has so far been
identified in only one canonical ammonia oxidizer, N. gargensis (24), and has only
recently been found in two comammox MAGs (https://www.biorxiv.org/content/10
.1101/529826v4) (Fig. 3). Intriguingly, in the comammox MAG LK70, we identified a
gene encoding cyanase (cynS) (Table S3; Fig. 2). The presence of cynS in this comammox
genome was confirmed by rigorous, iterative reassembly of the MAG (see the supple-
mental material and Fig. S6). According to a BLASTP search of the NCBI nr database,
LK70 cyanase has the highest amino acid identity (78.77%) to the cyanase of the NOB
Nitrospira moscoviensis. The close affiliation of the LK70 cyanase with homologs from
nitrite-oxidizing Nitrospira was confirmed by a phylogenetic analysis (Fig. 4). Although
in situ transcription of cynS by LK70 was not detected, the cyanase could enable this
comammox strain to use cyanate as a substrate in WWTPs or other environments. Since
abiotic urea degradation can lead to cyanate formation (27), the utilization of cyanate
as an energy source may be an ecological advantage in urea-containing wastewaters
and could be a distinguishing feature of strain LK70 compared to other comammox
Nitrospira and canonical ammonia oxidizers. However, a recent study revealed cyanate
oxidation to nitrite by marine AOA that lack canonical cyanase genes, indicating the
possible existence of another, yet unidentified biochemical pathway for cyanate utili-
zation (26). Thus, we cannot exclude the possibility that cyanate degradation may also
occur in comammox organisms lacking any currently identifiable cyanases.

Despite living in a nonaerated tank, strain LK70 transcribed its nitrification genes. We
can exclude the possibility of residual transcripts from the aerobic stage, because at
WWTP LK all aerobic tanks are downstream of the anaerobic stage, and no activated
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sludge is returned from the aerobic tanks into the anaerobic tank (28). Instead, we
assume that parts of the LK70 population had access to residual dissolved oxygen
(Table 1), for example, at the outermost shell of activated sludge flocs. In contrast, LK70
cells located in the inner zones of flocs would rather be expected to use anaerobic
energy metabolisms (see below). However, since the metatranscriptomic data set did
not allow us to distinguish the activities in different microniches, such a spatial-
functional segregation could not be verified in this study.

Autotrophy and storage compounds. Since chemolithoautotrophic organisms,
comammox, and canonical Nitrospira use CO, as their carbon source through the
reductive tricarboxylic acid (rTCA) cycle (2-4, 15). Pyruvate:ferredoxin oxidoreductase
(POR), 2-oxoglutarate:ferredoxin oxidoreductase (OGOR), ATP-citrate lyase (ACLY), and
fumarate reductase (FRD) are the key enzymes of the rTCA cycle (29-31). All of them are
encoded by the two nearly complete comammox MAGs LK70 and WS110 (Table S3),
and their genes were transcribed in situ (Fig. 2).

Both LK70 and WS110 encode the gluconeogenesis and glycolysis (Embden-
Meyerhof-Parnas) pathways, as well as the biosynthesis and degradation of glycogen,
which were also expressed (Table S3; Fig. 2). These pathways are also present in other
comammox and canonical nitrite-oxidizing Nitrospira strains (2, 14, 15, 32) (Fig. 3).
Storage of carbon and energy in the form of glycogen should help comammox
organisms and NOB cope with fluctuations in substrate availability. Such shifts are
probably common in many natural habitats and occur also in WWTPs, for example,
when the concentrations of ammonium, nitrite, and dissolved oxygen change regularly
in nitrifying and denitrifying bioreactors.

In addition to glycogen as a storage compound, LK70 encodes a potential biosyn-
thesis pathway for polyhydroxyalkanoates (PHA). Genes of acetyl coenzyme A (acetyl-
CoA) C-acyltransferase (phaA), acetoacetyl-CoA reductase (phaB), and class Ill poly(R)-
hydroxyalkanoic acid synthase subunits C and E (phaCE) were identified (Table S3)
and are colocalized (Fig. S4). Consistently, LK70 also encodes a potential poly(3-
hydroxybutyrate) depolymerase (phaZ) that is involved in PHA degradation (33, 34).
PHAs are usually formed under conditions of carbon excess and nitrogen or phosphate
limitation (35, 36) as carbon and energy storage compounds (37-39). The terminal step
of PHA synthesis is catalyzed by PhaCE (33, 40). Interestingly, no homolog of phaCE has
been identified before in other Nitrospira (comammox and NOB) genomes, although
some of these Nitrospira genomes contain putative phaAB and phaZ genes (Fig. 3).
Therefore, the presence of phaZ in other comammox genomes in the absence of a
complete set of known PHA biosynthesis genes has been discussed as a possible relic
(22). Since homologs of phaZ were transcribed by WS110 that does not contain phaCE
either (Table S3), the function of phaZ in comammox Nitrospira deserves further
investigation. However, the genetic inventory of LK70 for both PHA synthesis and
degradation suggests that at least some comammox strains gain additional physiolog-
ical flexibility by forming PHA. Transcription of the complete PHA biosynthesis pathway
in LK70 (Fig. 2) indicates the potential relevance of PHA formation under the microoxic
conditions in the nonaerated tank (Table 1), which was the source of LK70. It is
tempting to speculate that a fraction of the acetyl-CoA formed in the course of
anaerobic metabolism (see below), or exogenous organics taken up from the sludge
liquor in WWTP LK that was high in COD (Table 1), could be stored as PHA.

Both LK70 and WS110 encode polyphosphate kinases, which have also been identified
in other genomes of comammox and canonical Nitrospira (see, for example, references 2
and 15) (Fig. 3). Thus, Nitrospira seems to commonly use polyphosphate for the intracellular
storage of phophorus and energy. Polyphosphate kinases in the PPK1 and PPK2 families
preferentially catalyze the polymerization and degradation of polyphosphate, respectively
(41, 42). Strain WS110 transcribed one of its ppk2 genes (Fig. 2).

Utilization of organic substrates and fermentation. Organic compounds, such as
glycogen and PHA, may be degraded by LK70 and WS110 via the canonical oxidative
tricarboxylic acid (0TCA) cycle. The respective genes were identified in both MAGs,
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except for 2-oxoglutarate dehydrogenase, which was found in LK70 but not in the
recovered parts of the WS110 genome (Table S3). Most genes of the oTCA cycle (the
majority of which are shared with the rTCA cycle) were transcribed in both strains
(Fig. 2). This included a hallmark enzyme of the oTCA cycle, 2-oxoglutarate dehydro-
genase, in LK70 (Fig. 2). Operation of the oTCA cycle in LK70 living in a nonaerated tank
would make sense in the context of respiration of organic substrates with nitrate as the
terminal electron acceptor. This could be possible if, like in canonical Nitrospira (14, 32),
the periplasmic NXR of LK70 is a reversible enzyme and also capable of nitrate
reduction to nitrite. Moreover, all genes of a membrane-associated and cytoplasmically
oriented respiratory nitrate reductase, NAR (narGHLJ), were identified in LK70 (Fig. 2;
Table S3). This finding was unexpected, because other Nitrospira strains use their
periplasmic NXR for catabolic nitrate reduction (see above) and NAR has not yet been
found in any other Nitrospira genome (Fig. 3). Iterative reassembly of the LK70 MAG did
not contradict the presence of the nar genes in LK70 (Fig. S6). Nevertheless, this result
should be confirmed by resequencing of the genome and physiological experiments,
once an enrichment culture or isolate of this organism has been obtained. In our study,
in situ transcription of the narl gene encoding the membrane-integral gamma subunit
of NAR was detected. From a bioenergetic perspective, the cytoplasmically oriented
NAR could be a more efficient nitrate reductase than a periplasmic enzyme (43). Hence,
in anoxic conditions NAR might confer a selective advantage to nitrate-reducing LK70
over other Nitrospira strains that possess only NXR. However, comparisons are difficult
as long as only little is known about the periplasmic NXR of Nitrospira with regard to
its exact subunit composition, bioenergetic properties, and interactions with other
protein complexes in the electron transport chain (15).

Interestingly, according to its genetic inventory (Table S3), LK70 might be capable of
homoacetate fermentation for chemoorganotrophic energy conservation under anoxic
conditions. In this case, acetyl-CoA, carbon dioxide, and reduced ferredoxin could be
produced from pyruvate by POR acting in the reverse direction to that used for CO,
fixation (Fig. 2). Subsequently, acetyl-CoA would be converted to acetyl phosphate by
phosphate acetyltransferase and further to acetate, with ATP production, by acetate
kinase (Fig. 2). Notably, it remains unclear how the electrons, which are transferred from
pyruvate to ferredoxin in the POR reaction, are dissipated. This could theoretically be
accomplished by a H,-evolving hydrogenase. Coupling of homoacetate fermentation
with H, evolution has already been proposed for other organisms (44-46). However, no
hydrogenase known to form H, with electrons from ferredoxin was identified in the
sequenced part of the LK70 genome.

Alternatively, acetate kinase and phosphate acetyltransferase might both operate in
the reverse direction to that used for fermentation and catalyze the synthesis of
acetyl-CoA from acetate (Fig. 2). The acetyl-CoA could then serve as a substrate for the
oTCA cycle and respiration or for PHA biosynthesis (Fig. 2). Acetyl-CoA could also be
converted to pyruvate by POR (Fig. 2), thus saving LK70 some of the energy needed for
the de novo biosynthesis of pyruvate by CO, fixation (Fig. 2). Hence, it seems that strain
LK70 might also be able to use exogenous acetate as a source of energy and/or carbon.

The genes of acetate kinase and phosphate acetyltransferase were transcribed in situ
by LK70 (Fig. 2), suggesting that acetate metabolism was active in this organism. It
remains to be determined whether LK70 uses homoacetate fermentation to degrade
intracellular glycogen or exogenous organic substrates in the nonaerated tank, or
whether LK70 takes up and utilizes acetate that may be produced by other organisms
under the oxygen-deprived conditions in WWTP LK (Table 1).

Alternative electron donors. Both MAGs LK70 and WS110 contain all genes of a
group 3b [NiFe] hydrogenase and the factors required for hydrogenase maturation
(Table S3). Group 3b hydrogenases are widely distributed among phylogenetically
diverse bacteria and archaea (47). Their genes have also been reported in the genomes
of comammox Nitrospira (3, 4, 9) and the marine, canonical NOB Nitrospina gracilis (48).
Group 3b hydrogenase genes commonly occur in clade A comammox genomes (Fig. 3;

March/April 2020 Volume 11 Issue 2 e03175-19

mBio’

mbio.asm.org 9


https://mbio.asm.org

Yang et al.

Fig. S1c). These hydrogenases might couple NAD(P)H oxidation to the evolution of H,
(49). At ~20°C this reaction would be highly inefficient and could proceed only at a low
partial pressure of H, around 10 to 100 Pa (50), thus precluding a role of the 3b
hydrogenase in homoacetate fermentation (see above). However, 3b hydrogenases
may also be reversible, oxidizing H, with NAD(P)* as electron acceptor (47, 49, 51). At
least some 3b hydrogenases also act as sulfhydrogenases that transfer electrons from
NAD(P)H to elemental sulfur or polysulfide and thus produce H,S (47, 51). In comam-
mox Nitrospira, group 3b hydrogenases may be involved in energy conservation by
aerobic H, oxidation, a lifestyle already demonstrated for the NOB N. moscoviensis
based on the activity of a group 2a hydrogenase (16). The detected transcription of the
group 3b hydrogenase by LK70 and WS110 (Fig. 2) indicates that hydrogen metabolism
could be important for comammox Nitrospira in WWTPs.

Formate can be used as a carbon and also as an energy source by the NOB N.
moscoviensis (14) and Nitrospira japonica (18), and uptake of #C from labeled formate was
observed for uncultured Nitrospira in activated sludge (17). Formate dehydrogenase genes
have been identified in the genomes of N. moscoviensis (14), clade B comammox (22), and
a recently published clade A comammox draft genome designated as “Ca. Nitrospira sp.
strain RCA” (9), but not yet in other known clade A comammox organisms (Fig. 3). The here
recovered clade A comammox strain LK70 encodes genes of a molybdenum-dependent
formate dehydrogenase (fdhF) and an accessory sulfurtransferase (fdhD) that may enable
LK70 to utilize formate. In the nonaerated tank at WWTP LK, H, and formate could be
released by other fermenting organisms. These substrates would then be available for
aerobic respiration by LK70 cells that have access to dissolved oxygen, for example if they
grow in the outer shell of activated sludge flocs, or for nitrate reduction as observed already
for N. moscoviensis (14, 32).

Both LK70 and WS110 encode a periplasmic sulfite dehydrogenase (Fig. 2; Table S3),
which could couple sulfite oxidation to sulfate with the reduction of cytochrome c as
suggested for N. gracilis (48). Transcripts of the sulfite dehydrogenase genes were
detected for strain WS110 (Fig. 2). Genes of sulfite dehydrogenase have also been
identified in some other clade A comammox genomes and the closed genomes of three
nitrite-oxidizing Nitrospira (Fig. 3).

Stress defense. Both comammox genomes LK70 and WS110 contain genes coding
for superoxide dismutase (SOD), catalase, and several peroxidases (Fig. 2; Table S3) and
thus are well prepared for defense against reactive oxygen species (ROS). Except for
SOD encoding gene in WS110, transcripts of all ROS defense genes were detected
(Fig. 2). This is remarkable, since many Nitrospira lack a complete set of ROS detoxifi-
cation enzymes. For example, the comammox strains N. inopinata and “Ca. Nitrospira
nitrosa” do not encode SOD, and the NOB N. defluvii does not possess SOD or catalase
(2, 3, 15). Considering that N. defluvii is also a wastewater organism (15, 52), it seems
that Nitrospira in WWTPs use different and partly unknown pathways to detoxify ROS.

The LK70 and WS110 genomes also encode several other mechanisms for dealing
with environmental stress (Fig. 2; Table S3): a glycine betaine/carnitine/choline trans-
port system, which could contribute to osmoregulation and temperature adaptation by
transporting compatible solutes into the cells (53, 54); a CusA/CzcA family heavy metal
efflux RND transporter, which may increase the resistance to elevated heavy metal
concentrations in sewage (55); and chlorite dismutase (CLD)-like enzymes that also
occur in other Nitrospira strains and could detoxify chlorite (56, 57). The substrate of
CLD might be chlorite, which is produced during the reduction of chlorate by NOB (58),
or an unknown compound. However, bacterial CLD-like enzymes are phylogenetically,
structurally, and functionally diverse (59), and the primary physiological role of CLD in
Nitrospira and other NOB (60) is unknown. In addition, both LK70 and WS110 possess
flagella and chemotaxis genes, which should enable them to find favorable microhabi-
tats within the complex structure of activated sludge flocs and biofilms, and LK70
contains a regularly interspaced short palindromic repeats (CRISPR) system for phage
defense (61) (Table S3).
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Coexistence of nitrifying microorganisms in the studied WWTPs. The two
WWTPs, LK and WS, also harbored canonical nitrifiers in addition to the comammox
organisms. The transcriptional activities of these canonical nitrifiers, comammox, and
also anammox and denitrifiers have been compared in a previous study (28) and are
summarized in Fig. S5.

In WWTP LK, comammox coexisted with canonical AOB (Fig. S5a). In the metagenome
from this system, neither AOA nor strictly nitrite-oxidizing Nitrospira or any other canonical
NOB were detected and comammox was by far the most abundant and active known
nitrifier (Fig. S5a). In contrast, comammox cooccurred with AOA, AOB, and NOB (the latter
also from the genus Nitrospira) in WWTP WS. The comammox strains were less abundant
than the canonical nitrifiers (Fig. S5b). Moreover, plant WS also contained anammox
organisms (data not shown) that likely competed with the aerobic nitrifiers for ammonium
and nitrite. Notably, no anammox organisms were detected in the metagenome from
WWTP LK although this tank was not aerated. The different nitrifier community composi-
tions in the two WWTPs at the metagenomic level were consistent with the abundances of
different amoA and nxrA transcripts. These data indicate that comammox Nitrospira could
be the functionally predominant nitrifiers in plant LK, whereas canonical nitrifiers likely are
more important in plant WS (Fig. S5¢, d). These results are in agreement with previous
findings that the distribution of comammox Nitrospira in full-scale WWTPs is highly variable
(2, 8, 10-12). However, the abundance of an organism does not always reflect its contri-
bution to an environmental process, such as nitrification (62). Thus, follow-up research that
quantifies the actual contributions of comammox and canonical nitrifiers to nitrification in
different WWTPs and natural habitats, taking into account the impact of fluctuating
environmental conditions and alternative energy metabolisms, is urgently needed. Metag-
enomic and gene expression analyses, such as our study, prepare this next step and provide
a knowledge basis by identifying the potential functional key players and their potential
metabolic pathways and alternative lifestyles.

Conclusions. The metagenomic reconstruction of four comammox MAGs derived
from two full-scale WWTPs, combined with a metatranscriptomic analysis, has revealed
a substantial and previously unknown potential metabolic versatility of comammox
Nitrospira in wastewater. At least some comammox organisms can apparently utilize
not only free ammonia but also urea and cyanate as substrates for chemolithoau-
totrophic complete nitrification. In particular, the discovery of a cyanase gene in a
comammox genome is a remarkable addition to previous knowledge that only certain
AOA and marine anammox organisms are able to cleave cyanate for ammonia oxida-
tion. Moreover, comammox Nitrospira in WWTPs seem to be highly flexible with regard
to alternative energy metabolisms. Unexpectedly, their inventory of such pathways may
include an anaerobic lifestyle based on the fermentation of organic compounds.
Interestingly, a putative pathway for the facilitated fermentation of aromatic amino
acids coupled to H, release has recently been found in the genome of a thermophilic
canonical AOA strain (63). These and our results indicate the possible presence of
fermentative pathways in phylogenetically and ecologically diverse nitrifiers. It remains
to be shown whether these organisms can anaerobically grow by fermentation or rely
on these pathways only to persist during periods of limited oxygen and nitrate
availability. In addition, comammox strains in WWTPs might be capable of reducing
nitrate to nitrite with electrons from low-potential donors. This activity was already
observed for canonical Nitrospira (14, 32). The utilization of nitrate as an alternative
terminal electron acceptor would further increase the ecophysiological flexibility of
comammox in alternately nitrifying and denitrifying bioreactors. The broad range of
potential energy metabolisms is complemented by several pathways to make and
consume intracellular storage compounds. This enables comammox cells to store
energy and carbon, which could be used to express new enzymes and switch between
different lifestyles when the environmental conditions change. In summary, comam-
mox Nitrospira in WWTPs appear to be very well adapted to the complex wastewater
environment, which is characterized by a plethora of (sometimes harmful) organic and
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inorganic substances, a large diversity of microhabitats within sludge flocs and biofilms,
and frequent changes of key environmental parameters (e.g., the ammonium load or
the dissolved oxygen concentration) during bioreactor operation. Future research
efforts might aim to exploit the unique physiological versatility of comammox, which
is unmatched by the known canonical nitrifiers, to optimize nitrogen removal from
sewage in current and new bioreactor and process designs.

MATERIALS AND METHODS

Sample collection, sequencing, and data analysis. Activated sludge was collected from the
mainstreams of two full-scale WWTPs from Taiwan, including an anaerobic tank of the Linkou (LK) WWTP
in New Taipei and a nitrifying deep oxidation ditch of the Wenshan (WS) WWTP in Taichung (Table 1) (28).
A detailed description, including process flow diagrams, of the two WWTPs is provided in our previous
study (28). Briefly, plant WS is equipped with a deep oxidation ditch for biological nitrogen removal; the
aeration in plant LK is configured as an anaerobic-aerobic-anoxic-aerobic-anoxic (AOAOA) system
(Table 1). Activated sludge from the anaerobic tank of plant LK was sampled because the ammonia
added was fully removed by this tank (Table 1). Supernatant from sludge thickening and filtrate from
dewatering were mixed with the influent of the anaerobic tank. The influent wastewater of plant WS is
a mixture of car-washing wastewater, landfill leachate, and supernatant of kitchen waste compost,
whereas the influent of plant LK is municipal wastewater (Table 1). The chemical oxygen demand (COD)
of the influent wastewater of plant LK was extremely high because of the inputs of supernatant and
filtrate from sludge thickening and dewatering (Table 1).

Three independent activated sludge samples (technical replicates) were collected from each tank,
and samples for DNA isolation were stored at —20°C, while samples for RNA isolation were preserved on
site in LifeGuard soil preservation solution (Qiagen, Germany). Details of sampling, nucleic acid extrac-
tion, cDNA synthesis, and sequencing, as well as de novo metagenomic assembly, binning, and quality
assessment, have been described in a previous study (28). Briefly, total DNA and RNA were extracted from
each replicate sample, and the DNA or RNA, respectively, extracted from each sample was pooled. RNA
was converted to double-stranded cDNA. The acquired DNA and cDNA were used for metagenomic and
metatranscriptomic sequencing, respectively. The trimmed metagenomic data sets were assembled de
novo using IDBA-UD v1.1.1 (64) using the parameters -mink 65, -maxk 145, and -step 8, and resulting
scaffolds were binned using Maxbin with the setting “-min_contig_length 2500” (65). The rRNA reads
were identified and removed from metatranscriptomic data sets using RiboPicker (66).

Finally, four comammox metagenome-assembled genomes (MAGs) were obtained; these were
named LK70, LK265, WS110, and WS238. The completeness and level of contamination of the acquired
draft genomes were estimated using CheckM v1.0.6 (67). In order to confirm that the novel genes
identified in LK70 (see below) were not contaminations in binning, this MAG was subjected to highly
iterated and rigorous reassembly (see the supplemental material and Fig. S6). Short metagenomic reads
were mapped to the four MAGs by Bowtie2 v2.2.9 (68) with the defult settings to calculated the
abundances of genomes as reads per kilobase per million (RPKM) (69). Non-rRNA metatranscriptomic
reads were mapped to the predicted genes by BWA v0.7.17 (70) with the defult settings to calculate the
transcripts of genes as RPKM as follows: RPKM = (number of mapped reads)/[(gene length/1,000) X
(total mapped reads/1,000,000)].

Phylogenetic analyses. A previously reported syntenic block of 15 universal ribosomal proteins (RP:
L2, 3,4, 5,6, 14, 15,18, 22, and 24; S3, 8, 10, 17, and 19) (71) was extracted from the new comammox
Nitrospira MAGs acquired in this study, previously published comammox genomes before April 2019
(completeness > 85%) (Table S2), and additionally selected Nitrospirae genomes. Each set of RP amino
acid sequences was aligned using MAFFT (72), and individual RP alignments were concatenated with an
in-house R script and trimmed with trimAl with the setting “-gt 0.1” (73). Because of high contamination,
MAG WS238 was excluded from the RP phylogenetic analysis. Prior to phylogenetic analyses, the
respective protein sequences of AmoA, HaoA, and NxrA from previously published comammox genomes
were used to generate reference databases. Following open reading frame (ORF) prediction using
Prodigal v2.6.3 (74), the homologous protein sequences in the reconstructed comammox MAGs were
recovered by BLASTP searches against the respective reference databases using an E value threshold of
<1079, The blast results were filtered using a minimum sequence identity of 40% and minimum
alignment length (length of aligned query sequence/length of database sequence) of 50%. The filtered
sequences were then added to the respective databases. AmoA sequences from AOA and AOB were
manually added to the AmoA database; HaoA sequences from AOB and anaerobic ammonium oxidizers
(anammox bacteria) were manually added to the HaoA database. Phylogenetic analyses of NxrA
comprised NxrA sequences from the genus Nitrospira and three of the recovered Nitrospira MAGs here,
while the short NxrA sequences in LK70 and WS238 were excluded. The amino acid sequences of AmoA,
HaoA, and NxrA were aligned with MAFFT (72), and the multiple sequence alignments were trimmed
using trimAl with the setting “-gt 0.1” (73). Maximum-likelihood trees for functional gene alignments and
the concatenated RP alignment were calculated using IQ-TREE with the default settings (75). The models
of sequence evolution LG+R3, LG+R6, LG+R3, and LG+F+R10 were chosen from 546 protein sequence
evolution models by ModelFinder (as implemented in IQ-TREE) to build AmoA, HaoA, NxrA, and RP
phylogenetic trees, respectively.

To classify the [NiFe] hydrogenases encoded by comammox genomes, predicted ORFs were com-
pared to sequences of the large subunit of the [NiFe] hydrogenases that were downloaded from HydDB
(76) by BLASTP using an E value cutoff of <10~'°. The blast results were filtered as described above, and
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the filtered sequences were submitted to the HydDB online classifier for hydrogenases (https://services
.birc.au.dk/hyddb/) (76). A maximum-likelihood phylogenetic tree of large subunit [NiFe] hydrogenase
sequences identified in comammox genomes and of reference sequences from HydDB was constructed
as described above using the model LG+R3. A maximum-likelihood phylogenetic tree of cyanase coding
genes, including the cyanase from MAG LK70 and a previously reported 99 representative cyanase
coding gene data set (24), was constructed as described above using the model WAG+R5. Phylogenetic
trees were visualized using iTOL (77).

Genome analyses. MAGs were annotated by GhostKOALA, KEGG's internal annotation tool for the
K number assignment of KEGG GENES using the SSEARCH computation (78). In addition, predicted ORFs
were assigned to existing clusters of orthologous groups (COGs) by eggNOG-mapper (79). ORFs were also
analyzed by BLASTP searches against the NCBI nr database using an E value of <10~* as a threshold with
the setting “-max_target_seqs 3.” The blast hits for selected ORFs with interesting putative functions
were compared to the KEGG and eggnog annotation results. Inconsistent results were further inspected
by BLASTP searches against the Reference Proteins and UniProtKB/Swiss-Prot databases with an E value
threshold of <10~ and/or by phylogenetic analysis with reference sequences. To identify potentially
secreted proteins, ORFs were screened for signal peptides using SignalP 4.1, Signal-BLAST, and PSORTb
(80-82). The gene annotations of the four comammox MAGs are summarized in Table S3.

Pairwise average nucleotide identity (ANI) was calculated between the four comammox MAGs from
this study, previously published comammox genomes (completeness > 85%) (Table S2), and four closed
NOB Nitrospira genomes using OrthoANI (83).

Data availability. Raw metagenomic and metatranscriptomic sequences have been submitted to
NCBI under BioProject PRINA406858. The comammox MAGs (LK70, LK265, WS110, and WS238) are
available in NCBI under accession numbers SAMNO07644402, SAMNO07644401, SAMN07644400, and
SAMNO07644399. The four MAGs are also available in eLMSG (an eLibrary of Microbial Systematics and
Genomics, https://www.biosino.org/elmsg/index) under accession numbers LMSG_G000000182.1,
LMSG_G000000183.1, LMSG_G000000184.1, and LMSG_G000000185.1.
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