
rsob.royalsocietypublishing.org
Review
Cite this article: Inoue K. 2018 A state-of-

the-art perspective on microgliopathic pain.

Open Biol. 8: 180154.

http://dx.doi.org/10.1098/rsob.180154
Received: 28 August 2018

Accepted: 30 October 2018
Subject Area:
neuroscience

Keywords:
neuropathic pain, spinal cord, microglia,

purinergic signalling, P2X4 receptor
Author for correspondence:
Kazuhide Inoue

e-mail: inoue@phar.kyushu-u.ac.jp
& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
A state-of-the-art perspective on
microgliopathic pain

Kazuhide Inoue

Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu
University, Fukuoka 812-8582, Japan

KI, 0000-0003-0385-9577

Acute nociceptive pain is an undesirable feeling but has a physiological sig-

nificance as a warning system for living organisms. Conversely, chronic pain

is lacking physiological significance, but rather represents a confusion of

nerve functions. The neuropathic pain that occurs after peripheral nerve

injury (PNI) is perhaps the most important type of chronic pain because it

is refractory to available medications and thus remains a heavy clinical

burden. In recent decades, studies have shown that spinal microglia play a

principal role in the alterations in synaptic functions evoking this pain. It

is also clear that the P2X4 receptor (P2X4R), a subtype of ionotropic ATP

receptors, is upregulated exclusively in spinal microglia after PNI and

plays a key role in evoking neuropathic pain. Neuropathic pain is caused

by several conditions associated with activated microglia without nerve

damage. ‘Microgliopathic pain’ is a new concept indicating such abnormal

pain related to activated microglia.
1. Introduction
Neuropathic pain is evoked by the damage of pain-related neurons in traumatic

injury, diabetes mellitus, autoimmune diseases, infection or bone compression

in cancer. Neuropathic pain seems one of the most debilitating forms of chronic

pain, and is a significant clinical problem because it is refractory to medications

such as opioids and nonsteroidal anti-inflammatory drugs [1]. More than

20 million patients worldwide suffer from neuropathic pain. Previously, nearly

all researchers believed that neuropathic pain was the direct result of altered

functions in the peripheral and central nervous systems after peripheral nerve

injury (PNI). As many scientists reported studies focused on neurons to under-

stand the mechanism of neuropathic pain, they suggested that neuropathic pain

is a result of abnormal excitability of the secondary sensory neurons in the dorsal

horn, and that histological reorganization of pain signalling in the peripheral and

central nervous systems causes neuropathic pain [1,2]. They also proposed many

pharmacological tools against molecular targets in neurons to treat this pain.

However, these tools, including candidate compounds, did not produce signifi-

cant therapeutic effects in patients [3]. The failure of compounds targeting

neurons suggested that non-neuronal mechanisms may be involved in neuro-

pathic pain. Recently, a growing body of evidence shows that spinal microglia

activated in response to PNI have important pathophysiological roles in the

modification of synaptic transmission of pain [4–8]. This review describes

recent advances in understanding the mechanism of evoking neuropathic pain

through the functions of P2X4Rs in spinal microglia after PNI.

2. Normal acute pain
Under normal conditions, acute nociceptive pain has a physiological signifi-

cance as a warning system that enables the detection of danger signals that

threaten the homeostasis of living things. Painful stimuli evoke action potentials

in the distal ends of C-fibres or Ad-fibres belonging to dorsal root ganglion
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(DRG) neurons. These spikes conduct to the central ends of

these DRG neurons and transmit to secondary sensory neur-

ons in the dorsal horn superficial layer through mainly

glutamatergic synaptic transmission, and finally to the sen-

sory cortex, evoking a pain sensation. Conversely, touch

stimuli evoke action potentials in Ab-fibres belonging to

DRG neurons, and these spikes are transmitted to the sensory

cortex resulting in touch sensation. There are no reports

indicating overlap of these sensory inputs under normal

conditions. In other words, light touch stimuli do not cause

pain sensation but inhibit pain signalling under normal con-

ditions, as described below. Action potentials evoked by

touch stimuli in Ab-fibres partly transmit to inhibitory

interneurons, resulting in the release of the inhibitory neuro-

transmitters, g-aminobutyric acid (GABA) or glycine. GABA

acts at secondary neurons to evoke hyperpolarization and the

inhibition of pain signalling (figure 1). However, under

pathophysiological conditions, there is ample evidence show-

ing that touch stimuli evoke strong pain sensations, as

described in the next section.
3. Neuropathic pain and microglial
activation after PNI

Chronic pain lacks physiological significance as a warning

system. Neuropathic pain that occurs after PNI is the most

important type of chronic pain because effective medications

are lacking, and thus it remains a significant clinical burden.

The symptoms of neuropathic pain include spontaneous

pain, hyperalgesia and tactile allodynia. Tactile allodynia is

painful hypersensitivity to normally innocuous touch stimuli

and is an interesting shift in pain sensation elicited by touch

stimuli that are not seen in normal physiological conditions.

In 2003, a new concept of evoking neuropathic pain was

proposed where spinal microglia are activated after PNI,

and P2X4Rs on these activated microglia have an important

role for eliciting neuropathic pain [9]. An initial observation

that tactile allodynia after PNI is reversed by an inhibitor of

P2X4Rs in the spinal cord led to this concept [9]. It was

also shown that the expression of P2X4Rs in the spinal cord

is upregulated exclusively in microglia after PNI and that ani-

mals with P2X4R knock-down or knock-out in the spinal

cord are resistant to tactile allodynia [9–11]. These results

indicate that PNI-induced allodynia depends on microglial

P2X4R signalling [9]. This report brought glial pain mechan-

isms to the forefront of research. Much research was

subsequently performed, and the following findings

became clear. First, various lines of evidence indicated that

injured neurons might induce the activation of microglia in

the dorsal horn [12,13]. Although it is currently unclear

which factors are essential in the activation of microglia, cyto-

kine interferon (IFN)-g and platelet-derived growth factor

(PDGF) may be candidates for activation factors evoking

microglial activation. Another study showed that IFN-g

levels are increased in the spinal cord after PNI [14] and

that spinal microglia exclusively express a receptor for IFN-g

(IFN-gR) in naive animals, and this receptor stimulation

changes microglia into an activated form. Injection of IFN-g

produces long-lasting tactile allodynia, and microglial acti-

vation and tactile allodynia after PNI are severely impaired

by ablating IFN-gR [15]. Moreover, it was found that spinal

microglia show the upregulation of Lyn tyrosine kinase and
P2X4R by IFN-g-stimulation [15]. These results suggest that

IFN-gR is an important molecule in the activation of microglia

and neuropathic pain.

PDGF expressed in dorsal horn neurons plays a role in

evoking neuropathic pain after PNI [16]. It was also reported

that spinal microglia are involved in PDGF-evoked tactile

allodynia [17]. Specifically, intrathecal injection of the PDGF

B-chain homodimer (PDGF-BB) in naive rats evoked long-

lasting tactile allodynia in a dose-dependent manner. The

immunofluorescence for the phosphorylated PDGF b-receptor

(p-PDGFRb, an activated form of this receptor) was markedly

increased by PDGF injection into dorsal horn microglia. After

treatment with PDGF-BB, microglial cell numbers and mor-

phology indicated that microglia are modestly activated. In

addition, intrathecal administration of minocycline (an inhibi-

tor of microglial activation) inhibited PDGF-BB-induced

tactile allodynia [17]. These results suggest that PDGF

evokes the activation of spinal microglia and tactile allodynia.
4. Mechanism of evoking mechanical
allodynia

In 2005, it was reported that stimulation of microglial P2X4Rs

evokes the synthesis and release of brain-derived neuro-

trophic factor (BDNF) [10,18]. It was also shown that BDNF

might downregulate the function of the KCC2 chloride trans-

porter through activation of transmembrane tyrosine kinase B

(TrkB) in lamina I secondary neurons, resulting in a depolar-

izing shift of the anion reversal potential (Eanion) [19]. This

shift inverts the polarity of currents activated by g-amino

butyric acid (GABA) and glycine, such that GABA and gly-

cine cause depolarization, rather than hyperpolarization, in

these secondary sensory neurons [19]. Moreover, it was

reported that ATP stimulation evokes the release of BDNF

from microglia in vitro, and BDNF injection mimicked the

alteration in Eanion in lamina I secondary neurons in an

in vivo study. Inhibition of the interaction between BDNF

and the TrkB receptor reverses allodynia, and both nerve

injury and the injection of ATP-stimulated microglia into

the dorsal horn cause a similar shift of the Eanion [19].

These studies suggest that microglial P2X4Rs are central

players in the pathogenesis of the allodynia associated with

neuropathic pain. However, there are no data explaining

where the ATP that stimulates P2X4Rs originates.

Though extracellular ATP in the spinal dorsal horn stimu-

lates microglial P2X4Rs, resulting in neuropathic pain after

PNI, the type of cells and the mechanism for ATP release

within the spinal cord has remained a mystery. Recently, it

was reported that the vesicular nucleotide transporter

(VNUT) in dorsal horn neurons is a key molecule for ATP

release and neuropathic pain [20]. In that report, VNUT

expression and extracellular ATP content ([ATP]e) in the

dorsal horn increased in proportion to pain hypersensitivity

in wild-type mice after PNI [20]. Furthermore, the increase

of [ATP]e and the tactile allodynia of neuropathic pain

were prevented in VNUT-deficient mice, or following treat-

ment with exocytosis inhibitors. Similar suppression of

tactile allodynia and spinal [ATP]e was found in mice bearing

a specific deletion of VNUT exclusively in dorsal horn neur-

ons. Notably, any suppressions of tactile allodynia and spinal

[ATP]e were not seen in a specific deletion of VNUT exclu-

sively in primary sensory neurons, microglia or astrocytes
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[20]. Of the various types of dorsal horn neurons, inhibitory

interneurons seem to play a crucial role in the release of

ATP. Such release results in PNI-induced allodynia because

ATP release from spinal cord slices was suppressed in mice

selectively lacking VNUT in vesicular GABA transpor-

ter (VGAT)-expressing inhibitory neurons generated by

crossing VNUT-floxed (Slc17a9fl/fl) mice with Vgat-Cre mice

(Vgat-Cre;Slc17a9fl/fl) [21]. These data indicate that the

VNUT-dependent release of ATP from GABAnergic inhibi-

tory neurons of the spinal dorsal horn is important for the

production of tactile allodynia in neuropathic pain. Thus, it

is speculated that touch stimuli evoke action potentials

in Ab-fibres of DRG neurons and these spikes transmit to

inhibitory interneurons resulting in the release of ATP as

well as GABA. In succession, ATP stimulates the microglial

release of BDNF which affects secondary sensory neurons,

resulting in a depolarizing shift of Eanion. GABA released

from inhibitory interneurons stimulates secondary neurons

to evoke depolarization which transmits to the sensory

cortex, resulting in pain sensation (figure 2).

There is one technical problem in this hypothesis. To

assess mechanical allodynia, calibrated von Frey filaments

(0.4–15 g, Linton Instrumentation, Diss, Norfolk, UK) are

applied to the plantar surface of the hind paws of animals.

The 50% paw-withdrawal threshold (PWT) is determined by

the up–down method. Scientists have used this method for

pain studies for more than 100 years, and they speculate
that very light filaments cause only touch sensation through

Ab-fibres. However, there is no evidence for this speculation.

Specific tools to manipulate Ab-fibre function in awake, freely

moving animals are required for clarifying this issue. Recently,

it was reported that illuminating the plantar skin of transgenic

rats in which light-activated channels (channelrhodopsin-2;

ChR2) are expressed only in Ab-fibres elicits pain behaviours

after PNI that are very similar to pain behaviours confirmed

by von Frey testing with similar time-courses after PNI [22].

In these rats, illumination of the skin after PNI increased the

number of the activity markers c-Fos and phosphorylated

extracellular signal-regulated protein kinase (pERK) in

spinal dorsal horn Lamina I neurons [22]. In addition, opto-

genetic Ab-fibre stimulation after PNI caused excitation of

Lamina I neurons in whole-cell recording, which were nor-

mally silenced by this stimulation without PNI [22]. These

data indicate that optogenetic activation of primary afferent

Ab-fibres in PNI rats produces excitation of Lamina I neurons

and neuropathic pain.
5. Microgliopathic pain
Neuropathic pain is caused by several conditions after PNI,

as mentioned above. Recently, several reports indicated that

abnormal activated microglia are able to cause neuropathic

pain even in in naive animals [15,17,19,23–25]. From these
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findings, we have created the new concept named

‘microgliopathic pain’ that indicates abnormal pain derived

by activated microglia without accompanying nerve

damage.

Even in normal states, microglia are quite active in com-

municating with other cells and receive signals from the

outside environment. This observation led to the hypothesis

that the surveillance mode of microglia may be shifted to a

reactive state by excess stimulation by signals from the outside

environment. This shift will depend on the strength of the

signals and eventually will return to a normal state. After

PNI, the microglia shift completely towards a reactive state,

and various abnormal phenotypes are expressed, resulting

in a prolonged state of pain hypersensitivity. Such a

phenotype would include high levels of P2X4R expression,

which activates the BDNF–TrkB–KCC2 pathway mentioned

above, the Cathepsin S inducing nucleotide-binding oligomer-

ization domain (NOD)-, the C-terminal leucine-rich repeat

(LRR)- and pyrin domain-containing protein 3 (NLRP3)

inflammasomes, or the fractalkine–CX3CR1–p38MAPK–

IL-1b or TNFa signalling pathways. An important question

is what types of core molecules control the expression of

such abnormal phenotypes. It has been reported that some

transcription factors (IRF8 and IRF5) may be involved in

this regulation [26,27].

IRF8 is a member of the IRF family (IRF1–9) expressed in

immune cells such as lymphocytes and dendritic cells [28].
Several reports indicate that IRF8 acts as a transcription

factor in microglia [26,29–31] and is critical for microglial

activation and neuropathic pain [26]. Furthermore, the IRF8

expression is markedly enhanced exclusively in microglia in

the spinal cord after PNI [26]. IRF8 expression is upregulated

as early as day 1, peaks on day 3 and the upregulation per-

sists for at least several weeks after PNI. PNI-induced

tactile allodynia was not detected in IRF8-deficient mice.

Intrathecal injection of a small interfering RNA (siRNA)

targeting IRF8 inhibited the upregulation of spinal IRF8

and allodynia after PNI in normal mice. These findings

indicate that activation of IRF8 is a sustained event after

PNI in spinal microglia. In both in vitro and in vivo studies,

IRF8 promoted the transcription of P2X4R and the innate

immune response toll-like receptor 2 (TLR2), the CX3CR1

chemokine receptor, interleukin-1b, cathepsin S, P2Y12R

and BDNF, which are important factors involved in

neuropathic pain [26].

IRF5 directly controls the transcription of P2X4R in micro-

glia after PNI [27]. Importantly, IRF5 is an IRF8-regulated

gene and increases in spinal microglia in an IRF8-dependent

manner after PNI. Furthermore, fibronectin stimulates the

translocation of IRF5 from the cytoplasm into the nucleus,

resulting in IRF5 binding directly to the promoter region of

the P2rx4 gene and inducing de novo expression of P2X4R

in microglia. Mice lacking Irf5 do not show any upregulation

of spinal P2X4R or any pain hypersensitivity after PNI. These
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findings suggest that a transcriptional axis from IRF8 to IRF5

contributes to the activation of spinal microglia with P2X4R

overexpression and the expression of tactile allodynia in

neuropathic pain after PNI.

Another study showed that fibronectin is elevated in the

dorsal horn after PNI and evokes an increase in mRNA and

P2X4R protein in primary cultured microglial cells [32]. In

addition, it was reported that an inhibitor of fibronectin/

integrin signalling reduces the expression of P2X4R and tac-

tile allodynia after PNI and that intrathecal administration

of fibronectin evokes tactile allodynia in naive animals but

does not produce allodynia in P2X4R-deficient mice [33].

Moreover, it was reported that fibronectin fails to cause the

upregulation of P2X4R gene expression in microglial cells

lacking Lyn [34]. Lyn, an important molecule of fibronec-

tin/integrin signalling in microglia, is reported to be the

main Src-family kinase (SFKs) in spinal microglia among

the five Src-family members (Src, Fyn, Lck, Yes and Lyn).

The level of Lyn increases after PNI, and tactile allodynia,

as well as the upregulation of P2X4R, are suppressed in

spinal microglia in mice lacking Lyn after PNI [34].
Two cascades of intracellular signalling are activated by

Lyn tyrosine kinase [35]. One is a pathway via phosphatidyl-

inositol 3-kinase (PI3 K)–Akt, and the other is a pathway via

mitogen-activated protein kinase (MAPK) kinase (MEK)-

extracellular signal-regulated kinase (ERK) [36]. Activation

of the PI3 K–Akt pathway causes the degradation of p53 in

a proteasome-dependent manner, which in turn leads to an

enhancement of P2X4 gene expression, because p53 is inhibit-

ing the expression of the P2X4 gene. Activated MEK-ERK

signalling by fibronectin stimulates phosphorylation of

eukaryotic translation initiation factor 4E (eIF4E) through

the activation of MAPK-interacting protein kinase-1. Thus,

this pathway may play a role in regulating P2X4 expression

in microglia. Inhibition of SFK reportedly suppresses ERK

activity in spinal microglia [37]. These results indicate that

Lyn might be a key kinase in the P2X4R upregulation in

microglia after PNI (figure 3).

There is an extremely interesting finding that the subcellu-

lar localization of P2X4R is restricted to lysosomes around the

perinuclear region, and these P2X4 receptors are translocated

into the cell membrane by stimulation [38]. Stimulation by
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fibronectin increases the release of CCL2 from activated

microglia, and CCL2 stimulates the CCR2 CC-chemokine

receptor on microglial cell membranes, resulting in the stimu-

lated trafficking of P2X4R to the cell surface from lysosomes

in the microglia [39] (figure 3). Thus, fibronectin is a key

regulator of P2X4R expression through various pathways.
ypublishing.org
Open

Biol.8:180154
6. Conclusion
In recent decades, an accumulating body of literature has

provided evidence for the crucial role of microglia in neuro-

pathic pain and our understanding of the molecular and

cellular basis of neuropathic pain. However, some questions

require clarification, especially when faced with the reality

that approximately 40 molecules are selectively upregulated

in spinal microglia following PNI [21], resulting in the

hypothesis that each may be independently capable of contri-

buting to neuropathic pain. This review describes the recent

advances in the understanding of mechanisms of neuropathic
pain, with a focus on P2X4 receptor functions in spinal micro-

glia after PNI. Spinal microglia also express other purinergic

receptors, including P2X7, P2Y12 and P2Y6, which show

interesting functions related to neuropathic pain. The role of

purinergic microglial signalling in the mechanisms of neuro-

pathic pain provides crucial insights in its pathogenesis and

suggests potential strategies for developing new treatments

for neuropathic pain.
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