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Abstract

The application of deep sequencing to map 59 capped transcripts has confirmed the existence of at least two distinct
promoter classes in metazoans: ‘‘focused’’ promoters with transcription start sites (TSSs) that occur in a narrowly defined
genomic span and ‘‘dispersed’’ promoters with TSSs that are spread over a larger window. Previous studies have explored
the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no
studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are
significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher
associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region
upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II.
These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as
CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies,
and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the
occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to
the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from
59 capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of
divergent transcriptional programs established within gene-proximal nucleosome organization.
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Introduction

The development of high-throughput sequencing strategies,

which generate millions of 59 sequence tags from capped RNAs

transcribed by RNA polymerase II (pol II), has enabled obtaining

fine-grained pictures of transcription initiation. Each of the tags

originates from a transcription start site (TSSs), and mapping the

tags to the genome identifies tag clusters for individual genes. In

particular, the application of Cap Analysis of Gene Expression

(CAGE) produced comprehensive data sets for mammalian

promoters [1], and an extension of this methodology to Paired

End Analysis of Transcription Start Sites (PEAT) was used to map

and cluster millions of paired reads from Drosophila melanogaster

embryos [2]. Tag clusters exhibit different initiation patterns, i.e.

distributions of tags within a cluster, and have been used to define

distinct promoter classes, generally falling into two basic groups:

Both flies and mammals have focused promoters in which

transcription occurs within a narrow genomic window of a few

nucleotides, and dispersed promoters in which TSSs spread out

over a larger genomic region on the order of a hundred

nucleotides. Promoter classes have distinct associations to core

promoter motifs and functional roles [3,4], and evidence has

pointed towards enriched pausing, or stalling, of Drosophila pol II at

focused promoters [5].

Many studies have shown a generic pattern of chromatin

organization in promoters, in which a nucleosome free region

(NFR) upstream of the TSS is surrounded by periodic arrange-

ments of nucleosomes within the transcript and further upstream

[6,7], illustrating the connection between chromatin features and

the accessibility of the DNA to transcription factors (TFs).

Nucleosomes containing H2 and H3 histone variants provide

particularly strong signals for the beginnings of genes in eukaryotes

[6,8,9], as they are preferentially incorporated in or near areas of

active transcription. Data on frequent modifications to the N-

terminal histone tails have furthermore supported a histone code

specifying functional domains in the genome; for instance, the tri-
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methylation of H3K4 has been shown to mark the promoter

regions surrounding TSSs [10]. In addition, individual instances of

insulator elements have been shown or suggested to play a role in

chromatin remodeling near promoter regions [11,12].

Given that the distinct promoter classes are widely conserved

throughout metazoans, and nucleosomes are correlated with the

accessibility of the DNA, it may be surprising that virtually no

analysis has so far has directly examined whether focused or

dispersed promoters are associated with different nucleosome

organization and chromatin structure. Instead, the majority of

reports have taken the approach of dividing genes according to

chromatin or insulator patterns, and then associating the

promoters in each group with sequence features [6,13] or function

[14,15]. One of the main limitations of this approach has been that

these characteristics are present in only a fraction of promoters.

For instance, the TATA box motif is present in only ,10–20% of

all eukaryotic promoters, and ,35% of focused promoters [16].

On the other hand, CpG islands are a very frequent sequence

feature of mammalian regulatory regions [17,18] and have been

repeatedly associated with dispersed promoters. Yet, this property

is by far not unique to one initiation pattern: depending on the

definition, ,70–80% of dispersed promoters coincide with the

presence of a CpG island, but ,50–60% of focused promoters do

so as well (Table 1). Furthermore, while chromatin features and

initiation patterns are conserved at least in metazoans, CpG

islands do not exist in the fruit fly genome [19], suggesting that

specific sequence features may lead to enrichments but not be the

sole or primary indicators of the underlying process.

In this work, we show that promoter classes defined on patterns

of transcription initiation are mirrored by significant differences in

nucleosome organization and histone modifications, confirming

the presence of divergent strategies of transcription, as recently

proposed for yeast and for special functional classes of mammalian

genes [20,21]. These differences are further supported by distinct

associations to recently defined Drosophila insulator classes [22],

and are consistently present across changing expression levels,

polymerase stalling, and promoters with or without CpG islands.

Furthermore, computational models based on chromatin features

show strong differences in their ability to identify initiation sites

from the different promoter classes. Our findings are conserved

between humans and flies and thus show that the initiation

patterns are signatures of fundamental and divergent strategies of

gene regulation across eukaryotes.

Results

Promoter Classes Exhibit Significant Differences in
Nucleosome Organization

Studies in different metazoans have identified several promoter

classes based on the size of the initiation region and the

distribution of initiation events within each region [1]. In our

previous work in Drosophila [2], we defined three specific classes:

Narrow Peak (NP) promoters are typical focused promoters with

high occurrences of initiation at one location. They typically

contain one or more canonical position-specific core promoter

motifs such as the TATA box, which have been found in genes

with developmental regulation and tissue-specific functions.

Conversely, Weak Peak (WP) promoters are dispersed promoters,

in which transcription is distributed over a larger genomic span

and lacks a clear preference for a single start site. In flies, WP

promoters are associated with distinct core promoter sequence

elements but largely lack the canonical eukaryotic-wide core

promoter motifs, and are frequently associated with housekeeping

genes [14,23]. CpG islands, long stretches of CpG dinucleotides

that play a role in chromatin packing and nucleosome organiza-

tion [24,25], are a feature of most mammalian promoters and are

more frequently present in WP promoters [1] (Table 1). Finally, an

intermediate class, Broad with Peak (BP) promoters, displays both

a preference for a narrow location as in NP promoters, yet with

tags covering a larger genomic span as in WP promoters.

We determined TSS clusters from available human CAGE tags

in the FANTOM4 database [26] (see Methods). 13% of promoter

clusters fell into the NP class, 16% into the BP class, and 71% were

classified as WP. We evaluated the chromatin structure within

each of these promoter classes using several genome-wide datasets

reflecting the positions of bulk nucleosomes, histone variants, and

histone marks. We first examined H2A.Z profiles in human CD4+
T cells [10], as this histone variant has been associated with clearer

Table 1. Distribution of Promoters in the Human and Fly
Datasets Used in This Study.

HUMAN FLY

Class CpG/total (Frommer) CpG/total (Jones) TATA/total

NP 827/1409 (58.7%) 689/1409 (48.9%) 179/517
(34.6%)

BP 1375/1759 (78.2%) 1130/1759 (64.2%) 51/406
(12.6%)

WP 6510/7656 (85.0%) 5244/7656 (68.5%) 74/1054
(7.1%)

The table lists the number of promoters in each class, and indicates the
presence of CpG islands (human) or TATA boxes (fly) within classes. As the table
shows, individual sequence features are enriched in certain promoter classes,
but any single feature does not cover any of the classes completely. CpG islands
were defined using two sets of criteria: the classic definition of Gardiner-Garden
& Frommer [57], and the more stringent definition of Takai & Jones [30] which
aims at a better separation from Alu-repetitive elements. TATA-containing
promoters were taken from [2].
doi:10.1371/journal.pgen.1001274.t001

Author Summary

How are genes transcribed at the right levels and under
the right conditions? Transcription regulation in eukary-
otes has long been proposed to work by a division of
labor: ubiquitous DNA sequence features in the core
promoter region, close to the transcription start site (TSS)
of genes, were thought to generically encode information
to recruit RNA polymerase to initiate transcription, while
specific sequence features, often distal from the genes,
were thought to boost expression under the right
conditions. Supporting the generic function of core
promoters, genome-wide chromatin maps showed a
stereotypical arrangement of well-spaced nucleosomes
providing access to the TSS. High-throughput sequencing
has generated genome-wide TSS maps at high resolution,
which show that promoters exhibit different initiation
patterns, ranging from focused start sites to dispersed
regions. Linking these patterns to chromatin maps, we
now find distinct core promoter classes, those in which the
TSS location is defined broadly on the chromatin level and
those in which the TSS is defined by precisely positioned
sequence features. Notably, these architectures are con-
served deeply across eukaryotes and are used for different
functional classes of genes. Our work adds to the
increasing understanding that core promoters contribute
significantly to the complexity of eukaryotic gene expres-
sion.

Divergent Strategies for Gene Regulation
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signals in promoters compared to bulk nucleosomes [6]. Both BP

and WP promoters showed the stereotypic confirmation of well-

spaced nucleosomes upstream and downstream of the TSS,

divided by a nucleosome free region. The relative locations of

H2A.Z nucleosomes, and the 185 bp spacing between them,

agreed with previous estimates [12,27]. However, NP promoters

clearly did not fit this picture, as BP and WP promoters had a

consistently higher association with H2A.Z nucleosome organiza-

tion than NP (Figure 1A), with the strongest divergence observed

at the +1 nucleosome (p,10E-90). Examining bulk nucleosome

locations [7] confirmed these differences: BP and WP promoters

showed defined nucleosome positions and spacing and thus a

distinctly higher association with bulk nucleosome organization

than NP promoters (Figure 1B). At the +1 position, WP and BP

promoters showed significantly higher levels compared to a

baseline calculated from random genomic locations.

To test whether these observations were reflected in DNase

Hypersensitivity Sites (DHS) which reflect the accessibility of DNA

by DNaseI digestion, we evaluated DHS profiles from the same

human cell line. Previous studies reported that most promoters

were accompanied by a DHS site [28]. However, in agreement

with the NFR differences we observed between bulk nucleosome

profiles, WP and BP promoters demonstrated a significantly

higher peak at the NFR (,100 bp upstream), appearing at least

twice as sensitive to DNase when compared with NP promoters

(Figure 1C, p,10E-56). Notably, the increase in accessibility was

not accompanied by higher levels of pol II; rather, NP and BP

promoters had elevated amounts of pol II on average compared to

WP promoters (Figure 1D).

The above analyses uncovered a clear division of promoters by

nucleosome organization, quantified by different genome wide

assays: dispersed promoters exhibited a clearly defined periodic

nucleosome organization, whereas focused promoters were less

organized at the chromatin level, ruling out the possibility that

narrow initiation events were defined by tight nucleosome

locations. To illustrate this in more detail, we plotted the

distribution of H2A.Z nucleosomes within each promoter as a

heatmap (Figure 2). Individual WP and BP promoters had more

clearly defined nucleosome positions, and NP promoters displayed

less organization and lower concentrations around specific

locations. An unsupervised clustering of all promoters, based on

bulk and H2A.Z nucleosomes, recovered these distinct nucleo-

some profiles, with clear enrichments for specific initiation patterns

(Figure S1).

The Presence of CpG Islands Alone Does Not Explain
Differences in Nucleosome Organization

CpG islands have frequently been used to split mammalian

promoters into two distinct classes for TSS modeling or promoter

analysis [17,20], and CpG island-containing promoters have been

reported to show stronger nucleosome associations [20,29]. Thus,

we examined whether the presence of CpG islands would

recapitulate the divergent chromatin modes we observed for

different initiation patterns. We extracted annotated CpG islands

from the UCSC genome browser and determined the overlap of

CpG islands as defined by Takai & Jones [30] with the promoters

in our three classes. As previously reported [1], there were higher

percentages of CpG islands at WP (69%) and BP (64%) promoters,

compared to NP (49%) promoters (cf. Table 1). However,

regardless of the presence of CpG islands, BP and WP promoters

had significantly higher associations to nucleosomes than NP

promoters. Likewise, promoters within the same class maintained

Figure 1. Promoter Classes Reflect Distinct Profiles of Nucleosome Organization. Profiles are based on promoters classified as Narrow Peak
(NP), Broad with Peak (BP), and Weak Peak (WP), and show the region of –1 kb to +1 kb around the designated TSS. RI refers to average levels at
random intergenic sites, which is used as a baseline. (A) Increased H2A.Z levels (p,10E-36), (B) increased bulk levels, and consistent spacing were
observed for human BP and WP promoters compared to NP. DNase hypersensitive sites revealed a more accessible nucleosome-free region at BP and
WP but not at NP promoters (C), yet pol II levels were higher at NP promoters (D).
doi:10.1371/journal.pgen.1001274.g001

Divergent Strategies for Gene Regulation
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qualitatively similar profiles (Figure 3, Figure S2). Specifically,

H2A.Z levels between NP and WP promoters differed at highly

significant levels regardless of CpG island presence (p,10E-84

and p,10E-40 for promoters with and without CpG islands,

respectively), whereas H2A.Z differences between promoters with

and without a CpG island within the same class were notably less

pronounced (WP promoters p,10E-07; NP promoters p,10E-08;

no significance for BP promoters). Due to the much smaller

number of focused promoters in the genome and the larger

fraction of dispersed promoters containing CpG islands, splitting

all promoters in two groups based on the presence of CpG islands

as in previous reports will, indeed, lead to different profiles.

Regardless, these differences can be explained away by accounting

for initiation patterns.

Previous studies had generally observed a stronger correlation of

periodic nucleosome organization with more highly expressed

genes [7,28]. To rule out the possibility that the observations

above could be explained by an overall lower activity of specific

promoter classes, we divided the human CD4+ T cell data into

four groups based on expression levels (Figure S3). The class-

Figure 2. Heatmap of Nucleosome Occupancy within Individual Promoters. Raw H2A.Z nucleosome occupancy values for each human
promoter were partitioned into the three classes. The lower panel shows the average occupancy profile across all three classes. Within each class,
promoters were arranged by location of their maximum occupancy value in the range of the 21 to +1 nucleosome (2400:+250 with respect to the
TSS; the diagonal pattern is thus implied by this ordering and not the data). WP and BP promoters clearly reflected the periodic H2A.Z nucleosomes
flanking the NFR, especially downstream of the TSS. Between promoters, the strongest enrichments were often observed at different nucleosomes,
likely due to the sparse nucleosome occupancy data.
doi:10.1371/journal.pgen.1001274.g002

Divergent Strategies for Gene Regulation
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specific differences of H2A.Z occupancy (stronger for dispersed

promoters) and pol II (stronger for focused promoters) remained

within each group of similarly expressed genes (Figure S4).

Likewise, the reported coupling of H2A.Z with H3K4 trimethyl

marks at TSSs [10,31] was maintained across expression levels

(Figure S4), and promoter-class-specific differences were also

observed for H3K4 mono-and dimethylation (Figure S5).

Computational Models of Promoter Classes Confirm the
Different Contributions of Chromatin Features

As core promoters have traditionally been characterized and

identified by the presence of regulatory sequence elements, we

sought to quantify how informative the ensemble of chromatin

features discussed so far would be to define human TSSs.

Specifically, we were interested in how strongly the different

promoter classes were defined by sequence versus chromatin

features. To this end, we trained and applied computational

models to classify between TSS versus non-promoter genomic

locations. Our goal was to identify potential differences between

promoter classes when comparing models under the same

assumptions side-by-side, similar in spirit to recent splicing

simulators integrating sequence and chromatin features [32].

We computed average profiles of the 2 kb upstream and

downstream regions of each TSS for bulk and H2A.Z nucleosomes

as well as H3K4 mono-, di-, and trimethylation, for a total of 10

representative profiles for each promoter class. The inner products

of the representative profiles with those of a genomic test location

were used as input features for sparse linear classifiers, trained

separately for WP and NP promoters. Each model was then tested

on independent data of WP, NP, and BP promoters (Figure 4), as

well as negative samples from other genomic locations, including

CpG islands without evidence of transcription. WP and BP

classification was much more accurate than NP; this was consistent

with our findings that chromatin features were more pronounced

and less variable for classes with dispersed initiation (cf Figure 2).

Inspection of the model features showed that each class relied

on similar features, selecting an informative subset of nucleosome

profiles (Figure 4). The highest weight was assigned to the H3K4

trimethylation downstream profile, followed by the H2A.Z

profiles, likely due to the strong periodic signal especially within

the transcript. In fact, applying the WP model for the recognition

of NP promoters was more successful than using the model trained

on NP promoters themselves. Overall however, results stayed well

below those obtained on both WP and BP promoters. When

adding Fourier-transform based features to reflect the periodicity

of nucleosomes, results were slightly improved but highly

consistent (Figure S6).

We had previously demonstrated that NP promoters could be

characterized with great success by ensembles of transcription

factor binding sites based on their enrichment at specific locations

relative to the TSS, using features beyond the strict core promoter

sequence motifs (including factors such as E2F, CREB, YY1, etc)

[33]. Following this example, and using the performance of the

chromatin models as baseline, WP classifiers built on sequence

features performed considerably worse than the WP chromatin

model (Figure 5). The opposite was true for NP promoters, for

which sequence models achieved higher success rates on NP and

BP promoters than chromatin models. Combining sequence and

chromatin features increased accuracy on all test sets, and

demonstrated that WP TSSs relied much more on chromatin

features than NP TSSs. This was seen in both the relative changes

of classification accuracy as well as in the relative strength of

features within the combined models, in which chromatin features

accounted for stronger contributions for the WP compared to the

NP model (Figure 5).

Profiles of Nucleosome Organization Are Conserved
across Metazoans

In light of the above observations that distinct chromatin

patterns were associated with different initiation patterns, we

investigated whether these different modes would be conserved

across species. The D. melanogaster genome was particularly

instructive as its genome does not contain CpG islands, but has

recently been found to exhibit the same distinct dispersed and

focused initiation patterns.

D. melanogaster promoter classes were defined based on mixed

stage embryonic libraries, and all available promoters were further

filtered to transcripts present during hours 0–12 of embryogenesis

(Figure S7). This matched them more precisely with the available

chromatin data, and resulted in 26% NP, 21% BP, and 53% WP

promoters (cf. Table 1). As in human, BP and WP promoters

showed a significantly greater association with H2A.Z nucleo-

somes than NP promoters (Figure 6A, p,10E-23). BP and WP

promoters also had a greater percentage of H2A.Z nucleosomes

within 1 kb of the TSS (Figure S8, p,10E-02). The +1 H2A.Z

nucleosome occurred at 125 bp, which is 10 bp upstream of the

previous estimate in fruit fly [6]. An apparent difference between

humans and flies was the absence of the H2A.Z association at the -

1 nucleosome in Drosophila, which has been previously reported

[6]. However, this absence does not coincide with a lower level of

bulk nucleosomes at this location (Figure 6B). As this phenomenon

was not observed in human, additional experiments would be

beneficial to confirm any such putative species-specific difference.

Examining the locations of bulk nucleosomes led to an overall

lower signal above background; this may at least partially be due

Figure 3. The Presence of a CpG Island Alone Does Not Imply
Distinct Chromatin Architecture. When stratifying promoters
according to the presence of CpG islands as defined by Takai and
Jones [30], no deviation in the nucleosome organization of the
promoter classes is observed; WP and BP promoters maintain a higher
association to H2A.Z than NP promoters. This pattern is consistent in
alternative definitions of CpG islands (cf. Figure S2).
doi:10.1371/journal.pgen.1001274.g003

Divergent Strategies for Gene Regulation
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to the lower resolution of the tiling arrays used to measure the fly

bulk profiles when compared to the deep sequencing data

available for H2A.Z. Yet, the consistent difference between

promoter patterns was confirmed (Figure 6B, p,10E-02 for NP

vs. WP). Currently, data comparable to DNase hypersensitivity is

not available for the fly genome; in its place, we used a recent

model predicting bulk nucleosome occupancy from sequence

features [34]. The computational model displayed some notable

differences to in vivo bulk nucleosomes, in particular, a more 59

location of the NFR and a predicted affinity for nucleosomes at the

Figure 4. Computational Models Using Chromatin Features Show Different Accuracy for Promoter Classes. Classification accuracy of
two epigenetic models (i.e., using chromatin features) was evaluated on test sets for each promoter class (evaluated with auROC and auPRC). Values
of 1 indicate perfect classification; auROC values close to 0.5 and auPRC values close to 0 reflect random results. At the bottom, relative weights of
chromatin profile features included in each model are depicted.
doi:10.1371/journal.pgen.1001274.g004

Divergent Strategies for Gene Regulation
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TSS. Overall, the model agreed well with the in vivo profiles; there

was a higher association for BP and WP promoters compared to

NP promoters at the +1 nucleosome (Figure 6C; p,10E-09).

Moreover, the predicted occupancy at the NFR was significantly

different from random only for BP and WP, but not for NP

promoters. As in human, the increase in NFR accessibility was not

accompanied by higher levels of pol II, given that NP and BP

promoters had elevated amounts of pol II compared to WP

(Figure 6D).

The fly genome contains a repertoire of validated core promoter

elements [3,4], and TATA-containing promoters in particular

were reported to display a ‘very fuzzy’ H2A.Z nucleosome

organization [6,35]. High-resolution TSS maps have shown that

the canonical core promoter elements including the TATA box

largely occur in the NP class [2]. After stringent assignments of

motifs, we found that NP promoters containing TATA boxes,

Initiators, Downstream Promoter Elements (DPE), or Motif Ten

Elements (MTE) were in fact completely devoid of any periodic

Figure 6. Distinct Nucleosome Organization Is Conserved in Insects. (A) Fruit fly H2A.Z profiles show that BP and WP promoters had
increased H2A.Z levels (p,10E-07). Nucleosomes in BP and WP promoters had a more precise spacing, with an average separation of 170 bp and
deviations of up to 10 bp, compared to a mean distance of 183 bp between H2A.Z peaks at NP promoters, with deviations of up to 33 bp. (B)
Differences between promoter classes were less pronounced in the available lower-resolution Drosophila bulk nucleosome data, with a slight shift
compared to H2A.Z as originally reported [6]. (C) Average bulk nucleosome occupancy profiles were computed by an in silico model, which assigned
the predicted probability that a nucleosome was present at any given location [34]. An average occupancy score of .5 indicated no preference for
nucleosome presence or absence, as reflected in the scores at random intergenic locations. A clear separation of NP, BP, and WP profiles was
observed, and the NFR for NP promoters was clearly much less pronounced; all predicted profiles were significantly different from each other
(p,10E-09). (D) NP promoters had noticeably higher levels of pol II binding than BP and WP promoters (12–16 hr embryos). (E,F) Stalled NP, BP, and
WP promoters in Drosophila mixed stages embryos (0–16 hr) maintained the same associations to H2A.Z and bulk nucleosomes as observed for the
set of all actively transcribed 0–12 hr promoters.
doi:10.1371/journal.pgen.1001274.g006

Figure 5. Computational Models Support the Stronger Contribution of Chromatin Features to the Definition of Dispersed TSSs.
Changes in accuracy (auPRC) when using sequence models and combined (sequence and epigenetic feature) models are given, relative to the
baseline performance in Figure 4. Below, the relative contribution of sequence and epigenetic features in the combined models is shown.
doi:10.1371/journal.pgen.1001274.g005

Divergent Strategies for Gene Regulation
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nucleosome positioning (Figure S9). In a notable exception,

promoters with the TCT motif, which was recently validated to

take the place of the Initiator in translation process genes such as

ribosomal proteins [36], contained clearly positioned nucleosomes

both up- and downstream of the TSS. This functional group

obviously represents highly transcribed constitutive genes and is

therefore different from typical NP promoters, which are enriched

in precisely regulated genes such as developmental regulators

[14,37].

Taken together, both in vivo and computational data showed

that fly promoters exhibited the same dichotomy as human ones,

despite large differences in sequence features such as the absence

of CpG islands. Well-spaced nucleosomes and a well defined NFR

were reflected in dispersed promoters, in contrast to the indistinct

nucleosome positioning pattern of NP promoters.

Pausing of RNA Polymerase Is Not Limited to a Specific
Chromatin Architecture

Initially demonstrated in Drosophila, RNA pol II can stall or

pause 25 to 50 bp downstream of the TSS following transcription

initiation [38]. The cause of the pausing is currently unknown,

although it has recently been shown to occur at widespread

locations across the genome, and to be present in other eukaryotes

[39]. As the location of pol II pausing lies at the boundary of the

+1 nucleosome, we examined whether stalled promoters exhibited

different associations to nucleosome organization. To this aim, we

clustered reads derived from short RNAs that corresponded to

stalled polymerase in 0-16 h mixed staged embryos [5]. Stalled

promoters have been implied with well positioned TSSs [5], and

stalled-transcript clusters, defined in the same manner as those

from total RNA, indeed contained a .2-fold larger fraction of NP

promoters (55%). However, a considerable number of stalled

promoters fell into the BP (16%) and WP (28%) classes as well.

When we assessed H2A.Z and bulk nucleosomes for the different

promoter classes within the stalled subset, we obtained profiles

highly similar to those actively transcribed during hours 0–12

(Figure 6E, 6F): Stalled BP and WP promoters had H2A.Z profiles

which were significantly different from NP promoters (p,10E-12),

and exhibited a stronger periodic signal of nucleosomes within the

transcript. Similar results were also obtained for stalled promoters

from S2 cells (Figure S10), further demonstrating that the

promoter classes reflect divergent nucleosome architectures,

regardless of pol II stalling. Thus, nucleosome organization is

not necessarily a cause or consequence of stalling per se; like CpG

islands, stalling appears to be a feature enriched in a particular

class of promoters. In this case, the nucleosome organization of

stalled promoters reflects the overall highly regulated transcrip-

tional program characteristic of focused promoters.

Insulator Classes Demarcate Initiator Patterns
Insulators separate differentially expressed genes, disrupt the

communication between enhancers and promoters, and prevent

the spreading of chromatin domains. Individual instances of

insulator elements have been shown or suggested to play a role in

chromatin remodeling near promoter regions [11,12]. Given the

strong chromatin differences demonstrated between the promoter

classes, we assessed whether associations to different insulators

would support these differences.

The CCCTC-binding factor (CTCF) is one of the most

prominent insulator proteins that is widely conserved across

species [40]. It is known to interact with pol II, and has been

implicated in the assistance of nucleosome positioning around its

binding sites in human [12,41], as well as being particularly

enriched at locations of H2A.Z and H3K4 methylation [10].

Supporting this, CTCF showed a higher association with human

BP and WP promoters than NP promoters (Figure 7A, p,10E-

11). The CTCF profile reached a maximum level at -125 bp

upstream of the TSS. This organization placed CTCF in the

proximity of the core promoter and just downstream of the -1

nucleosome, and agrees with observations that nucleosomes

enriched for H2A.Z were well-positioned and flanked by CTCF

[12]. Concordant results were observed between NP and BP

promoters when Drosophila CTCF (dCTCF) binding was evaluated

(Figure 7B, p,10E-03), albeit at broader enrichment due to the

lower resolution of the tiling array.

The availability of genome-wide data on insulator binding

elements as part of the modENCODE project [42] provided an

opportunity to expand the observations made for dCTCF. The

data was obtained from 0–12 hr mixed stage embryos, i.e. from

the same material as the nucleosome data analyzed above [22].

Genomic analyses had defined two classes of insulator elements

in fruit fly based on co-occurrence of binding events, and showed

significant associations with genomic properties such as proxim-

ity and organization of genes and cis-regulatory elements. In

addition to dCTCF, CP190 and BEAF32 comprise the Class I

insulator elements in fruit fly [22]. In accordance with the

frequent co-occurrence of their binding sites, these other Class I

insulators also showed specific enrichments in WP and BP

promoters (Figure 7C, 7D, p,10E-03). Class II insulators in fruit

fly are comprised of Su(Hw) associated proteins [22]. Mod(mdg4)

and CP190 have been shown to recruit Su(Hw) to the gypsy

insulator, however, Su(Hw) is reportedly not enriched in

promoters [22]. Mod(mdg4) had no significant differences across

all promoter classes, which suggests similar functional roles

across promoters (Figure 7E). As expected, Su(Hw) was absent

from all promoters (Figure 7F).

Lastly, we investigated the GAGA binding factor (GAF) which

did not cluster with factors in either Class I or Class II insulators

[22]. GAF can regulate gene expression at multiple levels,

mediating promoter-enhancer interactions and insulating chro-

mosomal position effects [43]. For instance, at the D. melanogaster

hsp70 promoter, GAF works in combination with the Nucleosome

Remodeling Factor (NURF) to disrupt histone octamers over the

GAGA site [11] and promote pol II pausing [44]. Given the

preference of stalling for NP promoters, we observed a

corresponding prominent enrichment of GAF binding in NP

promoters from 21400 bp to +1100 bp of the TSS (Figure 7G,

p,10E-03). When scanning promoters for matches to the GAGA

sequence motif, we found that NP promoters showed high levels of

matches in a narrower area within the region bound by GAF,

while BP and WP promoters had a pronouncedly lower level

(Figure 7H, p,10E-02) – i.e., the opposite of Class I insulators.

Therefore, at least in the case of GAF, the preference for a

particular promoter class does not necessarily reflect a dynamic

state (such as expression level), but rather is statically encoded in

the DNA sequence. In summary, proteins from the recently

defined insulator classes and the GAGA binding factor clearly

separated among the promoter classes, and points to potential

underlying mechanisms which help to define the different

promoter classes.

Discussion

The high-throughput sequencing of 59 capped sequence tags has

clearly shown that eukaryotic promoters separate into at least two

classes defined by focused and dispersed distributions of initiation

events. Many recent studies have reported on the chromatin

structure in eukaryotic genomes; our approach differed from most
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of these efforts by assessing chromatin features from the basis of

transcription initiation as derived from 59 tag data. In one

exception, work concurrent to ours found differences on H3K9

acetylation based on different promoter classes [45]. Here, we

have established that promoters from different classes not only

contain different core promoter sequence features, but also reflect

distinct patterns of nucleosome organization, chromatin structure,

and insulator preferences (Figure 8).

Figure 7. Insulator Classes Are Characteristic of Promoter Classes. (A) Human CTCF had higher occurrences in BP and WP promoters
(p,10E-11). (B,C,D) Two classes of fruit fly insulators [22] were compared to promoters classes on embryonic data from 0–12 hr. Class I insulators
(including dCTCF, CP190, and BEAF32) supported the same pattern of increased BP and WP levels as observed for human CTCF. (E,F) Class II insulators
had equal occurrence across promoter classes, with Su(Hw) not being bound to proximal promoter regions. (G,H) ChIP-chip profiles of the chromatin-
remodeling transcription factor GAF, as well as presence of GAGA binding sites in the genome, showed a clear enrichment at NP promoters
(p,10E-02).
doi:10.1371/journal.pgen.1001274.g007
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Our findings revealed that the periodic distribution of

nucleosomes in the vicinity of TSSs was strongest for dispersed

promoters (classes BP and WP), which have defined NFRs and

highly periodic H2A.Z-containing nucleosomes. In contrast,

focused promoters (class NP) exhibited significantly lower

occupancy and/or less organized nucleosomes. Furthermore,

recently defined insulator classes showed distinct associations:

class I insulators (which include CTCF) were associated with

H2A.Z organization and H3K4 methylation at WP promoters,

whereas class II insulators were evenly distributed. Conversely,

GAF and pol II showed higher levels at NP promoters. The

enrichment of the Drosophila GAF protein at NP promoters was

intriguing, as it is a protein with many reported roles in

transcription and chromatin remodeling [46], and may assist

transcription initiation at NP promoters in the presence of

unorganized nucleosomes. For instance, GAF forms a multimer

in replacement of the NFR to establish proper nucleosome

organization [47] and is enriched at genes with polymerase stalling

[48].

NP and WP promoters in fruit fly and human likely correspond

to two classes of promoters that have been recently characterized

in yeast [13,21]. The first class has well-defined NFRs flanked by

nucleosomes (Depleted Proximal Nucleosome, DPN), while the

second class has variable nucleosome positioning without a clear

NFR (Occupied Proximal Nucleosome, OPN). CAGE-like data is

not available at a scale needed for the identification and

assignment of promoter classes in yeast, but OPN promoters have

a low association with H2A.Z, a high transcriptional plasticity, and

are enriched for TATA boxes, while the opposite is true for DPN

promoters. Our work supports and extends the yeast model, in

which access to most eukaryotic focused/OPN promoters is highly

regulated as the corresponding genes carry out specific functions in

response to specific conditions, while expression from many

dispersed/DPN promoters is constitutive because they perform

housekeeping functions in the cell.

A separation of mammalian promoters has frequently been

proposed based on the presence of CpG islands. Differential

regulation of some promoters with CpG islands has been shown to

result from unstable nucleosomes, contrary to the involvement of

chromatin remodelers at non-CpG island promoters [20].

Somewhat differently, we found that CpG islands are present

across all initiation patterns, which indicates that CpG islands are

Figure 8. Promoter Classes Are Indicative of Divergent Strategies for Transcription Initiation. The aggregation of differences in
transcription factor binding sites, nucleosome organization, histone variants and chromatin marks as well as insulator elements paint a picture of
divergent strategies for transcription initiation in metazoans. (A) NP promoters are marked by a ‘fuzzy’ nucleosome organization [6] (noted by
alternative bulk -1 nucleosome locations in the figure) yet precise positioning of transcription initiation, which is reflected in the presence of location
specific core promoter motifs that interact with a canonical TBP-containing basal complex [2,23]. NP promoters show higher levels of pol II bound
around the TSS, possibly due to an enriched presence of stalled polymerase. They are also associated with specific chromatin remodelers in fly,
namely GAF. (C) Initiation events in WP promoters spread over a larger genomic span, reflected in the presence of motifs with lower positional
enrichment that have been linked to remodeled basal complexes containing TRF2 in fly [60]. They exhibit a well-defined NFR and well-positioned
H2A.Z nucleosomes as well as associated histone marks such as H3K4 tri-methylation. WP promoters in fly contain an enrichment of Class I insulators
(CTCF, CP190, BEAF32). (B) BP promoters have a combination of features from both transcriptional programs. While chromatin organization is
conserved, some of the known core promoter sequence elements depicted appear to be fly specific (Motif 1, DRE, Motif 6, Motif 7, MTE) [2,16,23]. Pol
II and insulator proteins are depicted at the maximum binding locations; sizes of the transcriptional components are not drawn to scale.
doi:10.1371/journal.pgen.1001274.g008
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not a homogeneous class and do not all encode constitutively

unstable arrangements of nucleosomes. The work by Ramirez-

Carrozzi et al. [20] focused on a specific set of promoters, those

adjacent to stimulus-response genes, in which nucleosomes are

pre-organized to facilitate a regulated primary response. Such

genes may form an intermediate class between constitutively

expressed genes typically associated with CpG islands, and NP

promoter genes, which contain genes like developmental TFs that

are expressed in a precisely determined and highly regulated

order. The conservation of our findings in Drosophila, as well as

the previous studies in yeast, support that some CpG islands may

provide an additional mechanism of sequence-encoded nucleo-

some propensities specifically found in mammals.

Multiple aspects may contribute to the relationship between the

promoter classes and chromatin features. First, differences in

chromatin architecture may be directly reflected in distinct

initiation patterns, as illustrated by the nucleosome organization

in constitutive versus regulated genes in yeast [49]. Thus, in fly and

human, dispersed promoters result from a well-defined NFR

increasing the accessibility of the DNA to the polymerase, causing

initiation to occur at multiple locations over a large region. In turn,

the lower accessibility of focused promoters provides for a more

regulated transcription initiation due to the lack of a common

NFR. Instead, TSSs of focused promoters are well-defined by

position-specific sequence elements including the canonical core

promoter motifs [2,33], which serve to actively recruit the core

complex to precise TSS locations. Our computational models

clearly support this idea: chromatin features contribute to NP

promoter definition, but much less so than for other classes, and

with little improvement on sequence information. Overall, the

higher pol II level at the TSSs of actively expressed genes with NP

promoters also suggests that polymerase stalling is involved as an

additional regulatory step enriched but not restricted to these

genes [5].

Second, the relationship between the promoter classes and

chromatin profiles may also be influenced by the duration of active

transcription. It has been suggested that nucleosomes are properly

positioned through repeated rounds of active transcription [50,51].

As dispersed promoters, and focused promoters containing the

TCT motif [36], are enriched in constitutively expressed genes

[14], this would support the greater degree of nucleosome

organization and the combinations of histone variants and

chromatin marks (such as H2A.Z and H3K4me3) traditionally

associated with active transcription. In turn, many focused

promoters are associated with specific time points during

embryogenesis [14], and the lack of constant transcription

potentially leads to a reduced positioning of nucleosomes. Finally,

promoters may have distinct chromatin patterns involving features

we did not investigate. For instance, a higher rate of H3 turnover

was observed at OPN promoters in yeast [21], and the presence of

GAF has been associated with H3.3 replacement [52], suggesting

the possibility that focused promoters may have a higher

association with H3.3 replacement.

As more data becomes available through large-scale efforts such

as the modENCODE and ENCODE projects, the presence of

high-level divergent strategies of gene regulation established at the

basal promoter will become better characterized throughout

development and differentiation in model organisms as well as

in human. Promoter classes may have associations to epigenetic

inheritance, cellular memory, evolvability, and the development of

disease [53,54]. Understanding initiation patterns does not only

help deepening our knowledge of the core promoter sequence, but

also provide insight into the epigenetic architecture of regulatory

regions. Together, they illustrate the interplay between chromatin

and sequence information to encode divergent strategies for gene

expression.

Methods

Selection of Fruit Fly and Human Transcription Start Sites
and Fly TSSs Associated with Polymerase Stalling

We used a recently published dataset, determined by clustering

of .10 million aligned 59 capped paired-end sequence tags from

0–24 hour mixed stage D. melanogaster embryos [2]. We selected

strong clusters (.100 tags) located within initiation regions, which

included annotated 59UTRs and 250 bp upstream of the

annotated TSS in Flybase [55]. This dataset comprised ,4,000

promoters which are classified by means of two features, genomic

span of initiation events (as defined by the size of distinct 59 tag

clusters), and localization of initiation. For NP promoters, tag

clusters have to be smaller than 25 nt, and at least 50% of tags

align at the peak location (defined as the mode of the cluster

62 nt). BP promoters exceed the 50% tag cutoff at the mode, but

are spread out over a genomic range .25 nt. WP promoters are

those which meet neither genomic span nor peak location cutoffs;

they do however still show a distinct albeit lower peak, frequently

associated with the presence of a minimal initiator sequence motif.

The modes of the tag distributions were used as representative

TSS locations for all promoter classes.

To match these TSS data to available chromatin resources, only

those promoters with active transcription in at least one time point

from 0–12 hours of fruit fly embryogenesis were used (517 NP,

406 BP, and 1,054 WP promoters). The temporal activity of each

promoter was determined through Affymetrix tiling array data

that measured RNA levels every 2 hours during the first 24 hours

of D. melanogaster embryogenesis [56] (Table S1). The utilization of

promoters at each time point was evaluated as described

previously (see Text S1) [23]. Briefly, the median hybridization

value of several tiles 39 of the TSS, i.e. in a putatively transcribed

region, was contrasted with the median of tiles 59 of the TSS

location. The significance of active promoter calls was evaluated

by repeating the analysis on three sets of 1,000 randomly selected

intergenic sites (Table S2).

To use consistent promoter classes, human CAGE tags and fly

short RNAs associated with polymerase stalling were clustered

using the same strategy and parameters as above [5,26]. Promoters

of clusters in the initiation region as defined in ENSEMBL or

Flybase, respectively, were again classified as NP, BP, and WP

based on the shape of their tag distributions. In human, we started

from the published alignments of 29 million tags generated by the

FANTOM consortium and classified 1,409 NP, 1,759 BP, and

7,656 WP promoters falling in the initiation region that contained

more than 100 reads. In fruit fly, we clustered ,6 million reads

from short RNAs from 0–16 hour embryos, which separated into

2,176 NP, 645 BP, and 1,101 WP stalled promoters, and

additionally ,16.5 million reads from S2 cells, resulting in 1,977

NP, 1,158 BP, and 2,530 WP stalled promoters, each with clusters

that contained more than 100 reads.

Scoring Human Nucleosomes and Regulatory Factor
Profiles

The nucleosome occupancy score for H2A.Z, H3K4 methyl-

ation, and bulk profiles was calculated according to Schones et al,

using raw short aligned reads mapping to 59 or 39 nucleosome

boundaries [7]. We divided each somatic chromosome into 10 bp

non-overlapping windows, and read counts for a window were

calculated by summing the number of reads that aligned in the

80 bp upstream (on the sense strand) or 80 bp downstream (on the
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anti-sense strand) windows, assuming that 59 and 39 reads

mapping to the ends of the same nucleosome would be ,140–

160 bp apart. Promoters were analyzed in windows from 21 kb to

+1 kb of the TSSs identified by tag clustering; to reduce the noise

in the bulk data, promoters with outlier read counts less than 8 or

greater than 2,400 were removed from the analysis. A raw

nucleosome occupancy score was determined for each promoter

window by averaging the read counts across all of the individual

promoters within one pattern (NP, BP, and WP). A moving

average over five windows of raw nucleosome occupancy scores

was taken for each promoter pattern to produce the smoothed

nucleosome profiles shown. Window scores thus reflected

nucleosome midpoints. A set of 5,000 random intergenic sites

was chosen across Chromosome 1 for which nucleosome profiles

were determined akin to that of the promoters.

For pol II, DHS, and CTCF profiles, raw read data was

assigned to 10 bp non-overlapping windows regardless of strand.

Within each promoter pattern, the read counts were averaged for

windows covering 61 kb with respect to their locations from the

TSS, and a moving average over five windows was used for

smoothing, resulting in the average read density shown in the

figures. The same steps were applied to the set of random

intergenic sites from Chromosome 1.

For a complete summary of human data sources, see Table S3.

Scoring Fruit Fly Nucleosome and Regulatory Factor
Profiles

Mavrich et al determined nucleosome positions by deep sequencing

of MNase digested DNA associated with nucleosomes containing the

H2A.Z histone variant, as well as by tiling array hybridization of bulk-

and pol II-associated nucleosomes. The published data had been

processed to retain only peaks above background, reflecting the

midpoints of nucleosomes. From this data, we calculated normalized

nucleosome occurrences for the H2A.Z, bulk, and pol II bound data

by first determining distances of the TSSs from the nucleosome

midpoints with respect to the orientation of transcription, and adding

them into 10 bp non-overlapping bins. The moving average of five

neighboring bins within the window from 21 kb to +1 kb was then

normalized to the number of nucleosome occurrences per 500 TSSs.

Enrichments are contrasted with averaged results of profiles on three

sets of 1,000 random intergenic (RI) sites. As in human, scores thus

reflected nucleosome midpoints; unlike in human, profiles are based

only on midpoints as determined by local maxima above background

and not the complete data. For computationally predicted bulk

nucleosome locations, the nucleosome occupancy scores were

calculated from average occupancy probabilities and processed

analogous to human data (see Scoring Human Nucleosome Profiles).

H3K4 methyl marks and insulator binding profiles were

measured by hybridization to tiling arrays that were acquired

from the modENCODE repository. For the pol II data generated

in the S2 cells, read counts were summed within 25 bp windows

[5] and those windows with at least 25 reads were used in the

analysis. The distances of the mark and profile binding midpoints

were calculated relative to the TSS locations and cumulated into

100 bp bins. The moving average over three neighboring bins

within 21 kb to +1 kb was normalized to the number of

occurrences per 500 TSSs. The same strategy was again repeated

on sets of random intergenic sites.

For a complete summary of Drosophila data sources, see Table S4.

Assignment of Sequence Features
CpG islands were initially taken from the UCSC Genome

Browser annotation, which follows the definition by Gardiner-

Garden & Frommer [57]: a.200 bp stretch with a G+C content

of at least 50% and an observed vs expected ratio of CG

dinucleotides of .0.6. We then filtered this initial set by the more

recent criteria of Takai & Jones [30], which led to a strict subset of

regions with length .500 bp, G+C content .55%, and CG ratio

.0.65.

Drosophila core promoter motifs were taken from Ni et al [2],

which assigned them by position weight matrix matches to narrow

sequence windows relative to the TSS in which they were

significantly enriched. To be as comprehensive as possible, we

used the largest p value cutoff for which matches were reported

(p,10-2). Motif matches were therefore allowed to be compar-

atively weak but were based on precise distances to defined TSS

locations.

Stratification by Human Expression Levels
The log values of gene expression from NimbleGen tiling

arrays for CD4+ T-cells generated in an earlier study [28] were

mapped to corresponding TSSs via associated genes (Figure S1).

The log2(expression) values of all genes, regardless of promoter

pattern, were plotted and divided into four groups. As in the

previous study, we declared genes below a cutoff of 4.5 as

‘‘silent’’, and divided the remaining genes into three groups by

their expression level. Consequently, there were 948 genes with

values below 4.5 that had ‘no’ expression, 2,504 genes above 4.5

and below 6.25 that had ‘low’ expression, 3,526 genes above 6.25

and below 8 that had ‘medium’ expression, and 3,846 genes with

values higher than 8 that had ‘high’ expression. Within each

expression group, the TSSs were then subdivided a second time

according to their promoter pattern (NP, BP, WP). Expression

levels across promoter patterns were thus based on the same

cutoffs. Occupancy scores were then calculated as described

above. As there were nearly twice as many promoters associated

with genes in each group with expression than those with no

expression, occupancy profiles for ‘no’ expression are less

smooth.

Statistical Significance
We assessed differences in nucleosome occupancy at specific

locations relative to the TSS. The significance between distribu-

tions of occupancy scores at the +1 nucleosome midpoint (defined

as global maximum downstream-proximal of the TSS; maximum

value within the 10 nt bin) and nucleosome free region (defined as

global minimum upstream-proximal of the TSS; mean value

within the 10 nt bin), as well as the number of nucleosomes within

1 kb of the TSS in fly, were determined using a Mann-Whitney U-

test. A x2 test was used to compare the H2A.Z peaks in fly, as

peaks from Mavrich et al corresponded to the filtered number of

promoters above background rather than original read density or

intensity values.

Additionally, we assessed the statistical significance between

pairs of profiles, as measured by the set of differences between

values observed at all locations along the profile, using a Wilcoxon

Signed Rank test. We compared each pair of NP/WP/WP

profiles, as well as each profile to random intergenic regions, for a

total of 6 tests (a Bonferroni correction thus led to cutoff of

significance at p,(.05/6) = .0083). Due to the pooling of

observations at many genomic locations, we observed that

comparisons generally led to small p values which particularly

on the human data frequently exceeded the precision of the

software (1.44E-34); in those cases, we primarily relied on tests at

specific locations as described above. All of the tests were

performed in Matlab; the exact p values for all tests can be found

in Tables S5 and S6.
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Computational TSS Models Using Chromatin and
Sequence Features

To evaluate the contribution of chromatin features to the

definition of different promoter classes, separate linear classifiers

for NP and WP promoters were trained on chromatin features, or

combinations of sequence and chromatin features. These classifiers

were then tested to determine how well they were able to

distinguish between TSSs from the three promoter classes and

other genomic locations.

Training and test data. NP and WP TSSs were divided into

training and test data, using two-thirds of each set for training and

the remaining samples for testing. For each TSS in the training set,

20 intergenic locations were drawn at random from 24000 to

2100 relative to the TSS. Additionally, one location was drawn

from annotated CDS of human UCSC Known Genes, and two

locations from annotated CpG islands without evidence of

transcript activity (i.e. those without human CAGE aligned

reads). Intergenic, CDS, and CpG island locations together

comprised the negative examples. For each of the remaining

independent TSSs in the test set, we further randomly selected

100,000 CpG island locations (again sampled from those without

human CAGE tags) as well as locations from anywhere in the

genome. To ensure that each sample contained sufficient data for

chromatin feature extraction, all positive and negative training and

test samples passed a filter of at least eight aligned reads of the bulk

nucleosome data (cf. Scoring Human Nucleosomes… above). All

analyses were also performed using unfiltered data, with consistent

results (data not shown).

Feature generation. Chromatin or ‘‘epigenetic’’ features

were designed to reflect similarity to the typical nucleosome

profile surrounding a TSS. Epigenetic features were calculated as

the inner product of an example’s profile and a reference profile

obtained from the respective training set. Reference profiles were

generated by averaging the profiles of the respective TSS training

set, split at the TSS in 2 kb upstream and 2 kb downstream

regions. A total of 10 profiles were thus generated for each model,

corresponding to Bulk, H2A.Z, and H3K4 monomethyl, dimethyl,

and trimethyl profiles. The processed chromatin data was binned

into 10 bp intervals, and the closest datapoint to the TSS location

was used as the ‘‘0’’ location for relative profile coordinates. Each

epigenetic profile was smoothed using a Discrete Fourier

Transform Low Pass Filter with a low pass limit of 150 bp,

eliminating noise at frequencies higher than an average

nucleosome size.

To select informative sequence features, position weight

matrices (PWMs) of transcription factors were obtained from the

JASPAR Core Vertebrate and RNA pol II datasets [58]. We then

followed the protocol described in [33], in which we previously

described a classifier for murine NP promoters. Briefly, for each

promoter class, TFs were filtered to those exhibiting match score

enrichments in specific regions relative to the TSSs; these factor-

specific enriched regions were each subdivided into seven

windows. For every selected factor, background-normalized

cumulative PWM scores were computed for each of the windows

and used as features.

Model training, testing, and evaluation. Further following

the example of [33], we used L1-regularized logistic regression to

learn a sparse linear classifier for each promoter class, as

implemented in the l1_logreg package [59]. Sparse logistic

regression selects features by assigning coefficients to each, while

penalizing the use of large numbers of features. Thus, coefficients

of features that are not important for the classification problem are

driven to zero and effectively excluded from the model.

L1-regularized logistic regression uses the L1 penalty parameter

to set the balance of including features. We performed 10-fold

cross-validation to select the optimal L1 parameter for each model.

The training data was divided into 10 parts, each part having an

equal number of positive, negative intergenic, negative CDS, and

negative CpG island examples. For each round of cross-validation,

8 parts were used for training, one for testing and selection of the

optimal L1 parameter, and one for independent testing with the

optimal L1 parameter. The range of L1 parameters for each cross-

validation ranged from 0.0001 to 0.01. All training was performed

using the l1_logreg data standardization option, normalizing for

potentially different scales between features. After cross-validation,

a final model was created by training on the entire training set with

the mean optimal L1 parameter.

The models were tested on the independent test data of each of

the three classes, using the final NP and WP models generated on

the full respective training sets. Classification performance was

evaluated with two standard metrics: the receiver operating

characteristics (ROC) and the precision recall curves (PRC), and

the area under ROC (auROC) and PRC curves (auPRC), which

summarize classifier performance when varying the true positive

rate. While ROC effectively normalizes for differences in size of

positives and negatives, PRC is sensitive to imbalanced datasets –

as is the case for promoters in which a small number of TSS

locations are outnumbered by the non-TSS locations in the

genome. This implies that ROC curves are comparable for

different classifiers (e.g. NP and WP), while PRC curves will reflect

differences in the relative size of the positive class. This partially

explains the larger differences we observed for auPRC values,

which reflects the harder problem of identifying fewer NP than BP

promoters within a large genomic background.

To visualize the importance of features for each class, a

modified version of l1_logreg was used to obtain standardized

coefficients, representing input features normalized to the same

scale. From these standardized coefficients, we determined which

features were consistently present during the ten-fold cross-

validation training step. For each model, we determined the

features whose absolute value was greater than 0.05 in at least 8 of

the 10-fold cross-validations.

Supporting Information

Figure S1 Unsupervised Clustering of Chromatin Profiles. Each

promoter profile with sufficient data for bulk and H2A.Z

nucleosome occupancy was normalized to promoter-specific Z-

scores (subtracting the mean and dividing by the standard

deviation for that profile). Promoters were then clustered with

MATLAB’s Kmeans function (K = 3, Euclidean distance metric).

Enriched promoter classes present within clusters were calculated

using a hypergeometric test. The first cluster corresponded to

unstructured nucleosome profiles enriched particularly for NP

promoters (p,10E-5; p,10-2 for BP promoters; no significance

for WP). The second and third cluster largely corresponded to two

WP clusters (those with predominant read data for the +1 and -1

nucleosome, respectively, p,0.05 and p,0.01; no significance for

NP and BP).

Found at: doi:10.1371/journal.pgen.1001274.s001 (10.10 MB

EPS)

Figure S2 Chromatin Profiles for Promoters Classes Divided by

CpG Island Presence, Using the Definition of Gardiner-Garden &

Frommer.

Found at: doi:10.1371/journal.pgen.1001274.s002 (3.70 MB

EPS)
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Figure S3 Expression Levels of Human Genes by Promoter

Class. Gene expression intensities from NimbleGen tiles [28] were

assigned to human TSS clusters (see Methods), and their

log(expression) values were binned separately for each promoter

class and normalized to relative frequencies. BP and WP

promoters had nearly identical expression, while NP promoters

showed a skew towards lower expression.

Found at: doi:10.1371/journal.pgen.1001274.s003 (2.03 MB EPS)

Figure S4 Promoter Classes Separate Chromatin Profiles Even

When Stratified by Expression Level. Human promoters were

separated into 4 classes based on expression levels of associated

genes in CD4+ T-cells. (A) Across all expression levels, BP and WP

promoters showed greater enrichments in +1 H2A.Z nucleosome

occupancy (p,10E-5) than NPs. H2A.Z enrichments have been

reported to be present in promoters of both active and inactive

genes in yeast [9]. We also observed H2A.Z enrichments for BP

and WP promoters at all expression levels; however, the H2A.Z

association disappeared at NP promoters with low or no

expression. (B) In addition to nucleosome positioning, several

histone modifications preferentially occur at promoter regions. To

validate this association across promoter classes and expression

levels, we matched promoters to human H3K4 methylation data

[10]. The positioning of H3K4me3 signals across all promoters

and expression levels corresponded with the positioning and levels

of H2A.Z nucleosomes. (C) Levels of pol II binding showed the

opposite trend, with NP promoters being much more occupied by

pol II at the TSS despite the much lower H2A.Z and H3K4me3

association. As such, the lower level of H2A.Z or H3K4me3 at

focused promoters did not correspond to a reduced presence of the

polymerase at the TSS.

Found at: doi:10.1371/journal.pgen.1001274.s004 (9.06 MB EPS)

Figure S5 WP and BP Promoters Have Stronger Associations to

H3K4 Methylation. (A, B) Average profiles of H3K4me3

occupancy in Drosophila and human promoters showed an overall

similar pattern, with significant differences between NP and the

other classes (p,10E-03). (C, D) The lower association of H3K4

methylation for NP promoters was retained in human H3K4me1

and H4K4me2 profiles, which consistently showed relative

enrichments further within transcribed regions for WP and BP

promoters (p,10E-21).

Found at: doi:10.1371/journal.pgen.1001274.s005 (7.57 MB EPS)

Figure S6 Including Fourier Transform–Based Chromatin

Features in a Computational TSS Model. We explored the effect

of adding Discrete Fourier Transform (DFT) coefficients as

features, in addition to the epigenetic profile features. The Fourier

transform decomposes a signal into its spectral components, and

coefficients reflect the presence of periodicities within the data.

The DFT was computed in Matlab, on the data pre-processed as

described in the main text. As with the profile features, DFT

coefficients were computed for the 2 kb upstream and 2 kb

downstream regions relative to the TSS, for the whole 2 kb

windows as well as smaller 500 bp sliding windows, moved within

the 2 kb regions 250 bp at a time. DFT coefficients were

computed for Bulk, H2A.Z, and H3K4 monomethyl, dimethyl,

and trimethyl profiles, and coefficients reflecting periodicity in the

range of a nucleosome turn were added to the features for model

training as described in the main text.

Found at: doi:10.1371/journal.pgen.1001274.s006 (1.81 MB EPS)

Figure S7 Fruit Fly Promoter Classes Show Different Temporal

Trends at the Same Magnitude of Expression. Specific time points

of utilization for each promoter were determined using the

differences in median fluorescence intensity values of the

Affymetrix tiling arrays [23]. The number of promoters with

utilization at each time point were added by pattern and

normalized per 1,000 TSSs. (A) The overall progression of

expression agreed with previous results [23]: higher numbers of BP

and WP promoters were utilized during the earlier stages of

embryogenesis, while the opposite was true for NP promoters. (B)

Promoters with utilization in at least one time point from 0–

12 hours were assigned to expression levels based on array

fluorescence (differences in median fluorescence of tiles down-

stream of a TSS vs. upstream, discretized in bins of size 10).

Promoter numbers in each bin were divided by the total number

of differences, resulting in the frequency of expression as shown. A

line graph was used to smoothly join the discrete bin densities.

While quantities of promoter patterns changed throughout

embryogenesis (A), the distribution of expression levels was highly

consistent across all promoters. (C) The expression analysis was

repeated for promoters with utilization in at least 1 time point

from 7 to 8 (hours 12–16, to match pol II occupancy data from

developmental stage 12). Again, a similar distribution of expression

levels from the tiling arrays was observed across all promoter

patterns.

Found at: doi:10.1371/journal.pgen.1001274.s007 (5.65 MB EPS)

Figure S8 Density of H2A.Z Nucleosomes Is Higher in BP and

WP Promoters than in NP Promoters. The midpoints of all H2A.Z

nucleosomes were taken from Mavrich et al and mapped to the

locations of the 0–12 hour NP, BP, and WP promoters. There

were 95% of WP and 89% of BP promoters that had at least one

H2A.Z nucleosome within 1 kb of a TSS, compared to 79% of NP

and 71% of random intergenic sites. Greater differences in

percentages were observed for BP and WP promoters with more

than one nucleosome within 1 kb of the TSS (p,.05E-01). This

illustrates the stronger connection of BP and WP promoters to the

positioning and quantity of H2A.Z nucleosomes within the

immediate vicinity of the TSS.

Found at: doi:10.1371/journal.pgen.1001274.s008 (0.68 MB EPS)

Figure S9 NP Chromatin Profiles Separated by Presence of

Core Promoter Motifs. The NP H2A.Z profile (cf. Figure 6) was

split into (possibly overlapping) subsets by presence of regulatory

sequence motifs. Promoters with canonical motifs (TATA, MTE,

DPE, INR) exhibited virtually no periodic nucleosome organiza-

tion. The remaining signal in average NP plots originated from

two subgroups, those without canonical motifs (,10%) which

possibly represent a small fraction of false assignments to initiation

patterns, and those with the TCT motif, which has recently been

identified as a hallmark of ribosomal and other basal translation

proteins in non-TFIID-initiated promoters [36].

Found at: doi:10.1371/journal.pgen.1001274.s009 (0.11 MB EPS)

Figure S10 Chromatin Profiles for Stalled Polymerase in S2

Cells. To further evaluate the influence of pol II stalling on the

divergent patterns of nucleosome organization, TSSs at stalled

promoters in S2 cells were compared to H2A.Z and bulk

nucleosome locations. Like total TSS data from 0–12 hour, and

stalled 0–16 hr promoters, BP and WP promoters had higher

associations to H2A.Z (A) and bulk (B) nucleosomes. (C) Similar to

the later stage of development (12–16 hr; cf Figure 6D), S2 cell NP

promoters had higher levels of pol II binding than BP and WP

promoters. This corresponded with the observed higher number of

NP promoters utilized during later stages of embryogenesis (Figure

S7), and was consistent with with possible pol II stalling frequently

observed at NP promoters in more specialized cell types.

Found at: doi:10.1371/journal.pgen.1001274.s010 (8.09 MB

EPS)
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Table S1 Tile Conversion Statistics for Mapping the Affymetrix

Tiling Arrays from Release 4 to Release 5. Column 1 notes the

chromosome, and columns 2 and 3 list the number of tiles in

Release 4 and Release 5, respectively. Column 4 contains the

number of tiles that were removed because they were mapped to

multiple locations, or did not map to within 5 bp of the Release 4

tile size. Column 5 and column 6 cite the genomic locations of the

first and last tiles in Release 5. Promoters identified using PEAT

that were located outside of the scope of the Release 5 Affymetrix

tiling array were excluded from the evaluation of temporal

utilization using the 2-hr time course.

Found at: doi:10.1371/journal.pgen.1001274.s011 (0.04 MB

DOC)

Table S2 False Positive Rates of Expressed Transcript Calls at

TSSs. For each time point (column 1) corresponding to a 2 hour

interval (column 2), a previously determined difference threshold

(column 3) was used to determine false positive rates (column 4) for

TSS utilization from background noise [23]. Relative false positive

rates were obtained and averaged across three random intergenic

sets. FP rates were consistently below 0.04.

Found at: doi:10.1371/journal.pgen.1001274.s012 (0.04 MB

DOC)

Table S3 Summary of Data Sources Used For Promoter

Comparisons in Human. The data type (column 1) and

publication source (column 2) are listed with the total size of the

dataset (column 3) and the cell type in which it was generated

(column 4). Column 5 refers to the type of experiment performed,

and column 6 denotes the figure in which the data is used. S =

Supplementary Figure.

Found at: doi:10.1371/journal.pgen.1001274.s013 (0.04 MB

DOC)

Table S4 Summary of Data Sources Used For Promoter

Comparisons in Fruit Fly. The data type (column 1) and

publication source (column 2) are listed with the total number of

Release 5 locations (column 3). The sample source (time window

during embryogenesis), the type of experiment, and the figure are

summarized in columns 4, 5 and 6, respectively. S = Supplemen-

tary Figure.

Found at: doi:10.1371/journal.pgen.1001274.s014 (0.07 MB

DOC)

Table S5 Summary of Statistical Significance of Differences

between Human Nucleosome Profiles. The dataset and type of

comparison (profile, peaks, NFR) are listed in column 1 and row 1.

‘‘Peaks’’ refers to the window corresponding to the +1 nucleosome

midpoint location; NFR to the window at the center of the

nucleosome free region. Profiles were evaluated using Wilcoxon

Sum Ranks, and all peak and NFR windows were evaluated using

the Mann-Whitney U-test. The p-value of each comparison is

listed; those not significant are highlighted. Black boxes corre-

spond to comparisons not evaluated or applicable. All calculations

were performed in Matlab.

Found at: doi:10.1371/journal.pgen.1001274.s015 (0.07 MB

DOC)

Table S6 Summary of Statistical Significance of Differences

between Fly Nucleosome Profiles. The dataset and type of

comparison (profile, peaks, NFR) are listed in column 1 and row

1. ‘‘Peaks’’ refers to the window corresponding to the +1

nucleosome midpoint location; NFR to the window at the center

of the nucleosome free region. Profiles were evaluated using

Wilcoxon Sum Ranks, number of H2A.Z nucleosomes within

1 kb, bulk peaks, and bulk NFR were evaluated using Mann-

Whitney U-test, and H2A.Z peaks were evaluated using x2. The p-

value of each comparison is listed; those not significant are

highlighted. All calculations were performed in Matlab.

Found at: doi:10.1371/journal.pgen.1001274.s016 (0.06 MB

DOC)

Text S1 Supplementary Methods on Mapping Drosophila TSS

to Tiling Arrays.

Found at: doi:10.1371/journal.pgen.1001274.s017 (0.02 MB PDF)
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