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Abstract
Personalized computational cardiac models are considered to be a unique and powerful tool in modern cardiology, integrating 
the knowledge of physiology, pathology and fundamental laws of mechanics in one framework. They have the potential to 
improve risk prediction in cardiac patients and assist in the development of new treatments. However, in order to use these 
models for clinical decision support, it is important that both the impact of model parameter perturbations on the predicted 
quantities of interest as well as the uncertainty of parameter estimation are properly quantified, where the first task is a priori 
in nature (meaning independent of any specific clinical data), while the second task is carried out a posteriori (meaning after 
specific clinical data have been obtained). The present study addresses these challenges for a widely used constitutive law 
of passive myocardium (the Holzapfel-Ogden model), using global sensitivity analysis (SA) to address the first challenge, 
and inverse-uncertainty quantification (I-UQ) for the second challenge. The SA is carried out on a range of different input 
parameters to a left ventricle (LV) model, making use of computationally efficient Gaussian process (GP) surrogate models 
in place of the numerical forward simulator. The results of the SA are then used to inform a low-order reparametrization 
of the constitutive law for passive myocardium under consideration. The quality of this parameterization in the context of 
an inverse problem having observed noisy experimental data is then quantified with an I-UQ study, which again makes use 
of GP surrogate models. The I-UQ is carried out in a Bayesian manner using Markov Chain Monte Carlo, which allows 
for full uncertainty quantification of the material parameter estimates. Our study reveals insights into the relation between 
SA and I-UQ, elucidates the dependence of parameter sensitivity and estimation uncertainty on external factors, like LV 
cavity pressure, and sheds new light on cardio-mechanic model formulation, with particular focus on the Holzapfel-Ogden 
myocardial model.

Keywords Holzapfel-Ogden model · Global sensitivity analysis · Inverse-uncertainty quantification · Cardiac model · 
Gaussian process

1 Introduction

An important challenge in the development of mathemati-
cal models for complex physiological systems is to estab-
lish the degree of identifiably of the model parameters. A 
mathematically rigorous concept is structural identifiability, 

which is an intrinsic feature of the mathematical structure of 
the dynamical system and the quantities of interest (QoIs) 
that it is designed to predict. In simple words, a parameter is 
structurally identifiable if the same values of the QoIs cannot 
be obtained with different parameter values. To paraphrase 
this: if we have two scenarios for which the QoIs take on 
identical values, then this implies that the parameters are the 
same. For a rigorous mathematical definition, see e.g. Chis 
et al. (2011) or Villaverde et al. (2016).

While structural identifiability analysis of linear models is 
well understood, there are only a few approximate methods 
for testing the structural identifiability of nonlinear mod-
els. This includes the Taylor series method (Pohjanpalo 
1978), the generating series method (Walter and Lecourtier 
1982), the similarity transformation approach (Vajda et al. 
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1989), the differential algebra based method (Ljung and 
Glad 1994), the direct test (Denis-Vidal and Joly-Blanchard 
2000), and a method based on the implicit function theorem 
(Bellu et al. 2007). See Chis et al. (2011) for a review and 
a comparative evaluation on various benchmark problems. 
Hadjicharalambous et al. (2015) have studied model identifi-
ability in a cardiac model in diastole using several simpli-
fied strain energy functions, including a reduced Holzap-
fel-Ogden model which only linearly depends on a and af , 
but a general extension to more complex models remains 
challenging.

To avoid the practical challenges of establishing struc-
tural identifiability for complex nonlinear systems, global 
sensitivity analysis approaches the question slightly dif-
ferently and focuses on the contribution of the parameters 
to the variance of the QoI, either individually (first-order 
Sobol indices) or in combination with others (total-effects 
Sobol index). Intuitively, if a parameter contributes a sub-
stantial proportion of the variance, the quantity of interest 
sensitively depends on it. Conversely, a parameter without 
a significant contribution to the variance has little influence 
on the quantity of interest. We will review global sensitiv-
ity analysis in Sect. 2.2. While structural identifiability is a 
feature of the dynamical system and the observation function 
alone, global sensitivity analysis requires the specification of 
a prior distribution of the parameters. This prior distribution 
is essential for computing the variance of the quantity of 
interests. However, the consequence is that global sensitivi-
ties are not an intrinsic feature of the dynamical system and 
the observation function per se, but depend on additional 
user-defined inputs, as illustrated in Fig. 1.

Structural identifiability is an idealised concept which 
is based on the assumption that the QoIs can be obtained 
at infinite precision with zero-noise perturbation. Practical 
identifiability, on the other hand, deals with insufficently 

informative measurements to determine the parameters 
with adequate precision. Structural identifiability implies 
practical identifiability only for an infinite amount of data 
with zero noise. Wieland et al. (2021) argue that the notion 
of practical identifiability has been rather vague in the lit-
erature, but tends to be related to confidence intervals. In 
the present article, we treat the concept of structural iden-
tifiability equivalent to the concept of inverse uncertainty 
quantification. Inverse uncertainty quantification is about 
practical identifiability in light of particular experimental 
data. A parameter that is structurally identifiable is not 
necessarily practically identifiable if the data are noisy 
or of insufficient quantity. The additional dependence on 
experimental data is shown in Fig. 1. We will review the 
concept of inverse uncertainty quantification in Sect. 2.4.

The importance of allowing for variability and uncer-
tainty in the computational modelling of complex cardio-
physiological systems has been discussed in the seminal 
white paper by Mirams et al. (2016). In the present arti-
cle, we quantify variability and uncertainty with sensitiv-
ity analysis (SA) and uncertainty quantification (UQ) in 
the way depicted in Fig. 2. SA is closely related to for-
ward uncertainty quantification (F-UQ), where the aim is 
to establish how uncertainties in model inputs (such as 
parameters) affect the model outputs (the QoIs), which is 
represented by the upper arrow in Fig. 2. This input-output 
map is an intrinsic feature of the model, and the analysis is 
a priori in nature, meaning that it can be carried out based 
on the model alone, without need for any measurements 
or experimental data.

Inverse UQ (I-UQ) focuses on practical identifiability. 
When parameters are unidentifiable as a result of practi-
cal restrictions related to limited availability and quality of 
data, they are referred to as practically unidentifiable. I-UQ 
is therefore a posteriori in nature, meaning conditionally 

Fig. 1  Comparison of structural identifiability analysis, global sensi-
tivity analysis and inverse uncertainty quantification. The structural 
identifiability of a parameter is an intrinsic feature of the dynamical 
system and the observation function that defines the QoIs; its global 
sensitivity additionally depends on the parameters’ prior distribution, 
and its inverse uncertainty further depends on the experimental data

Fig. 2  Illustration of sensitivity analysis (SA) and uncertainty quanti-
fication (UQ). SA and forward uncertainty quantification (F-UQ) are 
a priori in nature and quantify the impact that perturbations of the 
model parameters have on the model outputs (the Quantities of Inter-
est: QoIs). Inverse uncertainty quantification (I-UQ) is a posteriori in 
nature and focuses on practical parameter identifiability
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dependent on the experimental data, and this is represented 
by the bottom arrow in Fig. 2.

SA can be conceptually divided into local and global SA; 
see Smith (2014) and Morio (2011) for a review. Local SA 
merely analyses how small perturbations near an input space 
value influence the output of the model. Global SA, origi-
nally introduced by Sobol (2001), is a more powerful global 
approach that has been promoted by Saltelli et al. (2010) via 
the design of computationally efficient quasi-Monte Carlo 
sampling techniques, and is increasingly being used for the 
analysis of complex biological systems (Jarrett et al. 2015).

SA techniques have been widely applied in haemody-
namic and cardio-vascular modelling. Melis et al. (2017) 
have carried out global SA for a range of 1D vascular cir-
culation models, following the procedure of Saltelli et al. 
(2010) and using Gaussian process emulation to reduce the 
computational complexity. Eck et al. (2016) have compared 
Monte Carlo and polynomial chaos methods for global SA 
in 0D and 1D cardiovascular circulation models. Marquis 
et al. (2017) and Colebank et al. (2019) have combined SA 
and I-UQ for cardiovascular modelling, by first using SA 
to select a subset of identifiable parameters, and then using 
both frequentist and Bayesian I-UQ techniques to obtain 
confidence and credible intervals of the identifiable parame-
ters. While the first study was restricted to local SA, the sec-
ond study applied both local and global SA. SA and F-UQ 
have also been applied to arterial wall mechanics for evalu-
ation of vascular drug therapies (Heusinkveld et al. 2018).

There have been various applications of SA and F-UQ 
in cardiac electrophysiology (Clayton et al. 2020; Pagani 
and Manzoni 2021; Mirams et al. 2016), cardiac mechan-
ics (Rodriguez-Cantano et al. 2018; Campos et al. 2019; 
Kallhovd et al. 2019) and coupled electromechanics (Hur-
tado et al. 2017; Levrero-Florencio et al. 2020; Rodero et al. 
2021). The focus of the present article is on cardiac mechan-
ics, and we will therefore review recent work on SA and 
UQ in this field in more detail. An overview can be found 
in Table 1.

One early local SA study on cardiac mechanics can be 
found in Geerts et al. (2003), in which the influence of 
changes in ellipticity, myofibre orientation and material 
properties on systolic myofibre stress and strain were stud-
ied at the left ventricle (LV) equator using idealized LV 
geometries. Osnes and Sundnes (2012) have investigated 
F-UQ and global SA for the LV passive filling phase using 
an idealized geometry and a Fung-type constitutive law, 
with a focus on replacing intrusive methods (i.e. methods 
that modify the simulation code) with non-intrusive meth-
ods (i.e. methods that do not require changes in the simula-
tion code). The impact of constitutive parameters and fibre 
orientation uncertainties on ventricular dynamics (LV cav-
ity volume, apex lengthening and rotation, wall thickness) 
were studied, and they found that the overall stiffness and 

cross-fibre stiffness had the greatest influences on selected 
model outputs, while fibre orientation had a minor influ-
ence on apex rotation. Rodriguez-Cantano et al. (2018) have 
extended this work with a focus on the impact of uncer-
tainties in material parameters and fibre orientation field on 
LV mechanics during diastolic filling. The fibre field vari-
ation was approximated using a truncated Karhunen-Loeve 
expansion, and a polynomial chaos expansion-based method 
was adopted for F-UQ analysis in a more realistic LV model 
compared to Osnes and Sundnes (2012). Campos et  al. 
(2019) have extended global SA and F-UQ analysis in LV 
passive mechanics by considering geometrical uncertainties: 
wall thickness variation, and they suggested that LV pas-
sive mechanics may be more affected by wall thickness than 
material properties. Later, they (Campos et al. 2020) further 
extended a similar analysis to the full cardiac cycle by taking 
into account uncertainties in active stress and the circulatory 
model. They found that LV ejection fraction and ventricular 
torsion were very sensitive to active stress, wall thickness 
and fibre direction, but not the passive material parameters, 
which was different from the SA and F-UQ in LV passive 
mechanics. Existing cardiac models usually consider the 
myofibre transverse angle, which is the angle between the 
transmural direction and the projected myofibre direction 
into the transmural-circumferential plane, to be zero. To 
this end, Barbarotta and Bovendeerd (2021) further stud-
ied the sensitivity of systolic strains to myofibre orientation 
described by the helix and transverse angles. Their results 
suggested that shear strains are more sensitive to myofibre 
orientations than normal strains.

The aforementioned studies (Osnes and Sundnes 2012; 
Rodriguez-Cantano et al. 2018; Campos et al. 2019, 2020) 
used a transversely isotropic Fung-type constitutive law. 
Experimental studies have suggested that the myocardium is 
an orthotropic material with three mutually orthogonal prin-
cipal axes (Dokos et al. 2002; Holzapfel and Ogden 2009; 
Sommer et al. 2015), and for that reason, a few orthotropic 
nonlinear constitutive laws have been proposed, including 
the widely used H-O model developed by Holzapfel and 
Ogden (2009).

For the H-O model, Gao et al. (2015) performed local SA 
for the passive myocardial properties using a patient-specific 
LV geometry, and they found that the LV passive mechanics 
are highly sensitive to the isotropic stiffness and myofibre 
stiffness, and parameters in the H-O model are also highly 
correlated. Levrero-Florencio et al. (2020) studied local/
global SA in an idealized LV electromechanical model with 
a focus on LV pump function by treating the cross-fibre stiff-
ness as the only uncertain parameter in the H-O model. To 
the best of our knowledge, a comprehensive global SA and 
I-UQ analysis using the H-O model has not been reported in 
the literature despite its wide application in cardiac mechan-
ics (Gao et al. 2017a; Sahli Costabal et al. 2019).
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Our work aims to complement previous work on SA and 
F-UQ in cardio-mechanics models (Osnes and Sundnes 2012; 
Rodriguez-Cantano et al. 2018; Campos et al. 2020) by includ-
ing I-UQ with a focus on the H-O model in the LV passive 
filling. To paraphrase this with reference to Fig. 2: while the 
previous studies cited above have carried out UQ that is intrin-
sically a priori in nature (F-UQ), corresponding to the top 
arrow in the diagram, we complement this work with a dimen-
sion that is a posteriori in nature, corresponding to the bottom 
arrow in Fig. 2. This enables us to additionally quantify the 
degree of practical parameter identifiability, in light of experi-
mental data. Our work extends the work of Gao et al. (2015) 
by carrying out global rather than local SA, and systematically 
combining it with I-UQ. Our study is conceptually related to 
the work of Marquis et al. (2017) and Colebank et al. (2019), 
but shifts the focus from cardiovascular to cardio-mechanics 
modelling. Besides gaining methodological insights into the 
relation between forward and inverse uncertainty quantifica-
tion in the context of the LV passive mechanics, our work leads 
to a better understanding of the appropriate level of complexity 
for constitutive cardiac mechanics models, with a particular 
focus on the H-O strain energy function.

Our paper is structured as follows: we begin with a 
methodological overview in Sect. 2, covering the LV model 
(Sect. 2.1), global sensitivity analysis (Sect. 2.2), surrogate 
modelling and emulation (Sect. 2.3) and posterior inference 
(Sect. 2.4). This is followed by two sections on our SA and 
I-UQ work, covering SA in Sect. 3, and I-UQ in Sect. 4. 
Both sections follow the structure to begin with a descrip-
tion of the experimental setup (Sects. 3.1 and 4.1 ) and the 
surrogate model training (Sects. 3.2 and 4.2 ), followed by 
surrogate model validation (Sects. 3.3 and 4.3 ) and a dis-
cussion of the results (Sects. 3.4 and 4.4 ). We discuss the 
relation of our SA and I-UQ results in Sect. 5, and present an 
outlook on future work in Sect. 6. Finally, Sect. 7 concludes.

2  Methods

This section describes the methods used to perform SA and 
I-UQ for the parameters of a constitutive model for the pas-
sive mechanics of the left ventricle. Given that this study 
involves the application of statistical methods to cardiac 
mechanics, there will inevitably be an overlap in the stand-
ard notation used by the two communities. For this reason, 
we make explicit our choice of notation for those symbols 
which may cause confusion in Table 2.

2.1  Left ventricular forward model

2.1.1  Patient‑specific LV geometry

In this study, a cardiac magnetic resonance (CMR) imag-
ing derived LV model of a healthy volunteer (male, 43 Ta
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years) is chosen from our previous work (Gao et  al. 
2017a), which was reconstructed from both the short and 
long axial CMR cine images at early-diastole following 
existing studies (Genet et al. 2014). The LV geometry, 
which is displayed in Fig. 3a, was discretized using hexa-
hedral elements. Further details of LV geometry recon-
struction can be found in (Li et al. 2020).

It is common practice to incorporate the layered myofi-
bre structure in the LV models, while due to the extreme 
difficulty of imaging myofibres in vivo, we adopted a rule 
based method (RBM) for describing the myofibre struc-
ture (Wang et al. 2013), in which a local material coor-
dinate system was defined, the so-called fibre ( �)–sheet 
( � )– sheet-normal ( � ) system. In the present study, the 
fibre angle varied linearly from �endo at endocardium to 
�epi at epicardium, with the sheet orientation along the 
transmural direction varying from 45o at endocardium to 
−45o at epicardium.

2.1.2  Constitutive law of the myocardium

We consider the passive myocardium as an incompress-
ible, anisotropic and hyperelastic material, described by 
the constitutive law introduced by Holzapfel and Ogden 
(Holzapfel and Ogden 2009), the so-called H-O model, 
that is,

in which a, b, as , bs , af , bf , afs , bfs are material constants. 
In particular, a and b relate to the isotropic response of the 

myocardium, while af and bf characterize the reinforced stiff-
ness along the myofibres, the same for as and bs along the 
sheet direction, and finally afs , bfs describe the shear response 
between the fiber and sheet directions. The max() function 
in (1) ensures the fibres can only support extension but not 
compression. The principal invariant I1 , the transversely iso-
tropic invariants I4i and the coupling invariant I8fs are cal-
culated from the right Cauchy deformation tensor � = �T� 
with � the deformation gradient, and

where �0 and �0 are the unit fibre and sheet directions in the 
reference configuration.

The H-O model has been used widely in personalized 
cardiac modelling in recent years (Gao et al. 2017a; Palit 

(1)

Ψ =
a

2b

[
exp

{
b
(
I1 − 3

)}
− 1

]

+
∑

i∈{f ,s}

ai

2bi

[
exp

{
bi
(
max(I4i, 1) − 1

)2}
− 1

]

+
afs

2bfs

{
exp

(
bfsI

2
8fs

)
− 1

}

I1 = tr(�), I4f = �0 ⋅

(
��0

)
,

I4s = �0 ⋅
(
��0

)
, I8fs = �0 ⋅

(
��0

)
,

Table 2  Nomenclature Table

Symbol Meaning

� Cauchy stress tensor
�
cc

Segmental circumferential strains
�
ll

Segmental longitudinal strains
�
rr

Segmental radial strains
�2 Variance of Normal distribution
�2

f
Amplitude factor in kernel (15)

Y Model output random variable
X Model input random variable
� Vector of model input random variables
� Vector of fixed model input values
� Noise random variable
� Vector of random parameters in I-UQ

Fig. 3  A reconstructed LV 
geometry with indications of 
4 short-axis slices from the 
base to the mid-ventricle (a), 
and schematic illustration of 6 
segmental regions for a selected 
short-axis slice following 
the AHA division conven-
tion. infsept: inferior septum; 
antsept:anterior septum; ant: 
anterior; antlat: anterior lateral; 
inflat: inferior lateral; inf: 
inferior
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et al. 2018; Baillargeon et al. 2014; Sahli Costabal et al. 
2019; Guan et al. 2019). Due to the poor identifability of 
some parameters, different reduced forms have been pro-
posed in the literature, which generally fall into two frame-
works. The first of these is to introduce scaling parameters 
that link multiple parameters together. For example, Palit 
et al. (2018) used a four dimensional parameterization, 
a, b, Ka, Kb where Ka and Kb scale the remaining a and 
b parameters of the H-O model. Further examples of this 
type of reparametrization can be found in the literature 
(Gao et al. 2015; Noè et al. 2019; Davies et al. 2019). The 
alternative approach is to also ignore several parameters, 
either by fixing them to constant values or removing them 
from the model altogether, usually a reduced formula with 
transverse isotropy. For example, Krishnamurthy et al. 
(2013) removed the terms depending on as, bs, afs and bfs 
from the model. Hadjicharalambous et al. (2015) set as and 
afs equal to 0 and fixed b and bf to constant values, leaving 
two unknown parameters (a and af ). They further showed 
the bijectivity of the map from this two-dimensional 
parameter space. However, this bijectivity only holds in 
the case where end diastolic pressure (EDP) is known and 
b and bf are fixed. With this in mind, they further proposed 
learning a ratio of a and af in the real data case when EDP 
is not known in advance. This method has been adopted in 
more recent work (Asner et al. 2016; Hadjicharalambous 
et al. 2017, 2021). None of the above reparameterizations 
are based on a comprehensive sensitivity study, but from 
empirical observations and intuitive insights of myocar-
dial behaviours. To the best of our knowledge, our study 
is the first to motivate a reparameterization using a proper 
sensitivity analysis.

2.1.3  Simulation of LV passive filling

The LV diastolic filling process is described by a quasi-static 
pressure-loaded boundary-value problem over the computa-
tional domain ( � ) occupied by the LV geometry.

A linearly ramped pressure from 0 to EDP mmHg is applied 
to the endocardial surface, where EDP is the end-diastolic 
blood pressure inside the LV cavity. The basal plane is fixed 
along the longitudinal and circumferential directions, with 
only expansion in the radial direction allowed. The system of 
equations at the current configuration ( �t ) is given by:

 where � is the normal direction of the endocardial surface 
� endo , � is the traction forced resulted from the loaded pres-
sure at � endo , and ur and uz are the displacement components 

(2)

⎧⎪⎨⎪⎩

∇ ⋅ (�) = 0 in �t,

� ⋅ � = � on � endo,

ur = uz = 0 on � base,

along the radial direction and z-axis at the basal surface 
� base , respectively. Note a cylindrical system is introduced 
for all nodes in the basal surface, see Fig. 3a. The myocardial 
Cauchy stress ( � ) is derived from the H-O model as

in which � is the identity matrix, and p is the Lagrange mul-
tiplier to enforce the incompressibility.

Equation (2) was solved using the general-purpose finite-
element package ABAQUS (Simulia, Providence, RI, USA). 
Refer to (Wang et al. 2013) for details of the finite-element 
simulation of LV dynamics in diastole.

2.1.4  Input parameters

A total of eleven input parameters to the LV model are 
considered as random in the SA experiments. They are the 
eight material parameters from (1): a, b, af , bf , as, bs, afs, bfs , 
the end-diastolic pressure inside the LV ( EDP ), and two 
fibre rotation angles of the RBM for fibre generation: 
�endo and �epi . Each input parameter is considered indepen-
dently and randomly distributed within the intervals given in 
Table 3 based on our previous study (Gao et al. 2017a). Two 
different forms of input parameter distributions are consid-
ered in the SA experiments, as will be discussed in Sect. 3.1.

For the I-UQ study, we are interested in inferring the 
material parameters for fixed fibre angles over a range of 
different pressures. The reasoning for this choice of experi-
mental design is provided in Sect. 2.4.

2.1.5  Quantities of interest

We consider four types of end-diastolic response of the LV 
model as quantities of interest (QoIs) for our experiments: LV 

(3)� = �
∑

i=1,4f,4s,8fs

�Ψ

�Ii

�Ii

��
− p�,

Table 3  Model Input Parameters based on Gao et al. (2017a)

Input Unit Lower Bounds
Upper

a kPa 0.1 10
b – 0.1 10
af kPa 0.1 10
bf – 0.1 10
as kPa 0.1 10
bs – 0.1 10
afs kPa 0.1 10
bfs – 0.1 10
EDP mmHg 4 30
�endo Degrees 90 0
�epi Degrees 0 − 90
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cavity volume at end-diastole ( LVV ), as well as segmental 
circumferential ( �cc ), radial ( �rr ) and longitudinal ( �ll ) strains 
since they are widely used in many clinical studies. Definitions 
for the three strains are

where � , � , � are the unit circumferential, longitudinal and 
radial directions, and � = (� − �)∕2 is the strain tensor 
with � = �̃T �̃ in which �̃ is the deformation tensor from 
the end-diastolic phase (the final deformed LV geometry) to 
the early-diastolic phase (the initial LV geometry). Thus all 
strains of QoIs are calculated with respect to the end-dias-
tolic phase to be consistent with clinical convention. Note 
strains of QoIs in (4) are only for post-processing purpose 
with �̃ = �−1.

To extract the segmental strains in diastole, we first fol-
lowed the clinical convention by dividing the short-axial 
images into 6 segments, as visualized in Fig. 3. Normally, 4 
short-axial slices are available from the most basal region to 
the middle of the LV, and dividing each slice into the 6 seg-
ments gives a total of 24 segments on the LV. For each of these 
segments we calculate a spatially averaged strain as defined in 
(4) to be used in our study for �cc , �rr , �ll , respectively. In the 
SA study, we choose the segmental circumferential strain, the 
segmental longitudinal and the radial strains at the inferior 
lateral segment from the second short-axis slice next to the 
most basal one, denoted as �∗

cc
 , �∗

ll
 , �∗

rr
 , respectively. Here ‘ ∗ ’ 

indicates that the strain is taken from a pre-selected segment. 
For the I-UQ study (see Sect. 4), all 24 segmental circumfer-
ential strains are used.

2.2  Sensitivity analysis

In what follows, we always refer to sensitivity analysis (SA) in 
the sense of global sensitivity analysis. For the application of 
local sensitivity analysis to the modelling of the passive LV 
filling process, see Gao et al. (2015).

We denote the cardiac-mechanic forward model described 
in Sect. 2.1 as the function f that, for a fixed LV geometry, 
maps a set of input parameter values X1,X2,…XD to associ-
ated output quantities of interest, Y1, Y2,…YM:

In this case, D = 11 , corresponding to the eleven input 
parameters outlined in Sect. 2.1.4, while the M outputs can 
be chosen to be any of the quantities of interest detailed in 
Sect. 2.1.5. As detailed in Sect. 3.1, two SA are performed 
in this paper. The first SA considers M = 4 output quanti-
ties and the second considers M = 2 outputs. By performing 

(4)

⎧
⎪⎨⎪⎩

�cc = � ⋅
�
��

�
,

�ll = � ⋅
�
� �

�
,

�rr = � ⋅
�
��

�
,

(5)f (X1,X2,…XD) = (Y1, Y2,…YM).

SA on this forward model, we can quantify the influence 
that the uncertainty in each random input parameter Xi has 
on the observed variation in any chosen output quantity 
Yj . The results of the analysis can then be used to identify 
those inputs that strongly influence output variation, and 
those inputs that are only weakly influential. Strongly influ-
ential parameters can then be prioritized for measurement 
or estimation from clinical data, while weakly influential 
parameters can be set to fixed values within their range of 
uncertainty. We perform SA of the forward model f using 
the approach of Sobol (2001), by computing the first-order 
and total-effect Sobol sensitivity indices of the random input 
parameters. Below, a brief overview of this approach to SA is 
given. For a comprehensive overview, the reader is directed 
to Saltelli et al. (2010) and Gramacy (2020, Chapter 8).

The first-order sensitivity index, denoted Sji , of input 
parameter Xi for output Yj is defined as:

where � and �  are the expectation and variance operators, 
respectively, and �∼i is the vector of all random inputs 
except for Xi . The expectation term in the numerator of (6) 
is called the main-effect function. It returns the expected 
value of the output Yj given a value of the ith input Xi , after 
all other inputs have been integrated over. The variance of 
the main-effect function is then taken, providing a scalar 
summary of its variation with respect to Xi . This result is 
then standardized with respect to the unconditional output 
variance, allowing the index to be interpreted as the fraction 
of the total observed variance in Yj attributable to varying 
Xi alone.

The first-order sensitivity index does not account for 
interaction effects between different input parameters, which 
can potentially be significant for nonlinear models. For this 
reason, we also computed the total-effect index, Tji , for each 
input Xi , which is defined with respect to output Yj as:

The numerator of the total-effect index gives the difference 
between the unconditional output variance, and the variance 
observed in the output once Xi has been accounted for. This 
is again standardized with respect to the unconditional out-
put variance, meaning that the total-effect index represents 
the proportion of observed variance in the output that is due 
to Xi , including all possible interaction effects with other 
input parameters.

(6)Sji =
�Xi

[
��∼i

[
Yj ∣ Xi

]]

� [Yj]
,

(7)

Tji =
� [Yj] − ��∼i

[
�Xi

[
Yj ∣ �∼i

]]

� [Yj]
,

=
��∼i

[
�Xi

[
Yj ∣ �∼i

]]

� [Yj]
.
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The first-order and total-effect indices must be calculated 
numerically, using evaluations from the forward model. 
While efficient low-discrepancy Monte-Carlo sampling 
schemes have been proposed for performing these calcula-
tions (Saltelli et al. 2010), the computational expense of each 
forward evaluation of the cardiac-mechanic model makes 
this approach impractical in our case. For this reason, we 
instead followed Melis et al. (2017), Rodriguez-Cantano 
et al. (2018) and Gramacy (2020, Chapter 8), by calculating 
the Sobol indices using evaluations from a computationally 
cheap surrogate model.

2.3  Surrogate modelling

A surrogate model is a statistical model that approximates 
a computationally expensive forward model, denoted f. The 
surrogate is trained on a dataset D of input-output pairs from 
the forward model:

where the location of the inputs �i ∈ ℝ
D are chosen to 

densely cover the domain of interest. In the context of the LV 
model, the expense of each forward simulation means that it 
is computationally impractical to directly apply the forward 
model to the calculation of the first-order and total-effect 
sensitivity indices. However, it is feasible to run batches of 
training simulations in advance to create datasets of the form 
of (8), on which surrogate models can be trained. Evalua-
tions from these surrogates can then be used in place of the 
numerical solver when performing the SA for each of the 
chosen output quantities of interest, as in Melis et al. (2017).

To construct the surrogate models, we used Gaussian 
process (GP) regression. GP regression is a Bayesian non-
parametric method that is commonly used for the construc-
tion of surrogate models (Kennedy and O’Hagan 2001). 
In Sect. 2.3.1, we give a brief overview of the approach; 
for a comprehensive description, the reader is directed to 
the literature (Rasmussen and Williams 2006; Gramacy 
2020, Chapter 5)

2.3.1  Gaussian process regression

A stochastic process {f (x) ∣ x ∈ X} is called a Gaussian 
process if, for any finite input set x1, x2,… , xn∈X  , the cor-
responding outputs � = (f (x1), f (x2),… , f (xn))

⊤ are jointly 
Gaussian distributed:

(8)D =
{(

�i, f (�i)
)N
i=1

}
,

(9)p(� ) = N(�,�).

Note that here we use the same notation f to refer to the 
GP random function above, and the forward model (5). The 
reason for this shared notation will become clear below. A 
GP is completely defined by its mean function m and covari-
ance function, k. These are evaluated on the given input set 
to specify the mean vector � and covariance matrix � of the 
joint distribution (9) as follows:

Note that, in order for � to be a valid covariance matrix, the 
covariance function k must be positive-definite.

To see how GPs can be used to perform regression, 
consider having observed training data D of the form of 
(8). The objective of regression is to learn from the train-
ing data an estimate of the unknown, true function, so that 
predictions can be made for the unobserved outputs �∗ at 
a set of T test input locations of interest 

{
(x∗

j
)T
j=1

}
 . GP 

regression is performed by assuming that this underlying 
function is drawn from a GP with specified mean and 
covariance functions. Then, by definition, the joint distri-
bution p(�∗, � ) is a Gaussian of the form of Equation (9). In 
this framework, the regression task reduces to the problem 
of finding the conditional distribution p(�∗∣ � ) . Using the 
properties of the multivariate Gaussian, it can be shown 
that this distribution is also a Gaussian (see Bishop 
(2006, Chapter 2)):

with mean and covariance given by:

in which �NN is the N × N  covariance matrix found by 
evaluating the kernel function pairwise on the training data, 
and �∗∗ is defined analogously for the T test data points. 
Similarly, � is the N × 1 mean vector for the training data, 
and � the T × 1 mean vector for the test data points. Finally, 
�N∗ is an N × T  cross-covariance matrix for the training and 
test data points.

Performing GP regression then requires only the mean 
and covariance functions respectively to be chosen. In 
the present study, we used a zero mean function, as all 
outputs were normalised to mean zero and unit variance 
before training. Note from the form of (13) that the pre-
dictive distribution over any test points of interest will 
not be equal to zero once we have conditioned on training 
data. For the covariance function, we used the squared 

(10)�
(
f (xi)

)
= mi = m(xi),

(11)Cov
(
f (xi), f (xj)

)
= Kij = k(xi, xj).

(12)p(�∗∣ � ) = N(�,�)

(13)� = �∗ +�T
N∗
�−1

NN
(� −�),

(14)� = �∗∗ −�T
N∗
�−1

NN
�N∗,



962 A. Lazarus et al.

1 3

exponential function with separate length scales for each 
input dimension:

where �2 is a small nugget term added to ensure numerical 
stability in the evaluation of (13) and (14). The use of indi-
vidual length-scales is referred to as automatic relevance 
determination (ARD), and allows for differing influence of 
the input dimensions on the output of the GP. The prop-
erties of the kernel are governed by its hyperparameters 
�f , �1, �2,… �k, � , and their values can be tuned to allow 
the GP to best represent the true underlying function. We 
did this by setting the hyperparameters to those values that 
maximized the log marginal likelihood of the training data. 
While fully Bayesian approaches are possible for fitting the 
hyperparameters, obtaining a point estimate in this manner 
is the most common approach in the GP literature. This is 
because the number of hyperparameters is relatively low 
when compared to flexible parametric models, and for suf-
ficiently large training sets the posterior distributions tend 
to be highly peaked.

The posterior mean of the GP, which was provided in 
(13), gives the best estimate for the unknown true function 
values under quadratic loss. Using this point estimate to 
compute the Sobol indices allows for efficient calculation 
that is multiple orders of magnitude quicker than directly 
using the numerical forward model. Note, however, that in 
addition to a best point estimate, the GP returns a full pos-
terior probability distribution (12) over the unknown func-
tion values. In this paper, we follow the approach detailed 
in Gramacy (2020, Chapter 8) and, instead of plugging in 
a single point estimate to compute the Sobol indices, draw 
an ensemble of samples from the posterior distribution of 
the GP, and compute the Sobol indices for each sample. The 
uncertainty in the value of the indices can then be quantified 
by calculating summary statistics of the resulting ensemble 
of index values.

2.4  Posterior parameter inference

For a given patient, we assume a fixed, but unknown, set 
of material parameters. Measurement of these parameters 
would require mechanical tests on a sample of dissected 
myocardium, so we will infer these from measurements of 
circumferential strain and end-diastolic volume obtained 
in vivo. Parameter estimation for a specific patient requires 
that we specify suitable physiological conditions—the 
EDP and fibre angles—which were treated as random vari-
ables in the SA study. As discussed in Sect. 2.1.4, we fix 
the fibre angles for the I-UQ study. This is motivated by 
their low sensitivity indices for the circumferential strains 

(15)k(�i, �j) = �2
f
exp

(
−
1

2

D∑
k=1

(xik − xjk)
2

�2
k

)
+ �2�ij

and LV cavity volume from the SA study, see Sect. 3.4 
for details. On the other hand, in vivo estimation of these 
angles could be available with further development of 
already existing techniques, i.e. diffusion-tensor MRI 
(Toussaint et al. 2013; Khalique et al. 2020; Das et al. 
2021). This also allows us to focus on the material param-
eters in a slightly simplified system.

From the model, we obtain 24 circumferential strains, 
� = {�i

cc
, i = 1,… , 24} and a prediction of the end-diastolic 

volume, V  . We assume that the measured quantities, � , 
relate to these predictions in the following model:

where (V , �) is the concatenation of the volume prediction 
and strain predictions and � is a random variable repre-
senting the additive noise. Future work could also include 
segmental radial and longitudinal strains in this model but 
currently there is no method for obtaining these at high 
precision from CMR images. For this reason, we choose to 
leave them out, better resembling what would be feasible 
with measured data. In previous work (Davies et al. 2019; 
Noè et al. 2019), this model was assumed to be homosce-
dastic Gaussian (Gaussian with constant variance), with the 
standardized volume and strains corrupted by the same level 
of Gaussian noise. A more accurate representation of real-
ity, however, is to assume that the volume is corrupted by a 
separate, smaller, variance than the circumferential strains:

where �0 ∼ N(0, �2
0
) is a random variable representing the 

additive Gaussian noise on the volume and �̃ ∼ MVN(�, �̃�2�) 
is a random variable representing the additive independent 
identically distributed (iid) Gaussian noise on the circum-
ferential strains. Given that �2

0
 is the variance of the noise 

on only one measurement, this parameter is non-identifiable. 
As a result, we must fix this variance during inference to a 
value obtained in empirical studies. The assumption that 
the 24 circumferential strains are all corrupted by Gaussian 
noise with the same variance ensures that the other vari-
ance parameter, �̃�2 , can be inferred along with the material 
parameters. The noise model from (17) gives rise to the fol-
lowing log-likelihood function:

where fi(�) is the ith circumferential strain prediction 
at material parameters � . Note that, in the I-UQ study, � 
does not contain all the 8 parameters from the H-O model 
(1), instead, we will use an SA study to inform a new 

(16)� = (V , �) + �,

(17)y0 = V + 𝜉0, �̃ = � + �̃,

(18)

l(� ∣ �, �̃�2) = −
1

2
log(𝜎2

0
) −

1

2𝜎2
(y0 − f0(�))

2

−
24

2
log(�̃�2) −

1

2�̃�2

24∑
i=1

(yi − fi(�))
2,
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parametrization of the H-O model where some parameters 
are held fixed.

We assign a uniform prior on the parameters and, in 
light of the observed data, update this prior to a posterior 
distribution for the parameters conditional on the data. For 
intractable models this update cannot be performed analyti-
cally, leading us to use Markov chain Monte Carlo methods 
for sampling from the posterior distribution of the param-
eters. Typically, these methods would not be applicable for 
parameter inference in left ventricle models due to the high 
computational costs. However, through a statistical surro-
gate model (see Sect. 2.3) we obtain an approximation to 
the likelihood in (18) by replacing the expensive evaluation, 
fi(�̃) , with f̂ (�̃) where f̂ (⋅) is given by a GP or an alternative 
regression model that can be trained to efficiently predict the 
outputs of the simulator. Given that the likelihood is now 
an approximation of the true function, we incur a bias in 
our parameter inference that depends on the accuracy of the 
surrogate model. Methods have been developed to correct 
these biases using expensive forward simulations (Rasmus-
sen 2003; Conrad et al. 2016) but for our models this would 
drastically increase the computational costs.

The efficiency of MCMC methods is determined by the 
proposal mechanism. The simplest and best known approach 
is the Metropolis-Hastings (MH) algorithm (Hastings 1970). 
In MH, a move is proposed from x to x′ based on some pro-
posal distribution, q(x�|x) , which is taken to be a normal 
distribution in the Metropolis algorithm. This move is then 
accepted or rejected based on an acceptance ratio, satisfy-
ing detailed balance. MH works in simple problems, but its 
efficiency in more complex scenarios can be poor.

More effective proposal mechanisms that take into 
account the geometry of the posterior surface have been pro-
posed. One example is Hamiltonian Monte Carlo (HMC), 
which uses gradient information to evolve the system 
according to Hamilton’s equations using a series of leapfrog 
steps (see Chapter 5 of Brooks et al. (2011)). More recently 
the No-U-Turn Sampler (Hoffman and Gelman 2014) was 
proposed, offering a variant of HMC where the number of 
leapfrog steps is automatically tuned. This is the method 
adopted for our uncertainty quantification. These more 
sophisticated MCMC methods require gradient evaluations 
and incur greater computational costs for each move in the 
trajectory, making the use of surrogate modelling essential.

MCMC works by generating a Markov chain with the tar-
get distribution as its stationary distribution (Gelman et al. 
2013). To assess convergence to this distribution, we use 
the Gelman-Rubin statistic (Gelman and Rubin 1992) (also 
known as the potential scale reduction factor (PSRF)). The 
Gelman-Rubin statistic requires a set of Markov chains initi-
ated from overly dispersed start points (for instance, a Sobol 
sequence), from which we measure the between and within-
chain variances. Using a weighted sum of these variances 

gives a numerical quantity, for each parameter, that we can 
use to check for convergence. In this work, 5 chains were 
initiated from different start points and a PSRF of less than 
1.01 was taken to indicate convergence to the stationary 
distribution.

3  SA simulation studies

We have carried out two SA experiments on the H-O model, 
the results of which are presented in this section. Sec-
tion 3.1 gives the details of the two experimental studies, 
before Sects. 3.2 and 3.3 describe how GP surrogate models 
were trained and validated. Finally, the experimental results 
obtained using the surrogates are presented and discussed 
in Sect. 3.4.

3.1  Experimental setup

3.1.1  Sensitivity analysis one

In the first numerical experiment, which we refer to as Sensi-
tivity Analysis One (SA1), we perform SA where all eleven 
input parameters detailed in Sect. 2.1.4 are considered ran-
dom variables. The analysis is performed for four differ-
ent output quantities: LVV , �∗

cc
 , �∗

ll
 and �∗

rr
 . For brevity, each 

strain value is considered only in the inferior lateral segment 
at the second short-axial slice from Fig. 3, as the SA results 
for each strain type are similar across the 24 segmental strain 
regions. To examine the influence on the SA results of the 
prior distribution for the eight material parameters, two prior 
distributions are considered for this experiment. In the first 
experiment, the material parameters are considered to be 
independently uniformly distributed between the bounds 
given in Table 3. We refer to this as the uniform-prior. In the 
second experiment, the material parameters are considered 
to be independently uniformly distributed on the log-scale 
between these bounds. We refer to this as the log-uniform 
prior. For both priors, the non-material parameter inputs: 
EDP , �endo and �epi , were considered independently uni-
formly distributed between the bounds stated in Table 3. The 
computation of the Sobol indices (6) and (7) was performed 
using the Python package SAlib (Herman and Usher 2017).

3.1.2  Sensitivity analysis two

In Sensitivity Analysis Two (SA2), the effect of EDP on 
the sensitivity scores of the material parameters of the H-O 
model is explored. Specifically, we fixed the value of EDP 
to each of the values {5, 7.5, 10,… 25} mmHg, and then con-
ducted an emulator-based sensitivity analysis for each fixed 
pressure value. We carried out this experiment because the 
results of SA1 considered EDP as a random variable, with 
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a wide range of uncertainty between 4 and 30 mmHg. In 
practice however, for a given subject, EDP could be a meas-
ured value. For this reason, this study examines whether 
the sensitivity scores of the material parameters vary for 
different fixed EDP values. As discussed in Sect. 2.4, cur-
rently only LVV and �cc can be measured with high accuracy 
from cardiac imaging scans (Mangion et al. 2016), so we 
restrict this analysis to these two output quantities. In addi-
tion, because the material parameters are of primary interest 
in this experiment, we do not consider the two RBM fibre 
generation parameters as random variables for SA2. Instead, 
�endo and �epi were fixed to the values 60o and −90o (Lom-
baert et al. 2011), respectively.

3.2  Surrogate model training

We perform the SA experiments using GP surrogate models, 
as discussed in Sect. 2.3.1; one surrogate each for the four 
output quantities under consideration. Constructing these 
surrogate models requires training data sets of the form of 
(8) to be created for each output. This in turn requires the 
location and number of training inputs to be specified. Given 
the high computational costs incurred with each forward 
simulation of the LV diastolic filling process, we seek to 
choose a set of input points that cover the parameter domain 
described in Sect. 2.1.4 as efficiently as possible. The sim-
plest approach to selecting the input locations would be to 
randomly sample points from a uniform distribution over 
the parameter domain. However, the problem with random 
sampling is that it can lead to a clustering of points in some 
regions of the space, leaving other regions unfilled. For this 
reason, we instead used a Sobol sequence of length 2000 to 
specify the location of the input points. A Sobol sequence 
is a quasi-random, low-discrepancy sequence widely used 
in the design of computer experiments (Fang et al. 2005). 
As we consider two material parameter priors for the SA, 

the first 1000 material parameter samples were taken in 
standard parameter space, and the final 1000 were taken in 
log-parameter space. We then ran a simulation from each 
of these input points and extracted the output quantities of 
interest from each simulation result, yielding a training data 
set of 2000 input-output pairs on which the GP surrogates 
for each output QoI could be trained.

The effect of the two alternative material parameter sam-
pling procedures is illustrated in Fig. 4a, which plots the first 
100 sampled a and b values in standard space, and the first 
100 sampled in log space. By sampling in log space, lower 
stiffness material parameter configurations are favoured. In 
this lower stiffness region where the cardiac tissue is softer, 
the magnitude of the expansion of the left ventricle is more 
sensitive to small changes in the material stiffness param-
eters than the case at higher stiffness levels. As a result, the 
variance observed in the end-diastolic quantities of interest 
is higher under the log-uniform prior than for the uniform 
prior. This is illustrated in Fig. 4b, which displays empiri-
cal density plots for the simulated LVV obtained when run-
ning from the input points of Fig. 4a. With the log-uniform 
sampled points, the distribution of LVV values exhibits a 
significantly longer tail.

Each GP surrogate was fitted using GPflow (Matthews 
et al. 2017) in Python with the squared exponential kernel 
from (15) used to define the covariance structure. As dis-
cussed at the end of Sect. 2.3.1, we used optimisation of 
the marginal likelihood to infer the kernel hyperparameters. 
When training the GPs, we used the log of the eight mate-
rial input parameters as inputs, rather than the raw values. 
This approach is similar in principle to the one adopted by 
Calandra et al. (2016) but with a more context specific trans-
formation. The log transformation accounts for the changing 
rate of function variation over the input space, making the 
function more stationary and hence more compatible with 
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Fig. 4  a Distribution of first 100 a/b values for uniform design (blue), and log-uniform design (orange). b Density plots for LVV for simulations 
run from input points in (a)
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the stationary kernel function we use here (see section 4.2.1 
of Rasmussen and Williams (2006)).

3.3  Surrogate model validation

By performing the SA experiments with surrogate models 
rather than the true forward model, we will introduce some 
error in the calculation of the Sobol indices (6) and (7). It 
is therefore essential that the accuracy of the surrogates is 
validated. We did this by evaluating their accuracy on a set 
of 100 independent test simulations from the forward model. 
The input locations that the test simulations were run from 
were found by continuing the Sobol sequence used to gener-
ate the training data for a further 100 points. Note that, for 
the material stiffness parameters, the sequence was run in 
log space, which favours less stiff material parameter con-
figurations as discussed in Sect. 3.2 above. The accuracy 
of the surrogates was quantified using the Q2 coefficient. If 
we denote the true outputs from the simulator as �∗ , and the 
predictions of the GP surrogate as �̂∗ , where �̂∗ is set to be the 
posterior mean in (13), then the Q2-coefficient is defined as:

where �̄∗ is the vector of the mean value of the test outputs. 
This definition is analogous to that for the R2 coefficient, 
except it is calculated on out-of-sample, rather than in-sam-
ple data. The Q2-coefficient gives the proportion of the vari-
ance in the test outputs that is accounted for by the surrogate 
model, with values close to one indicating that the surrogate 
has high predictive accuracy.

3.4  Results

3.4.1  Surrogate model verification

The SA experiments were performed using GP surrogate 
models with squared-exponential covariance functions, as 
described in Sect. 3.2. For the four output quantities of inter-
est in the SA, LVV , �∗

cc
 , �∗

ll
 and �∗

rr
 , we validate the accuracy 

of the surrogates on the 100 test simulations detailed in 

(19)Q2 = 1 −
(�∗ − �̂∗)⊤(�∗ − �̂∗)

(�∗ − �̄∗)⊤(�∗ − �̄∗)

Sect. 3.3. Table 4 presents the Q2-coefficient for the four out-
puts, to two decimal places. The Q2 values for LVV , �∗

cc
 and 

�∗
ll
 are each 0.98, indicating very strong agreement between 

the true outputs and the predictions of the surrogate model. 
The surrogate model for �∗

rr
 is less accurate, with a Q2-coef-

ficient of 0.86. Nevertheless, this value still indicates good 
predictive accuracy, and for this reason, we proceeded to use 
these trained surrogates to perform the two SA experiments 
described in 3.1. Additional validation results for the GP 
emulators are given in Appendix A, including the learned 
kernel hyperparameter values from Equation (15) and con-
tour plots of the posterior GP mean and standard deviation.

3.4.2  Sensitivity analysis one

The results of SA1 are displayed in Fig. 5. All eleven input 
parameters detailed in Sect. 2.1.4 are assumed to be random 
variables in this experiment. As discussed in Sect. 3.1, the 
analyses are repeated for two prior distributions over these 
inputs; the uniform prior, and the log-uniform prior, where 
the log-uniform prior favours less stiff material parameter 
configurations. Four output quantities of interest at end-
diastole are considered: LVV , �∗

cc
 , �∗

ll
 and �∗

rr
 . The four rows 

of Fig. 5 correspond to each of these output quantities, while 
the left column shows the results under the uniform prior, 
and the right column shows the results under the log-uni-
form prior. The analyses were carried out using the sampling 
approach detailed in Sect. 2.3. That is, rather than plug in 
the point estimate (13) from the GP surrogate when numeri-
cally evaluating the Sobol indices, 250 samples were drawn 
from the posterior distribution of the GP (12). The Sobol 
indices were then evaluated for each sample, resulting in an 
ensemble of estimated indices. The bars in Fig. 5 correspond 
to the ensemble mean values, and a boxplot is then overlaid 
on each bar, showing the uncertainty we have in the index 
values.

Comparing the two columns of Fig. 5 allows the effect 
of the two different prior distributions on the SA indices 
to be assessed. Under the log-uniform prior, more prob-
ability mass is placed on less stiff material parameter con-
figurations than is the case for the uniform prior, which 
in turn leads to a significant tail in the distribution of the 
magnitudes of the resulting simulated displacements. This 
effect is illustrated in Fig. 4. Nevertheless, the SA results 
under the two priors indicate qualitatively reasonable 
agreement. That is, inputs that have close to zero influence 
under one prior tend to have close to zero influence under 
the other, with the same agreement observed for highly 
influential inputs. The exception to this is the influence of 
EDP , which exhibits significantly less influence on each 
QoI under the log-uniform prior. This issue is discussed 
in more detail below.

Table 4  Surrogate Model Verification Results: Q2-coefficient val-
ues for the four output quantities considered for the SA experiments, 
calculated on a set of 100 independent simulations from the forward 
model

Output Q2

LVV 0.98
�∗
cc

0.98
�∗
ll

0.98
�∗
rr

0.86
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Considering the sensitivity indices observed for the mate-
rial stiffness input parameters, we can see that a, b, af and 
bf are clearly the most influential on the output quantities 
of interest. For all analyses except �∗

cc
 under the uniform 

prior, either a or b has the highest total-effect index, with 
the effect of a tending to be larger under the uniform prior, 
while b is generally more influential under the log-uniform 
prior. Parameters af and bf tend to have lower, but still 

significant sensitivity indices, and for LVV under the log-
uniform prior they are the third and second most influential 
inputs, respectively. By contrast, the total-effect sensitivity 
indices are always lower for as , bs , afs and bfs than the other 
material parameters, for each combination of output quan-
tity and material prior distribution, and in many cases their 
indices values are very close to zero. Given that these four 
parameters have very little influence on the variation in the 
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Fig. 5  SA1 Results. The left column shows the SA results under the uniform material parameter prior, and the right column shows the results 
under the log-uniform prior. Each row corresponds to one of the four output QoIs respectively
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model outputs, if we now consider the inverse problem of 
trying to estimate their values given from noisy experimen-
tal data, they will be essentially non-identifiable. For this 
reason, in subsequent experiments we fix them to values 
from the literature (Gao et al. 2017b). EDP has significant 
first-order and total-effect sensitivity indices for each output 
quantity under the uniform prior. However, under the log-
uniform prior, the influence of EDP is lower for all outputs. 
For LVV and �∗

rr
 in particular, the influence of EDP is close 

to zero. This is because the log-uniform prior places more 
weight on low material stiffness parameter configurations, 
as illustrated in Fig. 4a, aggregated in the left bottom corner. 
For sufficiently low material stiffness parameter values, the 
magnitude of LVV and �∗

rr
 values at the end of diastole are 

very high, across the entire range of EDP values considered 
in this study. As a result, the influence of EDP on observed 
variance for LVV and �∗

rr
 is suppressed by the large influ-

ence of the material stiffness parameters, resulting in Sobol 
indices that are close to zero. By contrast, �∗

cc
 and �∗

ll
 do not 

exhibit the same level of skewness under the log-uniform 
prior, meaning that the influence of EDP on these two QoIs 
remains significant. For both choices of prior, the fibre ori-
entation angles �endo and �epi tended to have a low, but still 
clearly non-zero, impact on the end-diastolic output quanti-
ties. The exception to this was �∗

rr
 under the log-uniform 

prior. Here, �endo shows a small first-order sensitivity index, 
but a large total-effect index.

Note that, in response to a reviewer’s suggestion, we have 
also included results of SA1 for an additional QoI, the apical 
torsion, in Appendix B.

3.4.3  Sensitivity analysis two

In SA2, EDP was not assumed to be a random variable. 
Instead, a range of fixed EDP values (5, 7.5, … 25) mmHg 
were considered, and a separate SA was carried out for 

each fixed value. The objective of this experiment was to 
quantify how this fixed EDP value impacts the Sobol indi-
ces of the material parameters. This is because, for a given 
subject, EDP will not be a random variable over the range 
[4, 30] mmHg as in SA1, but will be a fixed value, which 
can in principle be measured. Two output QoIs are ana-
lysed; LVV and �∗

cc
 . Since the material parameters as , bs , 

afs and bfs exhibited very low influence on LVV and �∗
cc

 in 
SA1 (see Fig. 5), we fix these parameters in this study and 
concentrate our analysis on the material parameters a, b, af 
and bf . The fixed values are those published in (Gao et al. 
2017b), namely as = 0.69 kPa, bs = 1.11 , afs = 0.31 kPa 
and bfs = 2.58 . In addition, because the material param-
eters are of primary interest here, the RBM parameters 
�endo and �epi are also considered fixed, to the values 60o 
and −90o , respectively.

The results of this experiment are displayed in Fig. 6 for 
the uniform prior and Fig. 7 for the log-uniform prior. As 
in SA1, the GP sampling approach discussed at the end of 
Sect. 2.3 was used to generate an ensemble of total-effect 
Sobol index values at each fixed EDP value. The solid lines 
in Figs. 6 and 7 show the ensemble mean values, while the 
dashed lines indicate 95% credible intervals (CIs). These 
results exhibit stability under the different choices of prior. 
That is, the effect of EDP on the Sobol indices of each 
material parameter is qualitatively similar for both the uni-
form and log-uniform prior distributions. For LVV under 
the uniform prior the effect of a decreases with rising 
EDP , while the effect of b increases slightly, whereas the 
sensitivity scores of af and bf do not exhibit large variation 
as a function of EDP . Under the log-uniform prior, the 
influence of all four material parameters remain constant 
as a function of EDP . This is consistent with the results of 
SA1, where the Sobol indices of EDP for LVV were found 
to be close to zero with the log-uniform prior. For �∗

cc
 , the 

effect of EDP on the sensitivity indices of the material 

Fig. 6  SA2 Results under the uniform material parameter prior. The dashed lines indicate 95% credible intervals
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parameters tends to be larger than for LVV . Specifically, 
the total-effect scores of b and bf on �∗

cc
 increase as EDP 

rises, whereas the total-effect scores of a and af decrease 
with rising EDP.

4  I‑UQ simulation studies

We now use an I-UQ study to build on the results of the 
SA. The details of the study to be carried out are given in 
Sect. 4.1, the implementation and results of which are dis-
cussed in Sect. 4.2 and Sect. 4.4, respectively.

4.1  Experimental setup

4.1.1  Inputs and outputs of the emulator

As explained in Sect. 2.4, only the circumferential strains 
and end-diastolic volume were included in the outputs of the 
I-UQ emulator. Motivated by the results of Sect. 3.4.2, we 
adopted a reduced parameterization of the H-O model (1) 
where as, bs, afs and bfs were held fixed to values obtained 
from the literature (Gao et al. 2017b). Additionally, the fibre 
angles were held fixed at �endo = 60o and �epi = −90o , as 
discussed in Sect. 2.4. The resulting five dimensional input 
space, containing a, b, af , bf and EDP, is identical to the one 
considered in Sect. 3.4.3.

4.1.2  Test data generation

For the I-UQ, we require a set of test data to be used as 
observations for the posterior inference. These were gen-
erated by running the simulator from Sect. 2.1 at various 
different material parameter configurations. This is identi-
cal to the procedure for generating the training data of the 

emulator, with some discrepancy introduced in the form of 
additive Gaussian noise as outlined in Sect. 2.4. A total of 
100 test simulations were obtained at EDPs of 5,10,15,20 
and 25 mmHg. For each EDP, the same 100 unique mate-
rial parameter configurations were used for the simulations, 
generated from a log-Uniform distribution with bounds 0.1 
and 10. Out of the 100 simulations one led to an error in 
the simulator as a result of excessive distortion of the LV 
mesh, causing numerical instabilities and unconverged solu-
tions. For this reason, the final test set contained 99 data 
points. Of interest is I-UQ in the presence of noisy data, 
so Gaussian noise with standard deviation 5 ml was added 
to the simulated volumes and Gaussian noise with stand-
ard deviation 0.03 was added to the circumferential strains, 
motivated by results in the literature (Zhang et al. 2021). 
The volume standard deviation was informed by an empiri-
cal study where different operators independently extracted 
the LV geometry from the CMR scan using the same recon-
struction approach. The use of different noise variances on 
volumes and circumferential strains is consistent with the 
noise model in (17).

4.2  Surrogate model training

As discussed in Sect. 2.4, the computational costs of the 
simulator make statistical emulation (see Sect. 2.3) a neces-
sity for I-UQ in any reasonable time frame. For each of the 
25 outputs (24 circumferential strains and end diastolic vol-
ume) we build an independent GP emulator, which requires a 
set of training data. The design for statistical emulation was 
discussed in Sect. 3.2 and here we use a Sobol sequence in 
log material parameter space. In total, 2000 training simula-
tions were used and the GP emulator was trained over the 
joint space of pressure and log material parameters.

Fig. 7  SA2 Results under the log-uniform material parameter prior. The dashed lines indicate 95% credible intervals
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4.3  Surrogate model validation

The surrogate model was validated on a set of 100 points 
generated from a Sobol sequence in log material parameter 
space. The Q2 metric, which was discussed in Sect. 3.3, 
was used with the results provided in Table 5. Due to the 
reduction in dimension of the emulator input space the per-
formance is slightly better than with the SA emulator in 
Table 4.

4.4  Results

4.4.1  I‑UQ results in parameter space

Of interest is the certainty with which we can infer the param-
eters and how this is affected by EDP. For each of the 99 test 
cases at all five values of pressure, we sampled the material 
parameters conditional on the synthetic observed data, gen-
erated according to Sect. 4.1.2. The MCMC samples were 
obtained in the joint space of the four material parameters, 
but to summarize the results we will consider the marginal 
posterior of each of the four parameters. Several example mar-
ginal posterior density plots are found in Fig. 8. These plots 

highlight the difference in the practical identifiability of the 
material parameters. In particular, the distributions for a and 
af tend to be more peaked than those of b and bf . In the case of 
high practical identifiability, we expect a more peaked distri-
bution, which can be quantified using the interquartile range 
(IQR). Taking the inverse of the IQR (denoted as I-IQR) pro-
vides a quantity that is analogous to the sensitivity index used 
in the SA, with large values indicating better practical identifi-
ability of the parameters, as demonstrated in Fig. 9. Since we 
have 99 different test cases, a set of 99 different I-IQR values 
at each of the five different pressure values is obtained, giving 
us five different distributions of I-IQR values as plotted in each 
subplot of Fig. 10. These are plotted in the form of violin plots, 
which are similar to boxplots but provide extra information in 
the form of a kernel density estimator (indicated by the shape 

Table 5  Surrogate Model Verification Results: Q2 coefficient value 
for the two outputs considered for the I-UQ experiments, calculated 
on a test-set of 100 simulations from the forward model. The values 
are rounded to three digits

Output Q2

LVV 1.00
�
cc

1.00

Fig. 8  Example posterior density plots obtained from the MCMC samples of the material parameters. Each subplot provides the marginal poste-
rior densities for a separate test case, with the vertical lines showing the ground truth parameter value

Fig. 9  Demonstrating the I-IQR metric. For more peaked distribu-
tions (lower uncertainty), the I-IQR is larger and indicates improved 
practical identifiability. These distributions are purely for demonstra-
tive purposes
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of the violin). In the plots of a and af , we see the general trend 
of the I-IQR decreasing as EDP increases. For b and bf , the 
I-IQR of the marginal posterior distribution increases as EDP 
increases, suggesting the practical identifiability improves. The 
change in I-IQR is greater for a and b than af and bf . These 
results are in general agreement with the results of SA2 (see 
Sect. 3.4.3), as shown in Fig. 11.

In Fig. 10, we saw the change in the spread of p(I�|P) over 
P, where I� is the I-IQR of the marginal posterior distribution 
of � and P is EDP. For a and af , the spread of this distribu-
tion decreases while for b and bf , the spread increases as we 
increase P. In Fig. 12, we take this a step further and consider 
the distribution p(I�|P,V) where V is the LVV, simulated at 
pressure 10 mmHg. To do so, we arrange the test cases in bins 
according to their LVV, with:

These values were selected using the 0.25, 0.5 and 0.75 
quantiles of the test set LVVs (at EDP=10 mmHg). The ith 
column of plots show the distributions p(I�|P,V = vi) over 
the range of pressures. That is to say that within subplot 
i, the different boxes show the distribution p(I�|P,V = vi) , 
with the EDP indicated by the labels of the horizontal axes 
in the bottom row. Therefore, if we wish to compare the 
distributions p(Ia|P = 15,V) over varying V , we should com-
pare the 3rd box in each subplot of the first row of Fig. 12.

All the distributions in the first column of boxplots (cor-
responding to LVV<102 ml) have a low median value and 

∙ v1 ∶ LVV < 102 ∙v2 ∶ 102 < LVV < 126

∙ v3 ∶ 126 < LVV < 153 ∙v4 ∶ LVV > 153.

Fig. 10  Distributions of I-IQRs of marginal posterior distributions, conditional on data obtained at each of the five different EDPs

Fig. 11  A comparison of SA2 and I-UQ. The I-UQ results are pre-
sented by orange bars showing the median I-IQR from the 99 test 
cases at each pressure. The SA2 results under the uniform prior 

(strains=SU and volume=VU) are provided as trend plots, allowing 
us to see the agreement between the results of the two studies
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very little spread. This indicates the difficulty of inferring the 
parameters when the material is very stiff. As we increase V , 
the I-IQR gradually moves away from zero and the pattern 
in p(I�|P,V = vi) begins to resemble the pattern we saw in 
Fig. 10. These plots suggest that the value of the parameters, 
which influences the LVV, impacts their identifiability. This 
feature will now be explored in more detail.

Figure 13 shows 2D projections of the 99 test inputs 
from Sect. 4.1.2. These 2D projections show the value of 
a primary parameter (the first parameter in the plot title) in 
the horizontal axis and a secondary parameter (the second 
parameter in the title) in the vertical axis. The shading of the 
points indicates the value of the I-IQR of the marginal poste-
rior density of the primary parameter, where the parameters 
have been inferred conditional on the test data obtained by 
simulating to EDP as indicated by the title of the subplot. 
In general, if the ground truth value of a parameter is large 
(moving left to right on the horizontal axis of a subplot) 
the I-IQR of the marginal posterior distribution is small. 
Inconsistency in the pattern of I-IQR values suggests there 
are other factors influencing the I-IQR values and this will 
now be explored with several specific test cases.

To display some of the effects of parameter values on the 
I-UQ, several examples are highlighted in Fig. 13. The dif-
ferent edge colours and shapes allow us to see the value of 
the material parameters for 5 different configurations, which 

are also given in Table 6. The results for these configurations 
are considered in more detail in Fig. 14, where the colour 
and shape of the scatter points match those in Fig. 13. �4 
gives an example where all parameters clearly follow the 
general pattern seen in Fig. 10. In the case of �1 and �2 , 
the large value of b contributes to a low I-IQR of bf at all 
pressures. This effect of b on the inference of bf at pressure 
25 mmHg is also seen in the bf − b−P=25 plot in Fig. 13, 
where all points in the upper left corner ( bf small and b 
large) are lightly coloured. In �3 , we see an example where 
despite a being small, the I-IQR is fairly small. This shows 
the influence b and af can have on the identifiability of a. 
When we push the model to extreme configurations, such as 
�5 where a is large and all other parameters are small, we get 
strange patterns in the I-IQR distributions. In this case, the 
I-IQR of b and bf is huge at high pressure and the I-IQR of 
af increases as pressure increases. This last feature is only 
observed in these more extreme cases, while a marginal pos-
terior distribution for b and bf with large I-IQR relies on 
these parameters being very small. Overall, these different 
examples show the dependence of the parameter identifi-
ability on the values of the other parameters. In particular, 
this leads to a large spread of the distribution of I-IQRs of 
a and af at low pressure and b and bf at large pressures. A 
further analysis of the I-IQR changes over parameter space 
is provided in Appendix C, see Fig. 19 for details.

Fig. 12  We can split up the I-IQR distributions based on LVV and 
consider the changes in the distribution of I-IQR with pressure and 
LVV. Each subplot shows the I-IQR of the marginal posterior for a 
particular material parameter (per row) for parameter configurations 
that give a simulated LVV at pressure 10 mmHg in a particular range 
(per column). For instance, the subplot in the second column from the 

left of the second row from the top provides the distribution of I-IQR 
values of the marginal posterior distributions of b for test parameter 
configurations with simulated LVV between 102 and 126 ml at pres-
sure 10 mmHg. The limits of the vertical axes are all the same and 
have been removed because they are not required for interpretation of 
the plots
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4.4.2  I‑UQ results in stress–stretch space

Any interpretation of inference results in terms of sum-
maries of marginal posterior distributions is limited by the 
correlations that exist between the material parameters. In 
an attempt to overcome this, we also consider the inferred 
tissue properties in stress–stretch space, where we simulate 
the uni-axial stretch of a myocardial strip under a given set 

of material parameters of the H-O model (1). This is done 
by virtually stretching a myocardial strip along the myocyte 
and sheet directions in a uni-axial manner. In detail, two 
myocardial strips are considered here, one is stretched along 
the myofibre direction and the other one is stretched along 
the sheet direction with the stretch � = l∕L , in which l and L 
are the current and the reference lengths of the same myocar-
dial strip. Finally the corresponding stress can be calculated 
using the H-O model by assuming homogeneous deforma-
tion occurring in the entire strip. The interested reader can 
refer to (Guan et al. 2019) for more details. From a poste-
rior sample of material parameters obtained using MCMC, 
we can determine a posterior distribution of stress–stretch 
curves, which is repeated for each of the 99 test cases at 
each of the five pressures. These distribution of curves are 
obtained by simulating the deformation of a sample of tissue 
as characterized by the H-O model (1). Repeating for each 
sample from the posterior distribution of parameters gives 
a posterior distribution of stress–stretch curves.

Fig. 13  Scatter plot of test points in 2D, coloured based on the 
I-IQR of the marginal posterior distribution. The title of each plot, 
x − y − P = z gives the parameter of the horizontal axis (x), the 
parameter of the vertical axis (y) and the end-diastolic pressure (P) at 
which the parameters are inferred (z). The points are shaded based on 
the I-IQR of the marginal posterior distribution of parameter x. Sev-

eral points are highlighted (by colour and shape) to be looked at more 
extensively in proceeding visualizations in Fig. 14, corresponding to 
the five configurations listed in Table 6. All subplots share the same 
bounds on the vertical and horizontal axes so these are only provided 
for the outer plots. Units: P  (mmHg), a  (kPa), a

f
  (kPa), b  (unitless), 

b
f
 (unitless)

Table 6  The four parameter configurations being considered in 
greater detail

Config a (kPa) b af (kPa) bf

�
1

1.13 9.63 0.16 0.45
�
2

0.85 7.22 1.24 1.91
�
3

0.46 6.48 7.20 0.18
�
4

0.62 2.73 3.04 1.38
�
5

4.46 0.10 0.18 0.75
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Firstly, we are interested in the uncertainty in the inferred 
tissue properties, which will be measured using the I-IQR 
of the stress distribution at given levels of stretch. From the 
99 test cases, we get a distribution of I-IQR at each level of 
stretch, as shown in Fig. 15. The value decreases for all end 
diastolic pressures as the stretch location increases but the rate 
of this decrease is different for the different end diastolic pres-
sures. This means that at low stretch the lowest uncertainty 
in the stress distribution was achieved using low pressure 
data (higher I-IQR scores, in general) while at high stretch, 
the lower uncertainty was achieved using high pressure data. 
The median inverse absolute error, plotted in Fig. 16, shows 
a similar pattern: at low stretch, the median inverse absolute 
error stress is highest for pressure 5 and lowest for pressure 
25. As we increase the stretch, the pattern gradually reverses.

5  Discussion

The objective of this paper has been to perform SA and I-UQ 
experimental studies of the passive mechanics of the left 
ventricle using the H-O myocardial model. As illustrated in 
Fig. 2, these analyses are complementary; the SA quantifies 
how the structure of the model affects observed data (for-
ward modelling effect), while the I-UQ quantifies how well-
observed data can be used to identify the model structure 
(inverse modelling effect). A total of eleven model input var-
iables were considered across all studies: the eight material 
parameters of the H-O model, EDP , and two inputs to the 
RBM fibre generation algorithm. In addition, four different 
output quantities of interest were considered in total: LVV , 

Fig. 14  Plotting the change in I-IQR of the marginal posterior distributions over different EDP (mmHg) range for the test cases highlighted in 
Fig. 13. The colours and shapes of the symbols match those in Fig. 13, and the x-axis represents various EDP range

Fig. 15  Representing our uncertainty about the tissue properties at 
different EDPs (in mmHg). From each posterior distribution of mate-
rial parameters, we obtain a distribution of stress-stretch curves (one 
curve for each sample). At different stretch locations, we calculate the 
inverse interquartile range of the stress distribution. Based on the 99 

test cases, we get a distribution of these inverse interquartile ranges 
as found in the boxplots. This can be repeated for test data at different 
end diastolic pressures to assess the certainty of our estimation of the 
tissue properties at different pressures
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 , all measured at end-diastole. These input and 

output quantities are discussed in Sects. 2.1.4 and 2.1.5 , 
respectively. All experiments were performed with respect 
to the left ventricular geometry of a healthy volunteer. The 
SA experiments focused on assessing how uncertainty in 
each of the a-priori uncertain input variables accounted for 
the uncertainty observed in the output quantities of interest. 
The I-UQ analysis then built on the results of the SA, to 
quantify how identifiable the most important material stiff-
ness parameters were from noisy data, with emphasis on 
quantifying how these identifiability levels were affected by 
changing EDP values.

LV diastolic dysfunction, characterized by impaired LV 
relaxation and increased myocardial stiffness, is one of the 
main underlying reasons of heart failure with preserved ejec-
tion fraction syndrome (Zile et al. 2004), consisting half 
of the heart failure cases (Owan et al. 2006). LV diastolic 
dysfunction is also very common after myocardial infarction 
with reduced ejection fraction (Søholm et al. 2016). Recent 
research in this area includes (Zhang et al. 2021; Peirlinck 
et al. 2019). Thus reliable and non-invasive inference of dias-
tolic function using routinely available clinical data is highly 
needed. Our study is the first to perform a comprehensive 
global sensitivity analysis and I-UQ of the H-O model in LV 
passive biomechanics. The inference framework detailed in 
this study is not limited to passive LV mechanics, but can 
be applied in other contexts such as active contraction and 
electrophysiology, for example. The clear takeaway from the 
results of the SA is that the material parameters a, b, af and 

bf are of primary importance to the four output quantities of 
interest considered, of which a and af can be fairly inferred 
using in vivo data. While the relative importance of these 
parameters varies under the two different prior distributions, 
Fig. 5 shows that they are consistently the most important 
inputs for each QoI. In contrast, the material parameters as , 
bs , afs , bfs have either zero or close to zero influence for each 
output quantity and prior distribution configuration.

We see the small influence as justification for a low-
order re-parameterization of the H-O model, where these 
parameters are set to fixed values, rather than discarding the 
two related terms in Equation (1), since such reduction may 
not fit the experimentally measured stretch-stress data well 
(Holzapfel and Ogden 2009; Guan et al. 2019). Future stud-
ies can focus on the clinical significance of those 4 param-
eters (a, b, af , bf ), and develop new imaging techniques to 
improve parameter identifiability, such as MR elastogra-
phy (Troelstra et al. 2021).

By using the Guccione myocardial model in LV diastolic 
filling, Rodriguez-Cantano et al. (2018) showed that the gen-
eral stiffness parameter C has the highest sensitivity for their 
chosen quantities of interest, around 70%, much higher than 
other constitutive parameters. They further found that the 
total Sobol indices for the parameters associating with the 
fibre direction, the sheet direction and the shear response 
were clearly not zero. Similar results were reported in their 
subsequent study (Campos et al. 2019). While we found 
that the parameters associating with the sheet direction and 
shear response, in general, have very low sensitivity, but the 

Fig. 16  The error in the inferred tissue properties at different EDPs 
(in mmHg). From each posterior distribution of the material param-
eters, we obtain a distribution of stress–stretch curves (one curve for 
each sample). We possess the ground truth stress-stretch curves and 
can obtain the median inverse absolute error in the distribution of 

stress–stretch curves. Based on the 99 test cases, we get a distribution 
of these median inverse absolute errors. This can be repeated for test 
data at different end diastolic pressures to assess the accuracy of our 
estimation of the tissue properties at different pressures
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parameters for the isotropic response and fibre reinforcement 
have high sensitivity, see Fig. 5. Those different findings 
may be due to different constitutive laws, QoIs and param-
eter ranges used in the two studies.

Computational studies have shown that myofibre archi-
tecture, such as fibre angles, can have a substantial impact 
on LV mechanics, but not the sheet angle (Wang et al. 
2013; Palit et al. 2018; Guan et al. 2021). Thus in this 
study, we only included the fibre rotation angles in the 
inputs. These angles were found to generally have a low 
influence on the observed variations in the output quanti-
ties, but not zero in general, especially for radial strains. 
Similar results have been reported in Rodriguez-Cantano 
et al. (2018). Fibre angles have been found to potentially 
have an even higher impact on myocardial active contrac-
tion (Campos et al. 2019). In the literature, non-rotation-
ally symmetric distributions (Holzapfel et al. 2019), such 
as �-periodic Von Mises distributions, have been used to 
model fibre dispersion in the myocardium (Guan et al. 
2021). Due to limited measured data for describing local 
fibre distribution variations, we also have not included the 
uncertainty in fibre dispersion. Future sensitivity studies 
shall incorporate both uncertainties in the fibre rotation 
angles (i.e. a truncated Karhunen-Loeve expansion (Rod-
riguez-Cantano et al. 2018)) and fibre dispersion, in par-
ticular for myocardial contraction.

LV cavity pressure usually needs to be measured in 
an invasive way, thus it is not available for most cardiac 
patients. Instead, many existing studies rely on population-
based EDP (Gao et al. 2017a; Genet et al. 2014). LV EDP 
was found to have high importance for the uniform prior, 
while its influence declined under the log-uniform prior, 
as discussed in Sect. 3.4. The high sensitivity of EDP dur-
ing the diastolic filling highlights the need for accurate 
measurement of EDP , in particular by using non-invasive 
approaches. One such recent development is using 4D car-
diac CMR flow imaging to estimate realistic ventricular 
relative pressure (Marlevi et al. 2021). We also see from the 
results of SA2 in Figs. 6 and 7 respectively that the influence 
of the material parameters a, b, af and bf on circumferential 
strains can vary significantly as a function of the value of 
EDP when it is considered a known input. This has impor-
tant implications when we consider the inverse problem of 
trying to estimate these parameters from experimental data 
for a given patient with a measured LV EDP.

Considering the results of the I-UQ study, in Fig. 10 we 
found that, as we vary EDP , the uncertainty in the marginal 
posterior distributions changes as follows: the uncertainty of 
a and af increases as we increase pressure while the uncer-
tainty of b and bf decreases. This uncertainty was measured 
using the I-IQR metric (see Fig. 9). This trend in identifi-
abilities over EDP agrees with the SA results from Fig. 6, 
especially if we consider the fact that our inverse estimation 

is based on a set of measurements containing 24 circum-
ferential strains and only one end-diastolic volume ( LVV ), 
meaning that the circumferential strains carry extra weight 
in the likelihood function from (18). These results are also 
in line with our physical interpretation of the parameters, 
which is that a and af govern low stretch behaviour of the 
myocardium while b and bf govern high stretch behaviour 
in the nonlinear regime.

We found that there is quite a large change in the spread 
of the distribution of I-IQR values, suggesting variation in 
the identifiability of the parameters. In particular, parameter 
inference in the case of large material parameters tends to 
lead to lower I-IQR values. This is a result of the non-sta-
tionarity discussed in Sect. 3.2, leading to improved param-
eter identifiability in the region where the function varies 
more rapidly. For emulation purposes, a log-transformation 
was proposed to account for this effect in the GP model.

The interpretation of inference results in terms of mar-
ginal posterior distributions is confounded by the strong 
coupling that exists between the parameters of the H-O 
model. To overcome this, we also considered our results 
in stress-stretch space, providing a more direct measure-
ment of tissue behaviour that takes into account the entire 
set of material parameters. Figure 15 showed the change in 
distributions of inverse IQRs for different EDP at different 
uni-axial stretches. As we expect, the uncertainty in stress 
locations increases as the stretch increases and the pressure 
that provides the lowest uncertainty in the stress distribution 
increases. This pattern in the pressures is intuitive, since 
larger pressures give us information about the behaviour 
of the tissue at higher stretch locations. We also used the 
stress–stretch curves to assess the accuracy of our inference 
in Fig. 16. These results show the same behaviour as the 
IQR results, with high pressure data giving lower error in 
the high stretch region.

6  Future work

In this Section, we describe a number of ways in which 
future work could expand on the analyses presented in this 
manuscript.

For our experiments, we have used Gaussian process sur-
rogate models to directly emulate the chosen output QoIs. 
An alternative emulation approach would have been to con-
struct a surrogate model for the displacement of the LV in 
diastole. Any output QoI, such as LVV, could then be calcu-
lated from the deformed geometry predicted by the emula-
tor. The primary advantage of the approach we have taken 
in this work is prediction speed. By directly emulating the 
real-valued output QoIs, we significantly reduce the number 
of operations required to make a prediction compared to a 
displacement-based emulation approach. This in turn allows 
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the SA and I-UQ experiments to be performed significantly 
faster. In addition, we show in Sections 3.4.1 and 4.3 that 
the direct GP emulators display strong accuracy with respect 
to the forward model. We believe, however, that emulation 
of the LV displacement field using Graph Neural Networks 
(GNNs) (Murphy 2021, Chapter 23) has the potential to 
accurately emulate LV mechanics. A GNN can act directly 
on the same computational mesh representation of the LV 
geometry as the forward simulator, without requiring a low-
order approximation. This is in contrast with existing work 
on emulation of the LV displacement field, which makes 
low-order approximations to the displacement field (Buoso 
et al. 2021) or LV geometry (Maso Talou et al. 2020). How-
ever, designing a GNN architecture that can obtain high 
accuracy on this challenging emulation problem, while 
simultaneously delivering large computational savings over 
the numerical forward simulator, is a substantial research 
project in its own right. It is hence beyond the scope of this 
study, but will be the subject of future work.

One limitation of the the SA experiments presented in this 
study was the use of uninformative prior distributions for the 
input parameters of the forward model. Uninformative priors 
were used as the true population distribution is unknown. An 
alternative approach would be to construct a prior distribu-
tion via rejection sampling, which has the potential to better 
approximate the population distribution. This can be done 
by first sampling an input point from the uniform distribu-
tion over the input space, before running a simulation from 
that point. If the resulting displacement field exhibits non-
realistic behaviour, the sample is rejected. Several criteria 
can be used to specify non-realistic behaviour. One possible 
criterion could be that the magnitude of the inflation of the 
left ventricle from start to end diastole does not exceed some 
prescribed value, which is assumed to be the limit of what is 
likely to be observed in experimental data. Repeated samples 
obtained with this procedure can better reflect samples from 
the true population distribution than those from the uniform 
and log-uniform priors. We did not pursue this idea in this 
work as this procedure is likely to produce a prior distribu-
tion relatively similar to the uniform distribution (albeit at 
higher computational costs), since we have observed that 
most extreme behaviour of the simulated volume and strain 
values occurs for very low material stiffness parameter val-
ues, where the uniform prior already assigns low probability 
mass. We have already seen broad consistency between the 
SA results under the uniform and log-uniform priors, despite 
the large differences in how these distributions assign prob-
ability mass to the material parameter space.

In the I-UQ study, the noise added to the circumferential 
strains was assumed to be iid Gaussian distributed, allow-
ing us to focus on I-UQ without the confounding effect of 
measurement bias. The effect that measurement bias has on 
inference is similar to that of model discrepancy, resulting 

in parameter estimates that have less interpretability in 
terms of physical descriptions (Lei et al. 2020). As such, 
the methods proposed by Kennedy and O’Hagan (2001) for 
accounting for model discrepancy could similarly be applied 
in this context. However, Brynjarsdóttir and O’Hagan (2014) 
showed the importance of including prior knowledge in such 
a model, making this a fairly substantial direction of future 
research, requiring first a consideration of the limitations of 
the model and measurement process (this could be based 
on studies carried out in the literature, such as Berberoğlu 
et al. (2021)), and then a way for including this knowledge 
in the model. The first author has started preliminary work 
to improve the model in this direction, which can be found 
in Lazarus (2022, Chapter 9).

The quantities of interest are chosen based on routinely 
available in vivo CMR measurements. For example, LVV 
and circumferential strains have been widely used for clini-
cal diagnosis. Future studies shall extend the model to con-
sider both passive filling and active contraction (Campos 
et al. 2020), and to include other measurements such as ejec-
tion fraction, the rate of systolic pressure increase, etc., and 
further extend it to a coupled electro-mechanics full-heart 
model (Levrero-Florencio et al. 2020).

We have used a well-established model for left ventricle 
passive mechanics, instead of a more complex model. This is 
because the purpose of the study was on sensitivity analysis 
and uncertainty quantification of passive mechanics, with 
emphasis on experiments that are feasible to perform using 
data available in-clinic and that can provide insights into 
cardiac function. We also employed a widely used strain 
invariant-based H-O model for the myocardium (Gao et al. 
2017a; Peirlinck et al. 2019). However, the existing literature 
has not comprehensively investigated the practical parameter 
identifiability of the H-O model given data available from 
non-invasive measurements. We expect that the statistical 
approaches developed in this study can be readily applied to 
other myocardial strain energy functions used in Genet et al. 
(2014) and Hadjicharalambous et al. (2017).

A further future research direction is to address the fact 
that geometrical uncertainty has not been considered yet, 
which can arise from the imaging protocol, the segmentation 
procedure and the reconstruction, etc. For a detailed review 
of uncertainties associated with cardiac models, the reader is 
referred to Mirams et al. (2016) and the presentations given 
at the workshops of “The Fickle heart” programme1 held 
at the Isaac Newton Institute, 2019 (Mirams et al. 2020). 
Finally, we would like to mention that only the data at end-
diastole has been used for parameter inference, while the 
SA and I-UQ analysis in this study has suggested that extra 
measurements at high pressure will improve parameter 

1 https:// www. newton. ac. uk/ event/ fht.

https://www.newton.ac.uk/event/fht
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identifiability. One potential way could be the combination 
of ex vivo volume-pressure relationship from the Klotz curve 
(Klotz et al. 2006) and in vivo measurements at end-diastole.

7  Conclusion

This paper has provided a comprehensive sensitivity analysis 
of the H-O model, proposing a new parameterization that 
has been studied using I-UQ. This involved the use of Bayes-
ian inference with a likelihood function approximated using 
a statistical emulator. To our knowledge, the final parameter-
ization is different from any previously proposed in the liter-
ature and, unlike the existing models, it comes with a quan-
titative justification from a sensitivity analysis. The results 
of the I-UQ study were found to be consistent with those of 
the SA. In particular, we observed good identifiability of a 
and af in the in vivo pressure range. These parameters are 
associated with the toe region of the myocardial mechani-
cal response. We also found that b and bf cannot be reliably 
inferred without the inclusion of high pressure data. This 
should motivate future work on the inclusion of high-stretch 
behaviour of the tissue in the inference framework, perhaps 

from ex vivo studies like the Klotz curve (Klotz et al. 2006). 
For these methods to be reliable in a clinical setting, this 
must all be done within a proper statistical inference frame-
work, taking account of the uncertainties introduced by the 
data and the model.

Appendix

A: Additional emulator validation results

The values of the inferred kernel hyper-parameter values 
from Equation (15) for the Gaussian process emulators used 
to perform SA1 are given in Table 7. We can see that the 
input parameters that were found to have high sensitivity, 
such as a and b, tend to have low � values. On the other 
hand, inputs such as afs and bfs which had lower sensitivity, 
tend to have higher � values, indicating that the function 
changes more slowly with respect to these inputs. In addi-
tion, we have produced in Fig. 17 plots of the posterior mean 
and standard deviation of the emulators over [a, b] space, 
with all other inputs held fixed. In each case, the mean value 

Table 7  Gaussian process 
learned hyper-parameter values

Output �a �b �af �bf �as �bs �afs �bfs �EDP ��endo ��epi �f �

LVV 1.8 0.8 4.1 1.6 6.8 67.2 41.2 118.5 27.2 6.5 6.21 11.2 0.06
�
cc

1.2 1.7 2.2 2.7 289.9 653.7 22.5 645.3 2.1 2.7 3.0 1.0 0.05
�
ll

0.9 1.1 2.3 2.8 1.4 × 105 1.4 × 105 45.2 74.0 2.1 3.1 3.0 4.4 0.06
�
rr

1.1 0.9 2.8 1.6 3.4 58.9 2.8 19.9 24.0 2.7 8.6 4.4 0.06

Fig. 17  Gaussian process contour plots. The first row shows the pos-
terior mean, and the second the posterior variance of the GP emula-
tors, over [a, b] = [0.1, 10]2 . Each column corresponds to one of the 

four QoIs considered in the SA experiments. Other input parameters 
are fixed as follows: af = 1 , bf = 1 , as = 0.69 , bs = 1.11 , afs = 0.31 , 
bfs = 2.58 , EDP = 10 mmHg, �endo = 60◦ , �epi = −90◦
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is largest in magnitude for smaller values of a and b, while 
the standard deviation is more stable across the input space.

B: Sensitivity analysis of the apical torsion

Figure 18 shows the apical torsion as alternative QoI for 
SA1. The apical torsion is defined as the twist angle of the 
apex at the current configuration (i.e. at end-diastole) com-
pared to the reference state. The general trend of the Sobol 
indices of the material parameters for the apical torsion is 
similar to the indices obtained from the other four QoIs con-
sidered in Section 3.4.2, see Fig. 5. In particular, the main 
pattern is confirmed, namely, that parameters as, bs, afs and 
bfs have effectively zero sensitivity indices and can therefore 
be excluded from the subsequent inference step. For the fibre 
generation parameters �endo and �epi , the observed indices are 
higher compared to the values observed for the four output 
QoIs displayed in Fig. 3.4.2.

C: Change in I‑IQR over parameter space

Plots of changing I-IQR over parameter space, which are pro-
duced using the procedure in Table 8, are shown in Fig. 19. For 
all four parameters, the identifiability decreases significantly 
as we move from the description of a soft material (smaller 
material parameters) to a stiffer material (larger material 
parameters). Where the material is stiff, the parameters are less 
identifiable and the effect that pressure has on the parameter 
identifiability cannot be observed. Contrastingly, where the 
material is soft, we are able to see the effect that pressure has 
on the parameter identifiability. Overall, this means we have 
low variation in identifiability at pressures where a particular 
parameter is non-identifiable but more variation in identifi-
ability of a given parameter at pressures where the parameter 
identifiability improves.

(a) (b)

Fig. 18  SA1 results for the apical torsion-a is for uniform prior, and b for log-uniform

Table 8  Algorithm for producing the contour plots of Fig. 19

Producing a typical I-IQR contour plot.

1. Generate grid of a − b values in the range 0.5-9.5.
2. For each point in the grid, generate synthetic data by evaluating the emulator, with af and bf fixed equal to 1.
3. Add N(0, 0.1) noise to the normalized test data (normalized by the mean and standard deviation of the emulator training data).
4. For each test point, obtain samples of the material parameters using HMC and use these to approximate the IQR of the posterior distribution.
5. Create contour plot using the I-IQR at each point on the grid of material parameter values.
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