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Abstract: Imaging studies help us understand the important role of brainstem and midbrain regions
in human trigeminal pain processing without solving the question of how these regions actually
interact. In the current study, we describe this connectivity and its dynamics during nociception with
a novel analytical approach called Partial Similarity (PS). We developed PS specifically to estimate the
communication between individual hubs of the network in contrast to the overall communication
within that network. Partial Similarity works on trial-to-trial variance of neuronal activity acquired
with functional magnetic resonance imaging. It discovers direct communication between two hubs
considering the remainder of the network as confounds. A similar method to PS is Representational
Similarity, which works with ordinary correlations and does not consider any external influence on the
communication between two hubs. Particularly the combination of Representational Similarity and
Partial Similarity analysis unravels brainstem dynamics involved in trigeminal pain using the spinal
trigeminal nucleus (STN)—the first relay station of peripheral trigeminal input—as a seed region.
The combination of both methods can be valuable tools in discovering the network dynamics in fMRI
and an important instrument for future insight into the nature of various neurological diseases like
primary headaches.

Keywords: pain; partial similarity; representational similarity; correlation; partial correlation; fMRI;
brainstem; pain processing

1. Introduction

Functional magnetic resonance imaging (fMRI) can identify hubs of neuronal networks and as
such simultaneously activate areas specific to an investigated task, but allows little to no access to
the connectivity within these networks and particularly no insights into their dynamic during tasks.
Nevertheless, exactly these network dynamics are probably an important key to understanding the
pathophysiological mechanisms of certain diseases. A good example is cycling primary headaches
like migraine and cluster headaches where the network dynamics between the hypothalamus and
certain brainstem nuclei change during the cycling phases of the disease, i.e., from interictal to ictal
phases, leading to altered nociceptive processing [1–3]. However, further analysis of such dynamics is
limited since causal insights into connectivity like Granger causality are not reliable for most fMRI
experiments due to the poor temporal resolution [4–6]. The most promising alternative, dynamical
causal modelling (DCM) [7], is a model with numerous limitations and constrains. The repetition time
needs to be faster than 2 s and a strong a priori knowledge of all the regions of interest, their possible
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connectivity and how they are modulated must exist [8]. These strong prerequisites are not met by
many experiments. A promising tool with fewer prerequisites are psychophysiological interactions
(PPI) [9], yet it still depends on a minimum of two contrasting conditions. Both DCM and PPI work
on the amplitude of the BOLD signal. Although the height of the amplitude is a strong indicator of
the level of regional activity, a conventional connectivity analysis only using the absolute height as a
marker may miss a functional connection since two regions can be highly connected but exhibit little
stimulus-related activity since they can process more than just one input simultaneously.

Correlation analysis offers an alternative to inform about connectivity between spatially separated
regions. One of the first approaches was to extract regional time courses and to calculate their
correlation, as was done in the first resting-state studies [10]. However, this approach has been
shown to be susceptible to movement artifacts, cardiovascular changes, and high homogeneity within
individual MR-slices [11,12], yielding spurious correlations. A question arising when using time-course
correlation for task-dependent data is how many time points should be used when considering the
correlation of time courses during a given task. Too many time points would mostly detect connectivity
at baseline, while too few points may underestimate the actual connectivity. An additional question is
how to handle dynamic stimuli, i.e., a stimulus that appears sometimes in the middle and sometimes
at the end of a MR-volume (TR).

One way to overcome these limitations is to use single-trial activity patterns estimated by modeling
each trial individually in a GLM [13–15]. Such data are more robust to analyze since they are already
corrected for motion, slice timing, and overlapping hemodynamics. This kind of analysis is also
referred to as beta time series correlations [13,16–19]. Trial-to-trial variability is, amongst others,
based on changes of input strength (i.e., slight changes of stimulus), random fluctuations in attention
and variations in endogenous (e.g., pre-stimulus) brain activity that modulates stimulus-evoked
responses [13,20]. Such random fluctuations can inform communication between a seed area and all
functionally connected cortical (and subcortical) areas; using a focused analysis allows to investigate
network dynamics in fMRI datasets [15]. This more abstract level of data correlation is framed as
Ordinary Similarity or classical Representational Similarity Analysis [21,22] and has been shown to be
reliable even for fast event-related designs and accordingly overlapping hemodynamics [13,14,16–19].
Nevertheless, even simple simulations show that ordinary correlation analysis can lead to false positive
as well as false negative connectivity results (see Supplement, cases 3 and 4). The connectivity between
two hubs of a given network can be overestimated due to the existence of a strong global network
signal. This means on a neuronal level, that the connectivity can be trivial when the whole network
shows the same variation of activity. The same holds true when a third hub influences both hubs of
interest. An example of underestimated connectivity would be that a third hub interferes with both
hubs of interest, such that it modulates the first hub positively but the other negatively (Supplement 1,
case 4). This case can also be seen as an example of two highly connected regions which process more
than just one input and therefore show little stimulus-correlated activity as it represents only one
part of the ongoing processing. To overcome this problem, partial correlation analysis could be used
as complementary where the direct correlation between two hubs is controlled for other influences.
This has been shown for the motor cortex by Marrelec and colleagues [23] using raw time courses of
fMRI data as input for their analysis and is in similar ways also used to analyze resting state data
e.g., [24,25]. Considering the critique on correlations of time courses, we extended the Ordinary
Similarity approach to Partial Similarity analysis where ordinary correlation is replaced by partial
correlation to discover more specifically the direct communication between two individual regions.
Using Partial Similarity analysis the communication between two hubs is corrected for a third hub,
multiple other hubs, or even the rest of all network activity (including noise within the network) by
subtracting their activity beforehand. Partial Similarity should be seen as being complementary to
Ordinary Similarity; while Ordinary Similarity reveals a summary on the connectivity between two
hubs which includes global as well as direct connectivity, Partial Similarity focuses only on the direct
connectivity between them.
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We tested our approach using simulations presented in the Supplementary Document 2 and
in brainstem-optimized fMRI data where 29 subjects underwent 15 trials of strong nociceptive
trigeminal input into the left nostril as a painful condition and air puffs in the control condition.
This leads to well-known activation of the trigeminal system [3,26,27], with the spinal trigeminal
nucleus being the first relay station of the central nervous system for incoming trigeminal input [28].
Combining Representational Similarity with Partial Similarity, we were able to more reliably describe
the trigeminal nociceptive network and additionally unravel direct connectivity between individual
hubs of this network which may otherwise be hidden.

2. Materials and Methods

2.1. Simulations

To prove the translation of using partial correlations for beta-time series analysis, we ran simulations
to evaluate the complementary information revealed by Ordinary and Partial Similarity. In summary,
we simulated several amounts of global network signals mixed into 100,000 voxel with 435 time points,
i.e., betas. The simulations include: (i) no direct connectivity between a seed and a target voxel,
(ii) several levels of direct connectivity between a seed and a target voxel, and (iii) a situation where
the seed and the target voxel are influenced by one or more regions of a global network signal which
has excitatory influence on the seed but inhibitory influence on the target voxel. We present these
simulations in the Supplementary Document 2 entitled “Simulations on the effect of a global network
signal on Ordinary and Partial Similarity”.

2.2. Subjects and Experimental Design

Twenty-nine healthy volunteers participated in our experiment on trigeminal nociception which
has been repeatedly shown to prompt robust results (see Schulte et al. [29–31]). The current data
was partly already published [29–31]. In short, participants received 15 trials of gaseous ammonia as
nociceptive trigeminal input and 15 air puffs as a control condition. Each trial was rated for intensity
and unpleasantness. The standardized experiment also included 15 trials of rose odor and 15 trials
of visual stimulation not analyzed for this work. Written informed consent was obtained from all
participants and the study was conducted according to the Declaration of Helsinki and approved by
the Ethics Committee in Hamburg, Germany (PV 4522). The datasets generated and analyzed during
the current study are not publicly available due to national data protection acts. Data are available
from the corresponding author upon reasonable request.

2.3. Image Acquisition

MR-Images were collected on a 3T scanner (TRIO, Siemens, Munich, Germany) using a 32-channel
head coil. Functional images were acquired with high-resolution EPI optimized for the human brainstem
(38 axial slices, 1.25 × 1.25 × 2.5 mm3, TR 2.61 s, TE 27 ms, FOV 216 mm2, GRAPPA accelerated,
2 saturation pulses) [29]. The measured volume was restricted to the brainstem including the Thalamus
and parts of the Cingulate Gyrus as the top border and the foramen magnum as the bottom border.
The cerebellum was only partly within the measured volume. High-resolution structural images were
obtained using an MPRAGE sequence with 1 mm3 isotropic resolution [29].

2.4. Preprocessing

Functional and structural images were denoised using a spatially adaptive non-local means
filter [32] as implemented in the CAT12 toolbox (http://www.neuro.uni-jena.de/cat/). Functional images
were then realigned and slice time corrected using SPM12 (Wellcome Trust Center for Neuroimaging,
London, UK). The average EPI was further co-registered to the participants’ structural image. To realize
our analytical approach, we calculated one General Linear Model (GLM) where each painful and each
control trial was individually modeled with an HRF and included them as regressors of interest in a
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trial-by-trial GLM [13,15], while visual and odor condition were included as single, condition-wise
regressors. Furthermore, we included models of button presses, the 6 movement regressors obtained
in the realignment step within the preprocessing, and the discrete cosines (DCT), used in the standard
SPM analyses as a high pass filter (128 Hz), in the GLM analysis. For physiological noise correction
we additionally included 18 to 20 regressors extracted from the subjects’ breathing and pulse signals
with the approach described by Deckers and colleagues [33]. Resulting trial-specific beta-images were
then normalized to MNI space with an isotropic voxel size of 2 mm3 using the segmentation of the
participants’ structural image as implemented in SPM12 and smoothed by a 2 mm3 isotropic Gaussian
kernel and are the basis of all further analyses.

We then compared the trial-by-trial GLM results [13] to previously published results on
condition-wise GLMs [2,29,34], calculating a contrast image with all trials on the subject level which
entered a group level one-tailed t-test with an uncorrected threshold of p < 0.0001.

Trial-by-trial beta-images were further subject-wise subtracted by their mean and concatenated
across subjects (Figure 1). We used a mask for gray and white matter gained from segmenting
the average of the spatially-adaptive non-local mean corrected and normalized structural images.
Furthermore, all voxels with zero variance were rejected, leaving about 100,000 (precisely 96,973)
voxels for the proposed analysis.
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All reported statistical tests are one-tailed. 
  

Figure 1. Sketch of the analyzing path used for the current study. (A) Similarity and Partial Similarity
use concatenated trial-by-trial beta-images from the GLM analyses. (B) The searchlight approach
used for the analysis involves the STN as seed (S, blue) whereas the target (T, red) represents a sphere
wandering (represented by the black arrow) through the volume in a searchlight approach. Any signal
that is detected in all volumes (such as movement artefacts) is used for correction in the Partial Similarity
analysis. The plot bottom right shows three possible time courses for seed, target and general signal
shared by the whole volume (V).

2.5. Plausibility Checks

To gain first insights into the meaning of the variance of trial-by-trial activity we ran a Principal
Component Analysis (PCA) on the preprocessed, concatenated and standardized data. A PCA finds
uncorrelated components of the data, which are sorted by their explained variance, and is used to
reduce high dimensional data. The first component is therefore the most meaningful compartment
of the data. Its weights explain which voxels contribute to which extent to the component and give
important insights into the data quality and hint its meaning [35–37].

2.6. Formulation of Similarity and Partial Similarity

As a measure of connectivity between a seed area x and a target area y, we calculated Spearman
correlation coefficients between their spatial means referred to as (representational) Similarity [21].



Brain Sci. 2020, 10, 603 5 of 15

Spearman correlation can be understood as a special case of classical Pearson’s correlation using the
rank rg of the sorted entries of x and y and can be formulated as

CORR(x, y) =
COV

(
rgx, rgy

)
srgxsrgy

, (1)

where COV is the covariance matrix and s is the standard deviation.
We further introduce Partial Similarity, which is also based on the Spearman correlation but

corrects for matrix C by subtracting a weighted, linear product of C before calculating the correlation
coefficient, i.e., performs a partial correlation. This can be formulated by

PARTIALCORR(x, y) = CORR
(
x−wxC, y−wyC

)
, (2)

where x and y are again the spatially averaged beta-estimates of seed and target and w weights
the vectors in C. In C we find the first components from the transform along the variance of the
standardized beta-images of V (Volume of No Interest) by a PCA. This transformation is used for
data reduction which becomes necessary because the number of concatenated beta-images limits the
number of components, which can be used as controlling variables within the partial correlation,
i.e., more controlling variables than the number of elements in x (and thereby y) are not possible. C is
formulated as

C = bV, (3)

where V are the standardized entries of all voxels with the Volume of No Interest (sketched in Figure 1).
The first component C1 of V is constructed by finding its weight b1 according to

b1 = arg max
‖b‖=1

∑
i

(
V(i)b

)2
 (4)

and the further components Ci iteratively by finding their weights bi using an altered Ṽ in Formula
4 with the already calculated components subtracted from V.

Finally, the weight w used in Formula 2 can then be estimated with simple linear regression for x
and y, respectively, using

wx = arg min
w

 N∑
i=1

(xi − 〈wx, ci〉 )
2

. (5)

2.7. Application of Similarity and Partial Similarity

In the presented analyses we chose the left spinal trigeminal nucleus (STN) as a seed region as
it is the first relay station in the central nervous system for trigeminal nociceptive input [28]. As the
center of the seed, we used MNI coordinates (−4, −46, −53) from a published independent sample [34]
and constructed a sphere around it with a radius of 8 mm. We further excluded the cerebellum from
this sphere by masking it with the template provided by the SUIT toolbox for SPM 12 [38] normalized
to MNI space.

The target area is constructed as a sphere with a radius of 8 mm (like the seed) and wanders around
the entire volume using a searchlight approach [39] such that each voxel is the center of the target in
exactly one iteration. The spatial average is used for calculating Similarity and Partial Similarity.

To perform Partial Similarity, the activity of the volume of no interest is first reduced along the
variance into its first 15 components explaining a minimum of 30% of the variance (100 randomly
chosen voxel were used for this estimation) by PCA as described above. Due to the high homogeneity
between nearby areas, we defined an additional space with a radius of 15 mm around seed and target
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regions which were excluded from the analyses to prevent partial correlation coefficient of only −1 and
1. The proposed analyses are sketched in Figure 1.

2.8. Statistics

The p-values stemming from the calculated Spearman correlations and partial correlations
are corrected for multiple comparison using the Benjamini–Hochberg [40] and the
Benjamini—Yekutieli [41,42] procedure for controlling the false discovery rate (FDR) of a family
of hypothesis tests [43]. All reported statistical tests are one-tailed.

3. Results

3.1. Simulations

The first simulation shows that a global network signal induces a strong connectivity between
seed and target as measured by Ordinary Similarity analysis which can reach correlation values close
to 1 when the influence of the global network signal is extreme (Figure S2). The Partial Similarity
analysis shows, as expected, that there is no direct connectivity between seed and target (Figure S2).
As the maximally measured correlation coefficients in the actual data reaches levels of around r = 0.2
and the explained variance of the controlling variables is around 30%, the global network signal might
have an influence of up to 60% in our real fMRI beta time series data.

The second Simulation shows the complementary information of Ordinary and Partial Similarity:
While the Ordinary Similarity reveals connectivity induced either by the global network signal or direct
connectivity or a mixture of both, Partial Similarity only reveals the direct connectivity component.

Simulation 3 tests to mislead Ordinary Similarity by adding a global network signal to the seed
but subtracting it from the target. Here, Ordinary Similarity can reveal even negative correlations or
near-zero correlations when the magnitude of the global signal and the direct connectivity is similar.
Details of the simulations can be found in the Supplementary Document 2.

3.2. Plausibility

Trial-by-trial GLM analysis confirmed previously published results [2,26,27,29,34,44–46],
i.e., significant activation in left STN, rostral Pons, Cerebellum, periaqueductal gray (PAG), Thalamus,
and bilateral Insula (Figure 2A). Due to the restricted measured volume, no activation could be
shown in other areas. The first component of the PCA on the concatenated trial-by-trial beta-images
from the GLM explains 9.85% of the overall variance (voxel × trials) and reveals a plausible network
within the brainstem during trigeminal nociception. The network includes previous reported hubs
of trigeminal nociception in the brainstem and midbrain such as the STN, rostral Pons, Cerebellum,
PAG, bilateral Thalamus and bilateral Insula (Figure 2B). This unsupervised analysis underlines the
potential of analyzing trial-by-trial variance.

3.3. Similarity and Partial Similarity

Similarity analysis from the STN ROI as a seed reveals three clusters with positive correlations
and 16 clusters with negative correlations at a statistical threshold of FDR-adjusted p < 0.05, where the
most extensive cluster contains more than 54% of all considered voxel, especially most of the midbrain.
To pinpoint more specific regions, we increased the statistical threshold to an FDR-adjusted p-value
of p < 0.0001, revealing nine clusters with similar trial-to-trial activity changes as the STN in the
nociceptive condition (Figure 3A) with a minimum cluster extent of 5 voxel (40 mL). The clusters mostly
include cortical and subcortical structures already shown to be involved in trigeminal nociception like
bilateral Cerebellum, bilateral PAG, bilateral Insula, bilateral Operculum, right Striatum (Caudate,
Putamen), and bilateral Thalamus and furthermore the right Cingulate Gyrus (Table 1).
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Figure 2. (A) Results of the trial-by-trial GLM analyses, which provides the basis for the proposed
Similarity and Partial Similarity analysis. For visual inspection, results are shown using an uncorrected
statistical threshold of p < 0.0001. The results confirm previously published condition-wise calculated
GLMs [29,30,34]. (B) Normalized weights of the 1st component of the Principal Component Analysis
(PCA), which explains nearly 10% of the concatenated beta-images resulting from the GLM analysis
shown in the top row. Most of the known hubs of trigeminal nociception like STN, PAG, rostral Pons,
Thalamus, and Cerebellum are involved. These unsupervised results underline the potential of
analyzing trial-by-trial variations.
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Figure 3. Results of the Similarity analysis. (A) Log-transformed significance of correlations (Spearman)
in trial-to-trial variability between the left STN (marked in red at the top right corner) and cerebellum,
brainstem, and midbrain during nociception at a statistical threshold of p < 0.0001 (FDR-adjusted) and
a minimum cluster extent of 5 voxel. (B) The same results for the control condition. (C) Difference of
the correlation coefficients between the two conditions (nociception > control). Positive findings signify
higher correlation during nociception than during air puffs (marked in orange) whereas negative
correlation is depicted in blue.

The control condition with air puffs also showed highly correlated midbrain areas at a threshold
of FDR-adjusted p < 0.05. Regarding nociception, we therefore increased the threshold to p < 0.0001
(Figure 3B, Table 1) and identified seven clusters correlated with the left STN seed region in their
trial-to-trial variance. These clusters included the bilateral Cerebellum, bilateral PAG, the left inferior
Temporal Gyrus, left Fusiform Gyrus, and the right Planum Polare (Table 1).
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Table 1. Results for the Similarity analysis during trigeminal nociception (gaseous ammonia) and
control condition (air puffs) at a statistical threshold of FDR-adjusted p < 0.0001 and a minimum cluster
extent of 5 voxel (40 mL). Coordinates are presented in MNI space.

Region x y z Cluster
Size (vx)

Correlation
(Peak)

Mean
Correlation

p-Value
(Peak)

FDR-Adjusted
p-Value
(Peak)

Nociception

r Cingulate G 4 −44 23 123 0.29 0.23 6 × 10−10 2 × 10−8

r Insula, Operculum 32 −16 15 872 0.29 0.23 2 × 10−10 1 × 10−8

l Insula, Operculum −50 −34 13 1512 0.29 0.23 3 × 10−10 1 × 10−8

b Thalamus −2 0 7 435 0.26 0.21 2 × 10−8 5 × 10−7

r Caudate, Putamen 18 16 3 329 0.26 0.22 2 × 10−8 5 × 10−7

r Operculum 48 14 1 71 0.22 0.21 1 × 10−6 2 × 10−5

r Insula 42 0 −5 116 0.26 0.22 2 × 10−8 5 × 10−7

l Insula, Operculum −26 26 −11 622 0.27 0.22 6 × 10−9 2 × 10−7

b Cerebellum, PAG −20 −56 −49 9358 0.38 0.25 8 × 10−19 1 × 10−16

Control condition

b Cerebellum −58 −16 7 378 0.25 0.23 6 × 10−8 6 × 10−6

r Planum Polare 60 −2 5 35 0.24 0.22 3 × 10−7 2 × 10−5

l Inferior Temporal G −48 −58 −11 72 0.25 0.23 5 × 10−8 5 × 10−6

l Fusiform G −36 −36 −17 44 0.25 0.23 4 × 10−8 4 × 10−6

b Cerebellum, PAG −14 −34 −21 1092 0.32 0.24 6 × 10−12 3 × 10−9

b Cerebellum 16 −44 −49 1518 0.38 0.26 5 × 10−18 8 × 10−15

l Cerebellum −38 −52 −53 6 0.22 0.22 2 × 10−6 7 × 10−5

b = bilateral, l = left, r = right, G = Gyrus, PAG = Periaqueductal Grey.
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Figure 4. Results of the Partial Similarity analysis. (A) Log-transformed significance of partial
correlations (Spearman) in trial-to-trial variability between the left STN (marked in red at the top right
corner) and cerebellum, brainstem, and midbrain during nociception at a statistical threshold of p < 0.05
(FDR-adjusted) and a minimum cluster extent of 20 voxel. The correlation between the STN and the
individual voxel is controlled for general signals from the rest of the volume. (B) The same results for
the control condition. Positive partial correlations are marked in orange, negative partial correlations
are marked in blue.

Partial Similarity analysis of the nociceptive condition revealed 10 clusters with positive correlation
and 3 negative correlation to STN (Figure 4A) at an FDR-adjusted threshold of p < 0.05 and a minimum
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cluster extent of 20 voxel (160 mL). The included regions are bilateral Cerebellum, PAG, and Cingulate
Gyrus, parts of the temporal lobe (right Planum Temporale, right Middle Temporal Gyrus, left Inferior
Temporal Gyrus), bilateral Striatum (Caudate), and with a negative correlation the right Fusiform
Gyrus and both sides of the Thalamus (Figure 5, Table 2). Most of the regions are well known to process
painful trigeminal input.Brain Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 
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Figure 5. Plot of the interactions revealed by Similarity (top) and Partial Similarity (bottom) of the
left STN to brainstem, cerebellum, midbrain, and cortical areas in the field of view during trigeminal
nociception (left) and control condition (air puffs, right). Each circle shows connections to the left
hemisphere (L) on the left hand side of the circle and connections to the right hemisphere (R) on the right
hand side the circle. Lines mark connections. Color and thickness of the lines signify the strength of the
connection (correlation coefficient or partial correlation coefficient). G = Gyrus, L = Lobe. STN = Spinal
trigeminal nucleus, PAG = Periaqueductal gray matter. Due to the restricted volume, no connectivity
can be shown to other cortical areas.

In the control condition, we observed four clusters with positive correlations and one cluster with
negative correlations to the STN (Figure 4B, Table 2), namely bilateral Cerebellum and the Temporal
Pole (Figure 5).

To gain an overview of the reported results, we sketched the revealed connectivities and their
strength from the Similarity and Partial Similarity analyses in Figure 5. While both connectivity
analyses show strong connectivities to Cerebellum and PAG during nociception and reveal the direct
connectivity from STN to (contralateral) Thalamus, the strong contralateral crossing to higher cortical
areas (Temporal lobe, Insula, Fusiform Gyrus) is only revealed using Partial Similarity analysis. In the
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control condition, the Similarity analyses suggest a network between left STN and bilateral Cerebellum
and bilateral PAG. The latter could not be identified in the Partial Similarity analysis.

Table 2. Results for the Partial Similarity analysis during trigeminal nociception (gaseous ammonia)
and control condition (air puffs) at a statistical threshold of FDR-adjusted p < 0.05 and a minimum
cluster extent of 20 voxel (160 mL). Coordinates are presented in MNI space.

Region x y z Cluster
Size (vx)

Correlation
(Peak)

Mean
Correlation

p-Value
(Peak)

FDR-Adjusted
p-Value
(Peak)

Nociception

b Cingulate G 4 −44 23 264 0.22 0.16 3 × 10−6 1 × 10−4

r Planum Temporale 34 −22 21 299 0.25 0.17 8 × 10−8 7 × 10−6

r Insula, Operculum 44 2 17 25 0.17 0.15 2 × 10−4 5 × 10−3

r Caudate 10 18 5 53 0.16 0.14 5 × 10−4 1 × 10−2

l Caudate −8 10 1 41 0.15 0.14 1 × 10−3 3 × 10−2

l Thalamus −2 −20 1 115 −0.18 −0.15 9 × 10−5 3 × 10−3

r Thalamus 4 −22 1 28 −0.18 −0.15 9 × 10−5 3 × 10−3

r Middle Temporal G 44 −42 −1 266 0.21 0.16 7 × 10−6 4 × 10−4

r Fusiform G 30 −76 −3 30 −0.16 −0.14 5 × 10−4 1 × 10−2

l Inferior Temporal G −50 −38 −13 50 0.17 0.15 2 × 10−4 6 × 10−3

b PAG −10 −26 −21 1262 0.36 0.20 9 × 10−15 1 × 10−11

r Fusiform G 44 −40 −25 25 0.16 0.14 4 × 10−4 1 × 10−2

b Cerebellum 16 −42 −53 2929 0.47 0.22 8 × 10−25 6 × 10−20

Control condition

r Cerebellum 38 −60 −57 61 0.20 0.17 2 × 10−5 3 × 10−3

b Cerebellum 12 −48 −51 911 0.41 0.22 9 × 10−19 9 × 10−14

r Temporal Pole 26 0 −37 25 0.17 0.16 2 × 10−4 2 × 10−2

l Cerebellum −42 −78 −25 98 −0.19 −0.17 4 × 10−5 7 × 10−3

b = bilateral, l = left, r = right, G = Gyrus, PAG = Periaqueductal Grey.

4. Discussion

Uncovering cortical and subcortical connectivity in human fMRI data is a challenging field as to
date only a few methods exist. While commonly used DCM and PPI both work on raw time courses,
they depend on the height of BOLD amplitude, and are further hindered by a long list of assumptions
and constraints, ordinary correlation analysis may lead mostly to an overestimation of results. Here we
introduce a new way to delineate direct (dynamic) network connectivity complementary to ordinary
correlation analyses of beta time series: Partial Similarity.

We conceptually proved that Partial Similarity and its counterpart, (based on ordinary correlations)
Ordinary Similarity, reliably reveal dynamic connectivity of brainstem networks known from preclinical
studies. As a physiological model, we specifically chose the connectivity of the spinal trigeminal
nucleus, which is the first central hub of all incoming peripheral trigemino-nociceptive input into
the central nervous system (CNS). Studies on mammals suggest direct anatomical connections to the
cerebellum [47–49], Thalamus [50], and PAG [50–52], which are known to be involved in mechanical
and nociceptive input [49,51,53,54]. Additional to these well-known hubs, Similarity further reveals
strong connectivity to the ipsilateral Insula and Operculum, which was not observed with Partial
Similarity. Partial Similarity on the other hand emphasizes connectivity to contralateral regions like
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the striatum, Fusiform Gyrus, Temporal lobe, and ipsilateral Cingulate Gyrus. These differences stem
from the nature of the two measures, which we demonstrated in our simulations: while Similarity
shows overall communication between two regions, Partial Similarity focuses on direct communication
between two hubs, diminishing trivial and induced correlations, but uncovering correlations hidden
by other sources or a global network signal. Both analyzing techniques contain complementary
information (direct communication and overall communication), which should be exploited in future
research by locating the origin of these differences. We suggest that imaging studies, which investigate
relationships in and between neuronal networks, will strongly profit from the combination of both
analytical tools. This is particularly true for research investigating cycling pathologies like migraine
and cluster headaches [55], where changes in network dynamics [1] follow the current stage of the
patients’ disease [2,3,56]. While we concentrate on the first hub of the trigeminal driven network
in the CNS, further research will reveal the dynamical connectivity of all hubs in the network and
may identify cortical and subcortical structures by combining both analytical tools, which would be
missed if only one of these tools were used. Moreover, given the open-ended search feature of the
proposed analyses, we aim to identify connectivity and its dynamics and hubs, which is not yet within
the focus of current research. Further work will have to include the translation of Partial Similarity
to other fields of Representational Similarity applications [21], where trivial correlations currently
might hinder a deeper insight into direct relations, for example in the field of complementing fMRI
and electroencephalography (EEG) [57]. Partial Similarity and Similarity analyses as established in the
current work might thus be an important tool to discover neuronal network dynamics in fMRI and
thus grant more detailed insights into the pathophysiological mechanisms underlying neurological
diseases, including but not limited to primary headache disorders.

5. Conclusions

We have shown with both simulated and real task-dependent fMRI data that the
Partial Similarity method presented here can represent direct connectivity between two hubs.
Specifically, Partial Similarity can unravel brainstem dynamics involved in trigeminal pain. It thereby
gains complementary information to Ordinary (also called Representational) Similarity, which reveals
a summary of global and direct connectivity. The combination of both methods can be valuable tools in
discovering network dynamics in fMRI and an important instrument for future insight into the nature
of pathological pain processing and various other neurological diseases.
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Abbreviation

Abbreviation Definition
b Bilateral
BOLD Blood Oxygenation Level Dependent
CNS Central Nervous System
DCM Dynamic Causal Modelling
DCT Discrete Cosine Transform
EEG Electroencephalography
EPI Echo-Planar Image
FDR False-Discovery Rate
fMRI functional Magnetic Resonance Imaging
FOV Field of View
G Gyrus
GLM General Linear Model

GRAPPA
Generalized Autocalibrating Partial Parallel
Acquisition

l Left
MNI Montreal Neurological Institute
MPRAGE Magnetization Prepared Rapid Gradient Echo
MR Magnetic Resonance
PAG Periaqueductal Gray
PCA Principal Component Analysis
PPI Psycho-Physiological Interactions
PS Partial Similarity
r Right
ROI Region of Interest
STN Spinal Trigeminal Nucleus
TE Echo Time
TR Repetition Time
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