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Genomics for Improving Heart Failure
Risk Assessment in Cancer Patients

Sonia Shah, PHD
I n 2022, the European Society of Cardiology
published their cardio-oncology guidelines,
providing a milestone in cardiovascular (CV) sur-

veillance and care for cancer patients,1 with a major
focus on baseline CV risk assessment to guide the
type, intensity, and duration of CV surveillance dur-
ing and after cancer treatment.2 The guidelines pro-
vide a checklist for baseline CV risk assessment and
stratification that incorporates cancer history and
treatment; CV history and risk factors; and electrocar-
diography, echocardiography, and cardiac biomarker
measurement.1 However, because of a paucity of
research, currently there are no recommendations
on genomic risk assessment.

Genetic variation can predispose to disease
through monogenic variants in which a single variant
has a large impact on the structure and function of a
protein that is sufficient to cause or significantly in-
crease the risk of disease. For example, titin-
truncating variants lead to the production of an
abnormal titin protein, which can lead to dilated
cardiomyopathy. Genome-wide association studies
(GWAS) have also identified many common genetic
variants associated with CV diseases. Individually,
these variants only have a small effect on disease risk,
but carrying a high burden of these risk variants can
significantly increase disease risk. The combined ef-
fect of these common risk variants is called a poly-
genic risk score (PRS) and provides an estimate of an
individual’s genetic liability to disease.3 A coronary
artery disease (CAD) PRS predicts CAD independently
of traditional CV risk factors, including family his-
tory.4 PRS integration into CV risk calculators for
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population screening is already being trialed,5 but
few studies have investigated PRS for CV risk strati-
fication in cancer patients. A PRS for CAD has previ-
ously been shown to be associated with incident CAD
in a cohort of female breast cancer cases6 as well as in
childhood cancer survivors.7

In this issue of JACC: CardioOncology, Soh et al8

evaluate for the first time a PRS for heart failure
(HF) for predicting HF incidence in a cancer compared
to a noncancer population in the UK Biobank.9

Although the PRS was significantly associated with
HF incidence in both the cancer and noncancer
populations, it did not improve prediction over and
above the ARIC (Atherosclerosis Risk In Commu-
nities) heart failure risk score, which includes multi-
ple conventional CV risk factors. In addition, the ARIC
heart failure score performed much better in the
noncancer cohort compared to the cancer cohort,
implying additional risk factors unique to cancer pa-
tients. The authors conclude that the genetic factors
contributing to HF occurrence are not as important
compared to clinical factors. However, there are
several important points for consideration when
interpreting the study results.

First, HF is a complex syndrome, with monogenic,
polygenic, and environmental contribution to disease
risk. In terms of genomic risk, the current study only
investigated polygenic risk. A recent study that
retrospectively tested cancer patients with a history
of anthracycline-induced cardiac dysfunction found
7% carried a likely pathogenic variant within known
cardiomyopathy genes, as opposed to none found in a
matched cohort of patients without cardiac disease.10

This highlights the importance of assessing the full
spectrum of genetic risk variants for risk
stratification.

An important environmental risk factor for HF
incidence that is specific to cancer patients is
exposure to cardiotoxic cancer treatments. Howev-
er, a lack of treatment data in the UK Biobank
https://doi.org/10.1016/j.jaccao.2024.06.001
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meant Soh et al8 were unable to include cardiotoxic
treatment exposure as a risk factor or test for a
genetic by environment interaction. In addition,
adverse CV effects can vary by cancer treatment. For
example, anthracycline treatment can cause cardio-
myopathy but is not commonly associated with
vascular disease,11 and a cardiomyopathy-specific
PRS may be a better predictor to assess than a PRS
for all-cause HF.

When investigating PRS, it is important to un-
derstand what factors determine the predictive po-
wer of a PRS. The first is the proportion of variance
in the phenotype that is explained by all common
risk variants, known as single-nucleotide poly-
morphism-based heritability (SNV-based h2). If a
disease has a SNV-based h2 of 1, this would indicate
that common variants explain 100% of the variance
in disease, and, theoretically, if we can identify all
the risk variants and accurately estimate their effect
on disease risk using a GWAS, the resulting PRS
should have almost perfect discriminatory power.
However, common complex diseases tend to have
low to moderate SNV-based h2 estimates, reflecting
low to moderate contribution of common genetic
variants. To put things into context, SNV-based h2

for CAD is around 50%,12 but it is only 5% for HF.13

The SNV-based h2 estimate also provides the upper
bound for how much of the disease variance is
captured by a PRS, which in turn is dependent on
the power of a GWAS to identify all contributing
common disease variants and accurately estimate
their effect size. Despite the availability of very large
GWASs of common disease, these are still not suffi-
ciently powered to identify all risk variants, which is
reflected in the proportion of disease variance
explained by current PRSs being much lower than
the SNV-based h2 estimates. Despite a SNV-based h2

of around 50% for CAD, the PRS based on a GWAS of
>250,000 CAD cases and >900,000 controls only
captures around 20% of disease variance.12 The first
large-scale GWAS of HF (>45,000 HF cases) identi-
fied only 10 genetic risk loci,14 whereas the most
recent and largest GWAS of HF (>150,000 HF cases)15

has identified over 50 risk loci and for the first time
variants in the ERBB2 gene, which encodes HER2,
the target for trastuzumab, demonstrating the need
for sufficiently-powered GWASs for PRS generation.
Despite large sample sizes, the HF PRS explains only
around 1% of disease variance.13

Another important factor that impacts the power of
a GWAS and a PRS is heterogeneity in the underlying
disease etiology. HF is a complex, clinical syndrome
that can result from different pathobiology. GWASs of
HF subtypes suggest different genetic architectures
and distinct genetic association profiles between HF
with reduced and with preserved ejection fraction.16

GWASs of nonischemic HF subtypes showed a much
higher heritability of 12% for nonischemic HF with
reduced ejection fraction compared to only 1.8% for
nonischemic HF with preserved ejection fraction,
suggesting varying contributions of common genetic
variants to different HF subtypes.15 Therefore, the
genomic contribution may vary across HF subtypes,
and understanding which are most relevant in cancer
patients may help guide the development of risk
models. Given that an individual’s PRS is fixed from
birth, there is an opportunity for improved risk
stratification in younger cancer patients and in those
without traditional CV risk factors. It is important to
note that just as a single biomarker for CV disease risk
cannot be used as stand-alone diagnostic tests neither
can a PRS.

Looking into the future, larger GWASs of HF sub-
types may provide more powerful PRSs for improved
genomic prediction. Studies should evaluate the
contribution of both monogenic and polygenic risk
and the interaction with cardiotoxic treatment expo-
sure. Large cancer cohorts with whole genome
sequence data and longitudinal life course clinical
data such as the Cancer Programme of the 100,000
Genomes Project, which aims to provide whole
genome sequencing for cancer patients to inform
precision cancer care, should also be leveraged for
improved CV risk prediction in cancer patients.
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