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Objective:Hedyotis diffusa-Scutellaria barbata herb pair (HS) has therapeutic effects on a variety of cancers, and this study aims to
systematically explore the multiple mechanisms of HS in the treatment of colorectal cancer (CRC). Methods. .e active in-
gredients of HS were obtained from TCMSP, and the potential targets related to these ingredients were screened from the
STITCH, SuperPred, and Swiss TargetPrediction databases. Targets associated with CRC were retrieved by Drugbank, TTD,
DisGeNET, and GeneCards. We used a Venn diagram to screen the intersection targets and used Cytoscape to construct the herb-
ingredient-target-disease network, and the core targets were selected. .e Go analysis and KEGG pathway annotation were
performed by R language software. We used PyMol and Autodock Vina to achieve molecular docking of core ingredients and
targets. Results: A total of 33 active ingredients were obtained from the HS, and 762 CRC-related targets were reserved from the
four databases. We got 170 intersection targets to construct the network and found that the four ingredients with the most targets
were quercetin, luteolin, baicalein, and dinatin, which were the core ingredients. .e PPI analysis showed that the core targets
were STAT3, TP53, MAPK3, AKT1, JUN, EGFR,MYC, VEGFA, EGF, and CTNNB1.Molecular docking results showed that these
core ingredients had good binding potential with core targets, especially the docking of each component with MAPK obtained the
lowest binding energy. HS acts simultaneously on various signaling pathways related to CRC, including the PI3K-Akt signaling
pathway, proteoglycans in cancer, and the MAPK signaling pathway. Conclusions: .is study systematically analyzed the active
ingredients, core targets, and central mechanisms of HS in the treatment of CRC. It reveals the role of HS targeting PI3K-Akt
signaling andMAPK signaling pathways in the treatment of CRC.We hope that our research could bring a new perspective to the
therapy of CRC and find new anticancer drugs.

1. Introduction

Colorectal cancer (CRC) is a common digestive tract tumor,
which has a high incidence rate, a high mortality rate, rapid
progress, and easy spread [1]. .e incidence rate of CRC is
increasing year by year, the age of onset is getting younger
and younger, and the death caused by recurrence and
metastasis is still a considerable challenge [2]. Modern
pharmacological studies have shown that traditional

Chinese medicine (TCM) is one of the comprehensive
treatments for CRC in addition to surgery, chemotherapy,
radiotherapy, immunotherapy, and targeted therapy, which
can effectively inhibit the proliferation of cancer cells and
improve the quality of life [3–5]. Compared with side effects
of chemotherapy, such as myelosuppression, gastrointestinal
reaction, liver function damage, and peripheral neuritis,
TCM has the characteristics of long-term administration,
fewer side effects, and less drug resistance [6, 7].
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TCM believes that cancer toxin is the core of tumor
pathogenesis. After cancer toxin is produced, it can induce
pathological products such as phlegm turbidity, qi stagna-
tion, and blood stasis [8]. Blood stasis is closely related to
tumor and runs through the whole process of swelling.
.erefore, clearing heat and detoxification, promoting blood
circulation, and removing blood stasis play an essential role
in tumor treatment [9].Hedyotis diffusa belongs to the genus
Hedyotis of Rubiaceae, and it is bitter, light, and cold in
nature [10]. Scutellaria barbata, belonging to Labiatae, is
sour in taste and cold in nature [11]. .ey have the functions
of clearing away heat and detoxification, promoting blood
circulation and removing blood stasis, anti-inflammatory
and analgesic effects, and can be used as adjuvant treatment
for colorectal cancer, breast cancer, bladder cancer, lung
cancer, liver cancer, gastric cancer, ovarian cancer, and other
malignant tumors [12, 13]. .eir pharmacological effects
include antitumor, anti-inflammatory, antioxidation, anti-
angiogenic, promoting cell apoptosis, and improving im-
mune capacity [14, 15]. Hedyotis diffusa and Scutellaria
barbata herb pair (HS) are widely used to treat cancer, and
their combined effects are more than a single use of drugs.
Studies have shown that HS can inhibit the proliferation of
human breast cancer cells, and the combination of CTX
treatment can significantly inhibit breast cancer model mice
[16, 17]. In addition, it could also significantly inhibit the
growth of H22 hepatoma xenografts in mice [18]. .e
mixture of ethanol extracts fromHS can dramatically inhibit
the growth of human colon cancer cell lines compared with
the single drug alcohol extract, which indicates that the
anticancer effect of the combination of the two drugs will be
enhanced. However, these studies focus on a single target or
a single pathway, which could not comprehensively and
systematically explain the antitumor effect of HS [19].

Network pharmacology emphasizes the combination of
bioinformatics, system biology, and pharmacology, which
not only explains the interaction between TCM and diseases
but also conforms to the systematic and holistic view of
TCM [20, 21]. Network pharmacology updates the “one
target, one drug” model to the “multicomponent, multi-
target” model and clarifies the complex interactions between
genes, proteins, and metabolites related to diseases and
drugs from the perspective of the network, which provides
the possibility for us to systematically study the relationship
between TCM and diseases [22, 23]. In this study, network
pharmacology was used to analyze the active ingredients,
potential targets, and main mechanisms of HS in the
treatment of CRC, and to construct the herb-ingredient-
target-disease network, so as to provide a reference for the
study of the specific mechanism of the drug in the treatment
of CRC. .e flowchart of our analysis is shown in Figure 1.

2. Materials and Methods

2.1.Collection ofActive Ingredients. With the common name
of a single drug as a keyword, all chemical ingredients of the
drug were retrieved by TCMSP [24] (https://tcmspw.com/
tcmsp.php). .is study used oral bioavailability (OB) and

ingredient drug-likeness (DL) as screening conditions for
active ingredients.

2.2. Prediction of Potential Targets of HS. We used PubChem
[25] (https://pubchem.ncbi.nlm.nih.gov) to search and ex-
port the chemical structure data of active ingredients. Since
the targets of ingredients without accurate structural in-
formation could not be predicted successfully, we decided to
remove these ingredients after deleting the duplicate data.
.e active ingredients were predicted through the STITCH
[26] (http://stitch.embl.de/), SuperPred [27] (http://
prediction.charite.de/), and Swiss TargetPrediction [28]
(http://www.swisstargetprediction.ch/) databases to obtain
the corresponding known or predicted targets..e duplicate
data had been eliminated, and only the human targets were
retained.

.e selected active ingredients were imported into the
STITCH database for putative target prediction, and the
targets with a confidence ≥0.7 were assumed as potential
targets..e potential targets of drugs can also be obtained by
inputting SMILES into the SuperPred database. .e Ca-
nonical SMILES of the main active ingredients were
uploaded to the Swiss TargetPrediction database, and the
probability of each potential target was determined to be
greater than or equal to 0.1. .e retrieved targets were
converted into standardized abbreviations by UniProt [29]
(https://www.uniprot.org).

2.3. Collection of CRC-Related Targets. Targets associated
with CRC were collected from Drugbank [30] (https://www.
drugbank.ca), TTD [31] (http://db.idrblab.net/ttd/), Dis-
GeNET [32] (http://www.disgenet.org/), and GeneCards
[33] (https://www.genecards.org). .en the retrieval results
of these databases were merged, and only one repeated target
was reserved.

2.4. Intersection Targets and Network Construction. .e
targets of HS and CRC were intersected by R language
version 4.1.1 and the common gene was identified as the
intersection target of HS and CRC. .e herbs, active in-
gredients, intersection targets, and diseases were introduced
into Cytoscape 3.8.0 [34] to construct the herb-ingredient-
target-disease network.

2.5. Protein-Protein Interaction (PPI) Analysis. .e inter-
section targets related to HS and CRC were input into the
STRING [35] (https://string-db.org/) platform for retrieval.
Protein interaction data with high confidence (score >0.7)
were selected and saved in a TSV format file. .e infor-
mation of node1, node2, and combined score in the file was
imported into the software of Cytoscape to construct a PPI
network, and the hub gene was screened by the cytohubba
plug-in. .e Sankey diagram revealed the relationship be-
tween herbs, core ingredients, and hub genes was drawn in R
language version 4.1.1.

2 Evidence-Based Complementary and Alternative Medicine

https://tcmspw.com/tcmsp.php
https://tcmspw.com/tcmsp.php
https://pubchem.ncbi.nlm.nih.gov
http://stitch.embl.de/
http://prediction.charite.de/
http://prediction.charite.de/
http://www.swisstargetprediction.ch/
https://www.uniprot.org
https://www.drugbank.ca
https://www.drugbank.ca
http://db.idrblab.net/ttd/
http://www.disgenet.org/
https://www.genecards.org
https://string-db.org/


2.6. Enrichment Analysis. We applied the “clusterProfiler”
package to these overlapping genes in order to perform GO
enrichment analysis and KEGG analysis [36]. Both the bar
plot and dot plot were drawn using the R language version
4.1.1.

2.7.MolecularDocking. We downloaded the SDF format 3D
structure file of key ingredients from the PubChem database
and converted it to PDB format through Open Babel. We
also downloaded the 3D crystal structure of the hub genes
through the PDB database (https://www.pdbus.org/), re-
moved ions and water molecules through PyMol 2.4.0 [37],
and saved it as a PDB file. .en we repaired the protein
structure through the WHAT IF server website (https://
swift.cmbi.umcn.nl/servers/html/model.html) and prepared
the receptor file in Autodock Vina. .en, the molecular
docking simulation was carried out by using Autodock Vina
software and visualized by PyMol 2.4.0. .e 3D and 2D
diagrams of molecular docking models were displayed by
PyMol 2.4.0 and PROTEINS PLUS (https://proteins.plus/),
respectively.

3. Results

3.1. Screening of Active Ingredients. 37 ingredients were
found in Hedyotis diffusa and 94 in Scutellaria barbata from
TCMSP database. OB≥ 30% and DL≥ 0.18 were selected as
the screening conditions. .ere were 7 ingredients from
Hedyotis diffusa and 29 from Scutellaria barbata. A total of
33 ingredients were screened. Among them, 3 ingredients
were common ingredients of the two herbs, namely quer-
cetin (MOL000098), beta-sitosterol (MOL000358), and
stigmasterol (MOL000449). .e basic information of active
ingredients in HS is shown in Table 1.

3.2. Potential Targets of HS. .e structures of these active
ingredients were obtained in PubChem. We removed six
ingredients named MOL001646, MOL000953, MOL005869,
MOL012248, MOL012250, and MOL012270, which had no
accurate structural information for predicting the target..e
structures of the active ingredients were imported into
STITCH, SuperPred, and Swiss Target Prediction databases
for target prediction. A total of 490 potential targets of
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Figure 1: Flowchart of the study.
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Hedyotis diffusa and 589 targets of Scutellaria barbata were
obtained.

3.3. Collection of CRC-Related Targets. 77, 104, 353, and 390
CRC targets were obtained from four databases, including
Drugbank, TTD, DisGeNET, and GeneCards, respectively,
shown in the Venn diagram (Figure 2(a)). A total of 762
CRC-related targets were reserved from the four databases.

3.4. Construction of the Herb-Ingredient-Target-Disease
Network. We intersected the potential targets of ingredients
and CRC-related targets, and a total of 170 intersecting
targets were obtained (Figure 2(b)), among which 131 genes
were shared by Hedyotis diffusa and CRC, and 161 genes
were shared by Scutellaria barbata and CRC. .en, the two
herbs, 27 active ingredients, 170 intersection targets, and
CRC disease were imported into Cytoscape 3.8.0 to con-
struct the herb-ingredient-target-disease network (Figure 3).
In the network, the more edges a node connects with other
nodes, the higher its degree value. .e node with a high

degree value may be the key node of the network and play a
pivotal role in the network. Quercetin had the most sig-
nificant number of targets, with 222 potential targets, fol-
lowed by luteolin, baicalein, and dinatin, with 74, 63, and 40
potential targets, respectively. .ese active ingredients with
more targets may be the core ingredients of HS.

3.5. PPI Network Diagram of Intersecting Targets. .e 170
intersecting targets obtained above were imported into the
STRING 11.0 database for analysis, and the PPI network
diagram of intersection targets between HS and CRC was
obtained. .ere were 166 nodes and 1928 edges in the
network, and the characteristics of the specific network to-
pology were calculated. .e nodes represent the intersection
targets, and the edges represent the association between the
intersection targets. We used Cytoscape 3.8.0 to show the PPI
network diagram and hide the nodes whose degree value is less
than 18.5 (median degree value) (Figure 4(a)). .e cytohubba
plug-in was used to calculate the targets set to screen the core
targets further. .e top 10 hub genes were STAT3, TP53,
MAPK3, AKT1, JUN, EGFR, MYC, VEGFA, EGF, and
CTNNB1 (Figure 4(b)). Furthermore, we revealed the

Table 1: Basic information of 33 active ingredients in HS.

Mol ID Molecule name OB
(%) DL Targets Herb

MOL000098 Quercetin 46.43 0.28 369 H/S
MOL000358 Beta-sitosterol 36.91 0.75 49 H/S
MOL000449 Stigmasterol 43.83 0.76 42 H/S
MOL001646 2,3-Dimethoxy-6-methyanthraquinone 34.86 0.26 0 H
MOL001659 poriferasterol 43.83 0.76 42 H

MOL001663 (4aS,6aR,6aS,6bR,8aR,10R,12aR,14bS)-10-Hydroxy-2,2,6a,6 b,9,9,12a-heptamethyl-
1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid 32.03 0.76 84 H

MOL001670 2-Methoxy-3-methyl-9,10-anthraquinone 37.83 0.21 100 H
MOL000006 Luteolin 36.16 0.25 216 S
MOL000173 Wogonin 30.68 0.23 53 S
MOL000351 Rhamnazin 47.14 0.34 100 S
MOL000359 Sitosterol 36.91 0.75 49 S
MOL000953 CLR 37.87 0.68 0 S
MOL001040 (2R)-5,7-Dihydroxy-2-(4-hydroxyphenyl) chroman-4-one 42.36 0.21 83 S
MOL001735 Dinatin 30.97 0.27 120 S
MOL001755 24-Ethylcholest-4-en-3-one 36.08 0.76 46 S
MOL001973 Sitosteryl acetate 40.39 0.85 23 S
MOL002714 Baicalein 33.52 0.21 180 S
MOL002719 6-Hydroxynaringenin 33.23 0.24 15 S
MOL002776 Baicalin 40.12 0.75 51 S
MOL002915 Salvigenin 49.07 0.33 100 S
MOL005190 Eriodictyol 71.79 0.24 22 S
MOL005869 Daucostero_qt 36.91 0.75 0 S
MOL008206 Moslosooflavone 44.09 0.25 100 S
MOL012245 5,7,4′-Trihydroxy-6-methoxyflavanone 36.63 0.27 70 S
MOL012246 5,7,4′-Trihydroxy-8-methoxyflavanone 74.24 0.26 88 S
MOL012248 5-Hydroxy-7,8-dimethoxy-2-(4-methoxyphenyl) chromone 65.82 0.33 0 S
MOL012250 7-Hydroxy-5,8-dimethoxy-2-phenyl-chromone 43.72 0.25 0 S
MOL012251 Chrysin-5-methylether 37.27 0.2 100 S
MOL012252 9,19-Cyclolanost-24-en-3-ol 38.69 0.78 26 S
MOL012254 Campesterol 37.58 0.71 15 S
MOL012266 Rivularin 37.94 0.37 11 S
MOL012269 Stigmasta-5,22-dien-3-ol-acetate 46.44 0.86 26 S
MOL012270 Stigmastan-3,5,22-triene 45.03 0.71 0 S
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Figure 2: (a) Venn diagram showing the CRC-related targets among the four databases. (b) Venn diagram showing the intersecting targets.
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relationship between two herbs, four core ingredients, and ten
hub genes using Sankey diagram (Figure 4(c)).

3.6. Go and KEGGAnalysis of Intersecting Targets. Based on
GO enrichment and KEGG analysis, we determined how
these intersecting targets function biologically. As a result,
the bar plot of the top 10 terms of biological process (BP),
cellular component (CC), and molecular function (MF)
terms were displayed (Figure 5(a)). In the three categories,
changes in the BP of targets were enriched in cellular
response to chemical stress and response to oxidative
stress; changes in MF were mainly enriched in tran-
scription factor binding, transcription coregulator bind-
ing, and ubiquitin-like protein ligase binding, while CC
were mainly enriched in membrane raft, membrane
microdomain, and transcription regulator complex.
.rough enrichment and screening of the KEGG pathway,
168 signaling pathways were obtained. Combined with
literature research, we screened out the pathways directly
related to CRC and showed the top 15 pathways in the dot
plot according to the count value. Among them, the PI3K-
Akt signaling pathway, proteoglycans in cancer, and
MAPK signaling pathway are closely related to CRC,
which may be the critical pathways of HS in the treatment
of CRC (Figure 5(b)).

3.7. Molecular Docking. In this study, we conducted mo-
lecular docking of 10 hub genes (STAT3, TP53, MAPK3,
AKT1, JUN, EGFR, MYC, VEGFA, EGF, and CTNNB1)
with four core ingredients (quercetin, luteolin, baicalein, and
dinatin) to evaluate the protein-ligand binding potential.
.e results showed that the four ingredients had the best
docking effect with MAPK, and the binding energies were
-8.2 kcal/mol, -8.3 kcal/mol, -8.6 kcal/mol, and -8.0 kcal/mol,
respectively (Figure 6).

Quercetin and luteolin also achieved quite good docking
results with TP53, and the docking results were -8.0 kcal/mol
and -8.0 kcal/mol, respectively. .e 3D diagrams of mo-
lecular docking models were displayed by PyMol 2.4.0,
which showed the interaction of MAPK with quercetin,
luteolin, baicalein, and dinatin (Figure 7). At the same time,
the 2D diagrams showed the details of the interaction by
using Proteins Plus (Figure 8).

4. Discussion

Both Hedyotis diffusa and Scutellaria barbata are heat-
clearing and detoxicating TCMs. Hedyotis diffusa can also
activate the blood circulation and relieve pain, while Scu-
tellaria barbata can remove blood stasis and diuresis [38].
.ey could play a coordinated and synergistic role in
treating tumors, and the combined use of the two drugs is
not simply superimposed, and their combined application is
more effective than a single drug [39]. .e antitumor
mechanism of Hedyotis diffusa is mainly achieved by en-
hancing immune function, interfering with the energy
metabolism of tumor cells, inducing tumor cell apoptosis,
and influencing the mitochondrial pathway [40, 41].

However, the antitumor mechanisms of Scutellaria barbata
include inhibiting tumor cell growth, inducing tumor cell
apoptosis, inhibiting tumor angiogenesis and metastasis,
regulating immunity, and reversing drug resistance of tumor
cells [42, 43].

In other words, some of their functions are the same,
especially in inducing apoptosis, enhancing cell immunity,
and reducing telomerase activity [40]. .ey also have their
own unique functions, which makes them mutually bene-
ficial to play a more significant role. Some studies have
shown that in the breast cancer model mice, the HS group
can significantly increase the tumor inhibition rate, serum
INF–c and IL-2 levels, and decrease serum TNF-α level [16].
It is reported that when the sample concentration was in the
medium concentration range (0.5–1.2mg/ml), HS had a
strong chelating ability to Fe2+, followed by Hedyotis diffusa,
and the extract of Scutellaria barbata was relatively weak. It
is suggested that the herb pair may inhibit or resist tumor
formation by chelating the transition metal ions and
blocking the lipid peroxidation chain reaction. In addition,
HS can provide the most substantial DNA protection, which
may be why it works [44].

In this study, the network pharmacology method was
used to analyze the active ingredients, targets, and potential
mechanisms of HS in CRC treatment. .rough the con-
struction of an herb-ingredient-target-disease network and a
PPI network of intersecting targets, the mechanism of action
of HS on CRC was systematically analyzed.

In the herb-ingredient-target-disease network, quercetin,
luteolin, baicalein, and dinatin have more targets than other
ingredients, which may be the core active ingredients of HS.
Quercetin is one of the main ingredients of Hedyotis diffusa,
and the other three are the main ingredients of Scutellaria
barbata. It has been reported that quercetin can not only
directly inhibit the proliferation of tumor cells [45, 46], but
also plays an antitumor effect by antioxidating [47] and ac-
tivating antitumor immunity [48] and inhibiting EMT
[49, 50]. Luteolin is a natural flavonoid, which can increase
ceramide, leading to the apoptosis and death of CRC cells and
inhibit the synthesis and metabolism of ceramide complex
sphingolipid [51, 52]. In addition, it can inhibit the pro-
duction of MMP-9 and MMP-2 and up-regulate the ex-
pression of TIMP-2, thus playing an antimetastasis role
[53–55]. Baicalein is considered to possess antitumor activity,
which can effectively disrupt the proliferation, migration, and
invasion of CRC cells and decrease the expression of epi-
thelial-mesenchymal transition promoting factors including
vimentin, Twist1, and Snail [56, 57]. It also inhibits the
proliferation and invasion of human CRC cell lines by re-
ducing the expression of MMP-2 and MMP-9 via regulation
of the AKTsignaling pathway [58, 59]. Dinatin is also known
as hispidulin, and it can induce ROS-mediated apoptosis of
human non-small cell lung cancer cells by activating the ER
stress pathway and ER stress-induced apoptosis of human
liver cancer cells by activating the AMPK/mTOR signaling
pathway [60–62]. Moreover, hispidulin treatment signifi-
cantly inhibited the activity of sphingosine kinase one and
consequently promoted ceramide accumulation, thus leading
to apoptosis of renal cell carcinoma [63].
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Figure 4: (a) .e PPI network of the intersecting targets. (b) .e 10 hub genes obtained from the PPI network. (c) .e Sankey diagram
revealed the relationship between herbs, core ingredients, and hub genes.
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Figure 5: (a) GO enrichment analysis results. (b) KEGG pathway enrichment analysis results.
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Figure 7: Continued.
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In the PPI network，we identified ten hub genes,
namely, STAT3, TP53, MAPK3, AKT1, JUN, EGFR, MYC,
VEGFA, EGF, and CTNNB1, which may be the targets of HS
in the treatment of CRC. .e activation of STAT3 could be
observed in various tumors, which was closely related to
inflammation and immunity and promoted tumor pro-
gression as an oncogene [64]. .e expression of pSTAT3
increased significantly in tumor-associated fibroblasts and
activated angiogenesis-related transcription factors to pro-
mote the advancement of CRC [65]. .e missense mutation
of TP53 (mutp53) was common in CRC, and it was esti-
mated that this mutation existed in more than half of the
CRC. Mutp53 limited the binding of SHP and STAT3 and
derived cancer growth and invasion by activating STAT3
[66]. MAPK3, also known as ERK1, is a serine/threonine
kinase. It was found that the levels of phosphorylated STAT3
and ERK1/2 decreased significantly in 8-gingerol treated
CRC cells, resulting in the reduced expression of the
downstream target gene c-Myc [67]. .e expression of
VEGF was regulated by Gab2 and stimulated its downstream
genes ERK1/2 and c-Myc in CRC cells [68]. EGFR is a
receptor tyrosine kinase, which can act as a regulator of
tumor immune monitoring, activate the JAK/STAT3 sig-
naling pathway, and promote the expression of PD-L1 [69].
Overexpression of EGFR and its downstream Ras/Raf/MEK/
ERK signaling plays an essential role in regulating cell cycle
progression, cell proliferation, and apoptosis [70, 71].
Studies have shown that after EGF treatment, pY291 Fas
promoted the nuclear localization of phosphorylated EGFR
and phosphorylated STAT3, the expression of cyclin D1, the
activation of Akt and MAPK pathways mediated by STAT3
[72]. Transcription factor c-Jun was regulated by phos-
phatidic acid (a key intermediate of lipid metabolism) and

can enhance the transcription of the WEE1 gene, a
checkpoint regulator of the cell cycle [73]. .e abnormal
expression of CTNNB1 was closely related to the progres-
sion and metastasis of CRC. Studies have shown that TRAF6
inhibited EMT and CRC metastasis by driving the degra-
dation mechanism of CTNNB1 [74]. .e molecular docking
results showed that these hub genes and core ingredients
have good binding potential, suggesting that HS played a
role in the treatment of CRC mainly through these hub
genes.

In the pathway enrichment, the PI3K-Akt signaling
pathway (hsa04151) has been identified as the critical target
of tumor-targeted therapy, which plays a vital role in reg-
ulating the proliferation, migration, and apoptosis of tumor
cells [75–77]. Phosphoinositide 3-kinase was a member of
the intracellular lipid kinases and regulated cell proliferation
and differentiation [78]. AKT activation drove both glyco-
lytic metabolism of glucose and mitochondrial metabolism
that generated acetyl-CoA, the biosynthetic precursor of
fatty acids, cholesterol, and isoprenoid synthesis. Akt signal
transduction could activate the mTORC1 complex, and
mTORC1 stimulated adipogenesis by regulating SREBP-
mediated FASN expression [79]. .e PI3K/Akt/mTOR
pathway inhibitors provided a promising target for the
treatment of CRC. Proteoglycans in the cancer pathway
(hsa05205) revealed the role of proteoglycan in the growth,
metastasis, and dissemination of cancer cells. For example,
biglycan, as a proteoglycans, combined with vascular en-
dothelial growth factor, can promote the progression of CRC
by inducing the increase of vascular density [80]. MAPK
signaling pathway (hsa04010) could also be associated.
MAPK axis was downstream of many membrane receptors,
including EGFR, which transmits extracellular signals to the

(c) (d)

Figure 7: 3D diagram of molecular docking models, MAPK3 binds to quercetin (a), luteolin (b), baicalein (c), and dinatin (d).
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nucleus and regulates various cellular functions [81]. .e
RAS/MAPK signaling pathway was an essential pathway in
the proliferation, differentiation, and invasion of CRC, as
activated RAS triggers the activation of RAF and subse-
quently activated RAF phosphorylates activates MEK, which
phosphorylates and activates MAPK/ERK [82]. In addition,
we found that colorectal cancer (hsa05210) was directly
related to CRC and was an essential regulator of cell pro-
liferation, apoptosis, and genomic stability [15].

5. Conclusion

In this study, we screened four core ingredients (quercetin,
luteolin, baicalein, and dinatin) from 33 HS active ingre-
dients and obtained 170 intersection targets related to CRC.
.e top 10 hub genes were STAT3, TP53, MAPK3, AKT1,

JUN, EGFR, MYC, VEGFA, EGF, and CTNNB1, which may
be the core targets of HS. Our study shows that HS acts
simultaneously on a variety of signaling pathways related to
CRC, such as the PI3K-Akt signaling pathway, proteogly-
cans in cancer, and the MAPK signaling pathway, which
provides a reference for the research on the specific
mechanism of the drug in the treatment of CRC. However,
the limitation of this study is that network pharmacology
ignores the content of each ingredient in the drug. In ad-
dition, the current research methods ignore the possible
production of new compounds in the process of drug de-
coction. At the same time, another limitation is that network
pharmacology has a high false-positive rate. It is necessary to
illustrate the molecular level of HS on the treatment of CRC
in the future. However, this screening technology, combined
with network pharmacology and molecular docking, saves a
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Figure 8: 2D diagram of molecular docking models shows the details of the interaction, MAPK3 binds to quercetin (a), luteolin (b),
baicalein (c), and dinatin (d).
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lot of scientific research resources and helps researchers
screen drug ingredients and core targets efficiently. In the
follow-up research, on the one hand, we could continue to
study the effect of HS on the treatment of CRC at the
molecular level. On the other hand, we need to constantly
optimize the technology related to drug screening to achieve
more accurate drug screening and reduce the false-positive
rate. We hope that our research can bring a new perspective
to the therapy of CRC and find new anticancer drugs.
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