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Network reconstruction and validation of the Snf1/AMPK
pathway in baker’s yeast based on a comprehensive
literature review
Timo Lubitz1, Niek Welkenhuysen2, Sviatlana Shashkova2, Loubna Bendrioua2, Stefan Hohmann2, Edda Klipp1 and Marcus Krantz1

BACKGROUND/OBJECTIVES: The SNF1/AMPK protein kinase has a central role in energy homeostasis in eukaryotic cells. It is
activated by energy depletion and stimulates processes leading to the production of ATP while it downregulates ATP-consuming
processes. The yeast SNF1 complex is best known for its role in glucose derepression.
METHODS: We performed a network reconstruction of the Snf1 pathway based on a comprehensive literature review. The network
was formalised in the rxncon language, and we used the rxncon toolbox for model validation and gap filling.
RESULTS: We present a machine-readable network definition that summarises the mechanistic knowledge of the Snf1 pathway.
Furthermore, we used the known input/output relationships in the network to identify and fill gaps in the information transfer
through the pathway, to produce a functional network model. Finally, we convert the functional network model into a rule-based
model as a proof-of-principle.
CONCLUSIONS: The workflow presented here enables large scale reconstruction, validation and gap filling of signal transduction
networks. It is analogous to but distinct from that established for metabolic networks. We demonstrate the workflow capabilities,
and the direct link between the reconstruction and dynamic modelling, with the Snf1 network. This network is a distillation of the
knowledge from all previous publications on the Snf1/AMPK pathway. The network is a knowledge resource for modellers and
experimentalists alike, and a template for similar efforts in higher eukaryotes. Finally, we envisage the workflow as an instrumental
tool for reconstruction of large signalling networks across Eukaryota.
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INTRODUCTION
The adenosine monophosphate-activated protein kinase (AMPK) is
the key regulator of energy homeostasis in eukaryotic cells. It
orchestrates cellular adaptation to nutrient availability and
ensures cell survival under stressful conditions.1 Its central role
in energy regulation makes it a potential drug target for treating
diseases like obesity, heart diseases or type 2 diabetes. Thus, the
mechanisms of activation of and signalling through AMPK have
received great attention.
The Sucrose Non-Fermenting kinase Snf1 is the AMPK

orthologue in baker’s yeast, Saccharomyces cerevisiae.2 Yeast cells
adjust their metabolism in response to nutrient availability to
ensure cell survival.3 Glucose and fructose cause the repression of
numerous genes encoding nutrient uptake systems and metabolic
enzymes, and cells shifted to less preferred carbon sources change
their transcriptome and proteome to utilise new carbon sources.4

This reprogramming is mediated by the Snf1 kinase, which is a key
regulator of energy metabolism also in yeast.5

The architecture of the Snf1 pathway is well-known. At the core
of the Snf1 pathway is the heterotrimeric SNF1 complex,
consisting of a catalytic α-subunit (Snf1), a regulatory γ-subunit
(Snf4) and one of three β-subunits (Sip1, Sip2 and Gal83) that
serve as scaffold and targeting subunits. These three forms of the
SNF1 complex have overlapping but distinct roles and localisation
patterns, and are regulated by upstream kinases, phosphatases
and other modifiers. SNF1 in turn regulates a range of cytoplasmic

and nuclear targets, in particular the transcription factors
responsible for the reprogramming of energy metabolism. Hence,
also the physiological role of the pathway is well-defined.
These features make the Snf1 system a suitable target for

network reconstruction. This process is well-established for
metabolic networks, where a high degree of conservation enables
sequence-based reconstruction.6 However, the specificities of
signalling components are encoded in short or ill-defined
sequences, and may be completely disrupted by point
mutations.7 Therefore, reconstruction of signalling networks relies
on experimentally validated reactions as extracted from literature,
and the validation on physiological input/output relationships.
Various approaches have been used to generate large, primarily
graphical, signalling network reconstructions.8–11 However, most
of these cannot be simulated and validated, as routinely done for
metabolic networks.12 Thus, we need an integrated workflow for
reconstruction, validation and refinement of signalling networks.
Here, we present such a workflow and apply it to create a

reconstruction of the Snf1 network. We performed an exhaustive
literature review with the explicit aim to collect all mechanistic
information on the signal transfer, and to compile that information
in a stringent, machine-readable format. We chose the rxncon
language for its scalability and fidelity to the empirical data
structure,11,13 and used the rxncon toolbox for model creation,
validation and gap filling.14 We extended the literature-curated
network to enable information transfer between each input and
every output that it triggers. The resulting network fully reproduces
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the expected qualitative behaviour in Boolean simulations, and
each of the gap filling additions constitutes a clearly phrased
hypothesis awaiting experimental validation. Finally, we generated
a rule-based model corresponding to the final reconstruction as a
proof-of-principle. We provide both the initial literature curation
and the gap-filled network model as community resources that
summarise the complete Snf1 literature to date. We envisage them
as useful tools in yeast Snf1/AMPK research and as templates for
similar efforts in higher organisms, and the workflow as a key tool
for large scale reconstruction of signalling networks.

MATERIALS AND METHODS
As described in detail in the Supplementary Material section
(supplementary information 1), the reconstruction was performed using
the rxncon language and tool.11 During the reconstruction process, we
collected two kinds of data from literature: mechanistic and physiological/
functional data. The mechanistic data were further divided into elemental
reactions and contingencies. The elemental reactions define possible state
transition events that produce or consume elemental states. Importantly,
the elemental states define only a single property of a component, such as
a specific modification or binding. Hence, they correspond to the full set of
specific states for which that modification and binding is true, and,
correspondingly, an elemental reaction corresponds to a set of reactions
(reviewed in ref. 13). These decontextualised reactions are equivalent to
the protein–protein interactions in e.g., the BioGRID database.15 The
contingency information defines how elemental reactions depend on
elemental states, and hence defines the causality in the network. The
distinction between reactions and contingencies is the same as in the
SBGN entity relationship diagrams,16 and together the reactions and
contingencies fully define the network and can be used for automatic
model generation (Supplementary file 1; ref. 14).
The physiological/functional data were used for validation of the network

reconstruction. We searched for inputs known to activate Snf1 and for the
downstream Snf1-dependent responses to these inputs, which we collected
as a set of input/output relationships. For validation, we generated and
simulated the corresponding bipartite Boolean model (bBM) with the
rxncon toolbox, and visualised the attractor states on the regulatory graph
in Cytoscape.14,17 We analysed only the attractor states, which are the end
results of the simulations, due to the very crude time concept in Boolean
models. The attractor states correspond to a qualitative steady state, which
can be used to determine if the signal is transduced through the network or
not. We scored functionality for each input–output relationship by
determining if that output responded appropriately when the input was
changed between on and off (Table 1). When necessary, we adapted the
network definition to resolve blocks and/or constitutive activities as
detailed in the Results section. All such adaptations have been clearly

labelled as hypotheses in the updated network definition (Supplementary
file 2). Finally, we translated the gap-filled network into a rule-based model
in the BioNetGen language.18 All methods are described in more detail in
the Supplementary Methods section.

RESULTS
The Snf1 network reconstruction is based on a comprehensive
literature review
We present a network reconstruction of the Snf1 pathway based
on a comprehensive literature review. We used the Textpresso tool
at Saccharomyces Genome Database (SGD) to search the literature
with the ‘Snf1’ string, and extended this list with further papers
manually. In total, we could find and download 444 publications
dating from February 1977 to January 2015 from online research
literature repositories (Supplementary file 3). We read and
evaluated each of these papers, searching for and re-evaluating
experimental evidence of interactions of pathway components.
We extracted mechanistic information on the Snf1 pathway from
77 papers.19–95 The literature-derived network reconstruction
(NR1) encompasses 71 reactions and 105 contingencies, each of
which is associated with ⩾ 1 references (Supplementary file 1).
Hence, this initial network reconstruction is fully referenced and
based on careful manual curation of the entire Snf1 literature.

The network reconstruction encompasses 52 components taking
part in 71 elemental reactions
At the topological level, NR1 encompasses 52 components and 71
elemental reactions (Figure 1). The components are proteins (44),
small molecules (1) and transcription factor-binding sites (7). The
signalling pathway displays a clear bow-tie structure centred on the
SNF1 kinase complex, which participates in 40 of the 71 reactions.
The activity of the SNF1 kinase complex is controlled by posttransla-
tional modification by a battery of upstream regulators. The key
modification is phosphorylation of Thr210 in Snf1, which is
indispensable for kinase activity. This residue is phosphorylated by
any of the three upstream kinases Sak1, Elm1 or Tos3,75 and
dephosphorylated by phosphoprotein phosphatase type 1 (PP1);
consisting of the catalytic subunit Glc7 and either of the regulatory
subunits Reg1 and Reg2.75 In addition, the SNF1 complex is regulated
by ubiquitylation and sumoylation of the catalytic Snf1 subunit. The
active SNF1 complex in turn regulates a wide range of targets that
are primarily involved in energy metabolism and transcription.

Table 1. The input/output relationships in the Snf1 pathway

Input Output Recon 0 Recon I Recon II Recon III Expected behaviour Reference PMID

Glucose− [Snf1Degradation] Fail Pass Pass Pass OFF 21628526
[Rod1Degradation] Fail Fail Fail Pass OFF 22249293
[Mig1Transcription] Fail Fail Pass Pass ON 2167835, 14871952, 2002006, 1541392, 17178716
[Nrg1Transcription] Fail Fail Pass Pass ON 12024013
[Nrg2Transcription] Fail Fail Pass Pass ON 12024013
[CSRETranscription] Fail Fail Pass Pass ON 9111319, 15121831
[Rds2Transcription] Fail Fail Pass Pass ON 17875938
[STRETranscription] Fail Pass Pass Pass ON 12093809

pH 8 [Mig1Transcription] Fail Fail Pass Pass ON 22372618
[Nrg1Transcription] Fail Fail Pass Pass ON 12509465, 17023428
[STRETranscription] Fail Pass Pass Pass ON 21749328

Nitrogen− [GATATranscription] Fail Fail Pass Pass ON 11809814, 12062797

NaCl+ [STRETranscription] Fail Pass Pass Pass ON 8641288

For each input condition, the table lists the expected state of each outputs, as well as the observed output in the simulation of (0) the initial network
reconstruction (NR1), (1) after the first round of refinement, (2) after the second round of refinement and (3) in the final model (NR2). The PMIDs indicate
references to experimental observations of these input/output relationships. The reference condition is the presence of glucose and the absence of any stress
(Supplementary File 9), and entries are only given when they have been reported to differ from the reference condition.
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The signal transmission in the Snf1 pathway is well-understood
At the regulatory level, NR1 encompasses 71 elemental reactions
that produce or consume 64 elemental states, which in turn
regulate the reactions via 108 contingencies (Figure 2; ref. 11). The
network retains the bow-tie structure also at the regulatory level,
where it is centred on the active forms of the SNF1 complex. The
graph is well-connected, meaning that the causal relationships
between reactions and states are well-known. Importantly, there
are directed paths from the inputs to the outputs, indicating that
the mechanism of information transfer is understood at the

molecular, mechanistic level. However, there is one disconnected
subgraph, reflecting our lack of knowledge on how—at a
mechanistic level—glucose and energy regulate the Snf1 pathway.

Input/output validation reveals specific knowledge gaps
To validate NR1, we made use of the well-understood input/
output relationship of the Snf1 pathway. We examined
whether the network reconstruction sufficed to enable informa-
tion transfer through the network as expected. For this
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Figure 1. The Snf1 pathway and its components. The reaction graph depicts the pathway components of the NR1 network, and the different
reactions they take part in (excluding the nuclear import and export reactions, and the nuclear pore complex mediating them). The SNF1
complex is regulated by kinases, phosphatases and other modifiers shown at the top. The transcriptional regulation is shown at the bottom.
The coloured circles represent components and coloured edges represent different classes of reactions. The information in the reaction graph
is only topological, and the edges cannot be interpreted in terms of information flow. However, most of them do carry information, as shown
in the regulatory graph (Figure 2).

Figure 2. The regulatory structure of the Snf1 pathway. The regulatory graph depicts the information flow through the NR1 network as a
bipartite-directed graph. Elemental reactions (red nodes) produce or consume elemental states (blue nodes) via reaction edges, which
correspond to the edges in the reaction graph (Figure 1). The elemental states in turn influence the elemental reactions via contingency
edges, and they define contextual constraints on reactions. The inputs in form of external stimuli can be found at the top of the picture, as
grey nodes with node names in square brackets. The cytoplasmic reactions and SNF1 complex formation are found in the middle part, and
the nuclear reactions at the bottom with the transcriptional output again as grey nodes with names in square brackets. Information passes
through the network along the unidirectional edges, either by production (blue edges) or consumption (purple edges) of elemental states by
reactions, or by the regulatory effect of elemental states on elemental reactions. Positive contingencies from activating states to activated
reactions are denoted in green, while inhibitory contingencies appear in red. More complex requirements, such as formation of the active
forms of the SNF1 complex, are defined by Boolean states that are indicated as white triangles (AND) or diamonds (OR). The compartment
borders in grey represent the plasma membrane and the nuclear membrane, and have been included as visual guides but carry no
information. At the center, we have the three active forms of the SNF1 complex; SNF1*CYT, SNF1*VAC and SNF1*NUC, that are localised to the
cytoplasm, the vacuole and the nucleus, respectively. Information can only pass along the direction of the edges, and we can follow them
from inputs to outputs. In this network we have four inputs: The three grey stress inputs to the upper right, and extracellular glucose to the
upper left. The last is part of an unconnected subgraph, highlighting the fact that we do not know how the glucose signal is sensed by the
pathway. The original NR1 Cytoscape file is attached as Supplementary file 5.
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purpose, we used a bBM to determine if the attractor states for
every input combination correspond to that expected based
on our empirical understanding of the pathway. Examining the
input/output relationship of the Snf1 network reconstruction, we

found that none of the documented input/output relationships
could be reproduced by the bBM of NR1 (Table 1), highlighting
important mechanistic gaps in the combined literature
knowledge.
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The gap filling process required three steps to generate a
functional network model
We used iterative network improvement, bBM generation and
validation as described above to identify and fill the gaps in the
network. We identified blocks in the information transfer, i.e.,
reactions or states that do not vary as expected in response to
varying inputs, and eliminated these blocks by minimal modifica-
tions of the network (Figure 3). The gap filling workflow on the
Snf1 network reconstruction identified a total of 1 missing
component, 1 missing reaction and 13 missing contingencies
(Table 2), and resulted in a final network (NR2) with 53 compo-
nents, 72 reactions and 118 contingencies (Supplementary file 2).
The corresponding bBM reproduced the expected input/output
relationships in all tested cases, as shown for glucose deprivation
(Figure 4), basic conditions (Supplementary file 9), salt stress
(Supplementary file 10), alkaline conditions (Supplementary file
11) and nitrogen starvation (Supplementary file 12). NR2 is a
merge of the explicitly referenced original curation and clearly
labelled hypothetical reactions and contingencies, each of which
correspond to a testable hypothesis.

The rxncon network definition corresponds to a dynamic model
As proof-of-principle, we used the rxncon toolbox and NR2 to
generate a rule-based model in the BioNetGen language
(Supplementary file 4). The resulting model has 176 distinct
parameters, precluding reliable parameter estimation based on
current data and hence meaningful analysis. However, the model can
be simulated using NFsim,96 demonstrating that the rxncon network
reconstruction can be used as basis for dynamic simulations.

DISCUSSION
Here, we present a network reconstruction of the Snf1 signalling
pathway. Network reconstruction is well-established for metabolic
networks, and they are divided into four stages: (i) draft
reconstruction, (ii) refinement, (iii) conversion into a computa-
tional model and (iv) network evaluation (including gap filling).12

However, these methods cannot directly be applied to signal
transduction networks, and hence we developed an analogous,
but distinct, workflow (Figure 5).
The first and arguably most important phase is the translation

of diverse experimental findings into a single, machine-readable
reconstruction of the system under study. For this purpose, we
carefully curated and distilled the complete literature on the Snf1/
AMPK pathway architecture into a network reconstruction. We
searched for evidence of reactions between network components
and of causal relationships between reactions (i.e. contingencies),
and formalised the reactions and contingencies in the rxncon
language. The resulting network is fully annotated, machine
readable and can be used for automatic model generation with
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Figure 3. Three gap filling steps suffice to fully connect inputs with their respective outputs. The figure displays the difference between the
initial (NR1) and final (NR2) networks. (a) Connection of the glucose subgraph to the main pathway. This connection required one abstract
state, which is active in the presence of glucose as long as none of the stresses are active, and which activates sumoylation and inhibits
phosphorylation of Snf1. It also activates the phosphorylation of Msn2. (b) Adaptation of transport reactions. The nuclear localisation pattern
could only be reproduced if both import and export are regulated, otherwise the localisation oscillates. In addition, we added a direct edge
from salt stress to inhibit Snf1 nuclear localisation, to account for the observation that Snf1 is phosphorylated but not nuclear on salt stress.
(c) Deubiquitylation of Rod1. An unknown deubiqitylating enzyme was added, acting on Rod1. Faded nodes and edges were part of the initial
network reconstruction (NR1), while nodes and edges with full colours were added to NR2 during the network refinement. The gap filled NR2
Cytoscape file is attached as Supplementary file 6.

Table 2. The three gap-filling steps

Reconstruction Modification

Recon I Unknown glucose-regulated step (US): stimulated by
intracellular glucose, inhibited by NaCl, pH8, nitrogen
limitation
If US active:
SUMOylation of Snf1 is stimulated, deSUMOylation
inhibited
Elm1, Sak1, Tos3 are inhibited
phosphorylation of Msn2 by Tpk1 is stimulated

Recon II phosphorylated Mig1 cannot be imported into the
nucleus
phosphorylated Snf1 cannot be exported from the
nucleus
NaCl prevents Snf1 import to nucleus
phosphorylation of Gln3 induces nuclear export

Recon III Rsp5 antagonizing protease for Rod1

The table indicates the modifications done in each of the three
refinement steps.
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Figure 4. The steady state of the Snf1 bBM under glucose deprivation is a point attractor. The end state of the bBM simulation under glucose-
deprived conditions visualised on the regulatory graph of the updated network. The bBM was generated automatically based on the final
network after validation, and the simulation initiated from the starting states defined in the Methods section. The pale nodes are inactive and
the filled nodes are active. The Boolean model is attached in the BooleanNet and BoolNet formats as Supplementary files 7 and 8, respectively.
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the rxncon software tool. Importantly, we found text mining
insufficient for high quality network reconstruction and based the
curation on manual re-evaluation of the data presented in the
cited papers. Hence, this first phase corresponds to the first and
second stages of metabolic network reconstruction.12 The result is
a high-quality curation summarising the entire Snf1 literature in a
fully annotated, machine-readable format.
The second phase is the network validation. This is again well-

established for metabolic networks, based on the assumption that
mass transfer paths exist such that all metabolites can be reached
from the input nutrients.97 Again, this does not hold here, as there
is no mass transfer through a signalling network. Instead, we used
the known input/output relationships to define information paths
through the network. The first step of phase II is the generation of
a computational model, corresponding to stage 3 of metabolic
network reconstruction.12 Here, we used the rxncon tool to
generate and simulate the bBM corresponding to the network
reconstruction, and used the bBM to determine whether
information paths are functional.14 This analysis revealed that
none of the input/output paths could be reproduced based on the
literature curation itself (Table 1). Thus, critical information was
missing from our understanding of the Snf1 pathway.
To identify these missing links, we went through an iterative

gap filling and validation process. The bBM was modelled with
alternating inputs to determine which paths worked as expected.
For those that did not, we identified the missing steps manually
and modified the network to solve the problem. After modifica-
tion, a new bBM was generated and evaluated, and the process
repeated until all paths were functional (Table 1). The modifica-
tions fall into one of three classes: missing causal links (i.e.
contingencies), states that could not be consumed (missing
reverse reactions) or artefacts from the binary assumptions in the
Boolean model (missing/modified contingencies). Each modifica-
tion corresponds to a testable hypothesis, and is clearly labelled as
such to distinguish it from the reactions and contingencies that
are based on existing literature evidence (Supplementary file 2).
The result is a validated, functional network that qualitatively
reproduces the input/output paths known form empirical
observations.
The gap filling modifications fall into three groups (Figure 3;

Table 2). First, the reconstruction lacks a connection between
intracellular glucose and phosphorylation of Snf1, consistent with
the current (lack of) understanding of how the pathway is
activated. To enable the response to glucose, we included an
unknown regulatory step connecting glucose and stress signals to
Snf1, as proposed in ref. 98. It stimulates Snf1 sumoylation and
inhibits phosphorylation such that Snf1 is activated on glucose
deprivation. Second, we adapted the trans-organelle transport
reactions. Both import and export need to be regulated to prevent

components from cycling between compartments. While this is an
artefact from the binary assumptions in the bBM, it is also likely
that the nucleo-cytoplasmic shuttling is regulated in both
directions to avoid futile cycling in vivo. Third, we added
consumption reactions for states lacking them. Here, Rod1 is
ubiquitylated by Rsp5 but the reverse reaction is unknown. To
avoid permanent ubiquitylation of Rod1, we introduced an
unknown deubiquitylating peptidase. Twenty such enzymes
exist in yeast, although activity against Rod1 has not been
reported.99 Hence, the gaps identified in the validation process
could be filled with reactions and contingencies that are
consistent with our knowledge, and which constitute explicit
testable hypotheses.
The mechanism of activation remains an open question. Snf1

responds to a number of stress factors in addition to glucose
limitation, namely high salt concentrations, alkaline pH and
nitrogen limitation.44,100 The proposal that energy is the main
cue is consistent with the wide but specific range of stresses that
induces the pathway, and the unknown regulatory step we
included may turn out to be a direct measure of the energy state
of the cell. The strongest candidate is nucleotide binding,
consistent with how AMPK works in higher organisms. There is
some evidence in this direction, as ADP protects Snf1 from
dephosphorylation101 and AMP appears to interact with Snf4.102

However, there are also reports that the SAGA acetyl transferase
complex deubiquitylates Snf1, thereby affecting Snf1 kinase
activity, Snf1 phosphorylation and SNF1 complex stability.103

Ubiquitylation is stimulated by SUMOylation, and Snf1 is
SUMOylated by the SUMO-E3 ligase Mms21 under glucose
conditions.93 As a consequence, Snf1 is ubiquitylated by Slx5-
Slx8 and degraded.104 Thus, the mechanism remains elusive, and
we summarise this gap in a single, glucose-regulated step in the
final network.
To create this network reconstruction, we introduced a work-

flow for network reconstruction, validation and iterative refine-
ment. Similar workflows have proven crucial for the success in
large scale metabolic network reconstruction and modelling, but
have hitherto not been available for signalling networks. Here, we
demonstrate that this workflow works for a well-defined pathway.
However, the challenges will aggravate as we extend the scope
toward larger and eventually genome scale networks. First, the
knowledge gaps will be much more severe in the grey areas
between the traditional pathways as compared with their well-
studied cores. This information bias is likely one of the reasons for
the clear bow-tie structures in the SNF network (Figures 1 and 2).
Second, the demands on the formats and methods increase
drastically with larger network size. Several large mapping efforts
have used the specific state based process description format, and
these maps are highly valued community resources.8–10 Here, we

Figure 5. The network reconstruction workflow. The first phase of the process was the network reconstruction itself, where we extracted
reaction and contingency information from published data. The curation process produced the initial network reconstruction (NR1). The
second phase of the process was the validation and iterative improvement. It starts with the creation of the bBM, followed by simulation of
the bBM and comparison to the known input/output relationships. If the model fails to transmit information as expected, the gap is identified
and filled, and the updated network re-enters the workflow at model creation. If the model passes all tests, it is accepted and considered a
validated network (NR2). The validated network constitutes a knowledge resource, but can also be further processed with the rxncon tool to
generate graphical or mathematical models in a range of formats, as illustrated by the rule-based model (Supplementary file 4).
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chose a reaction-contingency based format, as the network
definition scales more favourably with network size and has
better congruence with experimental data (reviewed in ref. 13).
This choice also enabled the use of the rxncon toolbox with the
automatic model generation that was necessary for the iterative
validation and gap filling processes. As we illustrate with the rule-
based model generation, the rxncon network definition can also
be used to create a dynamic model. However, meaningful
parameterisation and efficient simulation of such large models
are still outstanding challenges. Finally, the rxncon language
enables clean bottom-up reconstructions, as each reaction and
contingency can be defined independently of other reactions and
contingencies, respectively. This stands in stark contrast to the
specific state-based formats, where reactions and causalities are
weaved together and must be adapted as new information
appears. Taken together, the proposed workflow provides an
approach to tackle large networks with partially very sparse
knowledge. We are convinced that this or a similar approach will
be instrumental in the reconstructions of genome scale signalling
networks in eukaryotes.
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