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Background. Known and unknown/unmeasured risk factors are the main sources of confounding effects in observational studies
and can lead to false observations of elevated protective or hazardous effects. In this study, we investigate an alternative approach
of analysis that is operated on field-specific knowledge rather than pure statistical assumptions. Method. The proposed approach
introduces a proxy outcome into the estimation system. A proxy outcome possesses the following characteristics: (i) the exposure
of interest is not a cause for the proxy outcome; (ii) causes of the proxy outcome and the study outcome are subsets of a collection
of correlated variables. Based on these two conditions, the confounding-effect-driven association between the exposure and proxy
outcome can then be measured and used as a proxy estimate for the effects of unknown/unmeasured confounders on the outcome
of interest. Performance of this approach is tested by a simulation study, whereby 500 different scenarios are generated, with the
causal factors of a proxy outcome and a study outcome being partly overlapped under low-to-moderate correlations. Results. The
simulation results demonstrate that the conventional approach only led to a correct conclusion in 21% of the 500 scenarios, as
compared to 72.2% for the alternative approach. Conclusion.The proposedmethod can be applied in observational studies in social
science and health research that evaluates the health impact of behaviour and mental health problems.

1. Background

Due to lack of randomization, estimates obtained from
observational studies are often affected by uncontrolled or
unmeasured confounding effects. Several methods have been
proposed to deal with the problem [1–11], but their appli-
cation relies on assumptions about the distribution of the
unknown confounding factor(s) in relation to the outcome,
the exposure, and other known covariates.

The present study investigates an alternative approach
of analysis that makes use of field-specific knowledge to
determine a proxy outcome, which then will be employed to
estimate uncontrolled confounding effects. A proxy outcome
should satisfy the following conditions: (i) the exposure of
interest is not a cause for the proxy outcome; and (ii) causes
of the proxy outcome and the main outcome are subsets of a
collection of correlated variables. If condition one is satisfied,
then it is certain that the observed association between the

exposure and the proxy outcome is completely driven by
confounding effects. Nevertheless, condition one may be
relaxed to some extent, for example, when it is certain that
the confounding effect is by far stronger than possible causal
effect. When condition two is satisfied, confounders for the
proxy outcome and the outcome of interest are similar or
at least correlated. For example, various forms of physical
and mental health outcomes can be affected by a cluster
of socioeconomic, behavioural, psychological, and genetic
factors [12–22]. Researchers can apply their field knowledge
and experience to determine the best proxy outcome for their
outcome and exposure of interest.

Intuitively, let 𝑦 and𝑦 be themain outcome and the proxy
outcome, respectively; 𝑟 denotes the possible risk of 𝑦 due
to a given level of exposure; 𝑡

0
and 𝑡
1
the unexposed and

exposed person-time at risk; 𝑑
0
and 𝑑

1
represent the number

of cases of 𝑦 observed in 𝑡
0
and 𝑡
1
, whereas 𝑑

0
and 𝑑

1
are

the number of cases of 𝑦 observed in 𝑡
0
and 𝑡
1
, respectively.
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Further, suppose that 𝑃(𝑑
0
) and 𝑃(𝑑

1
) define the expected

probability of one or more sufficient causes that the exposure
of interest is not involved, occurring for 𝑦 in a unit of person-
time at risk within 𝑡

0
and 𝑡
1
, respectively; correspondingly,

𝑃(𝑑


0
) and 𝑃(𝑑

1
) define the expected probability of one or

more sufficient causes occurring for 𝑦 in a unit of person-
time at risk within 𝑡

0
and 𝑡
1
, respectively. Then, the observed

crude risk ratios are

𝑑
1
/𝑡
1

𝑑
0
/𝑡
0

=
{𝑟 [1 − 𝑃 (𝑑

1
)] + 𝑃 (𝑑

1
)}

𝑃 (𝑑
0
)

𝑑


1
/𝑡
1

𝑑
0
/𝑡
0

=
𝑃 (𝑑


1
)

𝑃 (𝑑
0
)
.

(1)

If the sufficient causes of 𝑦 and 𝑦 are the same, largely
overlapped, or strongly correlated, then

𝑃 (𝑑
1
)

𝑃 (𝑑
0
)
=
𝑃 (𝑑


1
)

𝑃 (𝑑
0
)
,

𝑑
1
/𝑡
1

𝑑
0
/𝑡
0

=
𝑑


1
/𝑡
1

𝑑
0
/𝑡
0

(2)

will be observed if the exposure is not causal for 𝑦 (𝑟 = 0),
whereas

𝑑
1
/𝑡
1

𝑑
0
/𝑡
0

>
𝑑


1
/𝑡
1

𝑑
0
/𝑡
0

(3)

will be observed if the exposure is causal for 𝑦 (𝑟 > 0). Given
this strict assumption, the method has been successfully
applied in time series analysis recently, whereby the proxy
outcome was described as a control series [23, 24]. For
example, the study byHerttua and colleagues investigated the
effect of alcohol price (exposure) on alcohol-relatedmortality
(outcome of interest), while coronary operations were used as
the control series (proxy outcome) [23]. Nevertheless, such a
method may remain valid when assumptions are relaxed and
can be applied to different study designs. Because the details
of underlying causal mechanisms for an outcome (i.e., all
sufficient causes) are typically unknown, it is best to ascertain
the validity of themethod through simulations.Therefore, we
conduct a simulation study to test its application, focusing
on situations when the causes of 𝑦 and 𝑦 are only partly
overlapped and have only low to moderate strength of
association.

2. Method

2.1. Simulation Design. The simulation process follows the
sufficient cause model [25]. In the simulation for an event
to occur, at least one sufficient cause has to occur, which
comprises the occurrence of twomatched causal components
and absence of any competing event. In addition, a randomly
distributed small error term is introduced to ensure that
perfect prediction (which interrupts the computing process)
will not occur. To account for the fact that only certain
real causal factors are known yet some of the noncausal

factors are mistaken as causal factors, a collection of variables
are included to encompass exposure, causal factors, and
noncausal factors, while a subset from the pool provides the
known variables. All simulations are performed within the
STATA package release 12.

The simulations contain 500 replicates, with each repli-
cate being generated through an independent process. There
are seven simulation steps involved in each replicate.

(1) Generate a collection of correlated binary variables,
X
40×50000

= {𝑋
𝑖𝑛
}, 𝑖 = (1, 2, 3, . . . , 40), and 𝑛 =

(1, 2, 3, . . . , 50000). For each 𝑛, 𝑋
𝑖𝑛
is set to 1 if an

intermediate process variable 𝑇
𝑖𝑛
≥ 0.75 and 0 other-

wise, where𝑇
𝑖𝑛
= 𝑉
𝑖𝑛
𝑃
𝑖
+𝑈
𝑛
(1−𝑃
𝑖
) is a combination of

a variable component (𝑉
𝑖
) and an unique component

(𝑈) for each 𝑖, both being uniform [0, 1) distributed
random variables, and 𝑃

𝑖
is a random proportion

drawn from a uniform [0.3, 0.8) distribution. The
range [0.3, 0.8) is chosen in order to set a low to
moderate level of correlation among 𝑋. The mean
(standard deviation), 25th, 50th, and 75th percentiles
of the correlation coefficients for thematrixX are 0.29
(0.12), 0.20, 0.26, and 0.34, respectively.

(2) Determine the real causes for outcomes of interest
𝐴, 𝐵, and proxy outcome 𝐶. Real causes for 𝐴, 𝐵,
and 𝐶 are subsets of X in which 𝑋

𝑖
and 𝑋

𝑖+10
,

𝑖 = (1, 2, 3, . . . , 10) form ten matched pairs. Let 𝐹
𝑗,𝑖

indicate the factual causes, 𝑗 = (𝐴, 𝐵, 𝐶) and 𝑖 =
(1, 2, 3, . . . , 10). In this simulation, we force 𝐹

𝐴,1
= 1

and 𝐹
𝐵,1
= 𝐹
𝐶,1
= 0; that is, 𝑋

1
is causal for 𝐴, but

not causal for 𝐵 and 𝐶. For 𝑖 = (2, 3, . . . , 10), 𝐹
𝑗,𝑖
is a

random value drawn from the Bernoulli distribution
with probability of success = 0.5, value of success = 1,
and value of failure = 0. For example if 𝐹

𝐴,2
= 1, then

the pair of𝑋
2
and𝑋

12
is a cause of 𝐴.

(3) Generate competing events for outcomes𝐴, 𝐵, and𝐶.
Let 𝐸
𝑗,𝑛

denote the competing events for outcomes𝐴,
𝐵, and 𝐶, 𝑗 = (𝐴, 𝐵, 𝐶) and 𝑛 = (1, 2, 3, . . . , 50000).
𝐸 is a Bernoulli distributed random variable with a
probability of success = 0.1, value of success = 1, and
value of failure = 0. 𝐸 is also independent of𝑋.

(4) Generate background errors for outcomes 𝐴, 𝐵, and
𝐶. Let𝑄

𝑗,𝑛
denote “background” sufficient causes, 𝑗 =

(𝐴, 𝐵, 𝐶) and 𝑛 = (1, 2, 3, . . . , 50000). 𝑄 is a Bernoulli
distributed random variable with a probability of
success = 0.05, value of success = 1, and value of failure
= 0. 𝑄 is independent of 𝐸 and𝑋. 𝑄 services as small
random error, and it is introduced to smooth the
computing process only.

(5) Determine the status (occur or not occur) of out-
comes 𝐴, 𝐵, and 𝐶. Let 𝑌

𝑗,𝑛
where 𝑗 = (𝐴, 𝐵, 𝐶) and

𝑛 = (1, 2, 3, . . . , 50000) denote the status of outcomes
𝐴, 𝐵, and 𝐶. Value of each 𝑌

𝑗,𝑛
is determined as

follows. For each observation 𝑛, 𝑌
𝑗,𝑛
= 1 (outcome

occurred) if 𝑄
𝑗,𝑛

= 1, or for 𝑖 = (1, 2, 3, . . . , 10),
∑
𝑖
𝑋
𝑖𝑛
𝑋
(𝑖+10)𝑛

𝐹
𝑗,𝑖
≥ 1 when 𝐸

𝑗,𝑛
= 0; Otherwise

𝑌
𝑗,𝑛
= 0 (outcome not occurred).
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(6) Determine the known/suspected (not necessary the
fact) “causal” factors (except 𝑋

1
) for outcomes 𝐴

and 𝐵. The known/suspected “causal” factors for
outcomes 𝐴, 𝐵, and 𝐶 are determined for 𝑋

𝑖
for

𝑖 = (1, 2, 3, . . . , 40). Let 𝐾
𝑗,𝑖

denote the researcher’s
knowledge (not necessary the fact) of causes for
outcomes 𝐴 and 𝐵. Let 𝑗 = (𝐴, 𝐵), and 𝐾

𝑗,𝑖
indicates

a known “causal” factor. Because 𝑋
1
is the exposure

of interest, so we force each 𝐾
𝑗,𝑖
= 1 when 𝑖 = 1. For

𝑖 = (2, 3, . . . , 20), 𝐾
𝑗,𝑖
is a random value drawn from

a Bernoulli distribution with a probability of success
= 0.5. For 𝑖 = (21, 22, 23, . . . , 40), 𝐾

𝑗,𝑖
is a random

value drawn from the Bernoulli distribution with a
probability of success = 0.15, value of success = 1, and
value of failure = 0. The difference in the success
rates between the two groups indicates that a real
causal factor is more likely to be acknowledged than
a noncausal factor.

(7) Estimate the effects of𝑋
1
on outcomes𝐴 and 𝐵 based

on the fact model, and compare the conventional
approach with the proposed approach. Let 𝐺

𝑗,𝑛
, 𝑗 =

(𝐴, 𝐵), 𝑛 = (1, 2, 3, . . . , 50000), be the presence of
causes (except 𝑋

1
and 𝑋

11
) for outcomes 𝐴 and 𝐵

for each observation. For each 𝑛, 𝐺
𝑗,𝑛
= 1 for 𝑖 =

(2, 3 . . . , 10), if ∑
𝑖
𝑋
𝑖𝑛
𝑋
(𝑖+10)𝑛

𝐹
𝑗,𝑖

≥ 1; 𝐺
𝑗,𝑛

= 0

otherwise.

The true effects of𝑋
1
on outcomes 𝐴 and 𝐵 based on the

fact model are estimated by

𝑃 (𝑌
𝑗,𝑛
= 1 | 𝑋

1𝑛
, 𝐺
𝑗,𝑛
)

=
exp (𝛽

𝑗,1
𝑋
1𝑛
+ 𝛽
𝑗
𝐺
𝑗,𝑛
)

1 + exp (𝛽
𝑗,1
𝑋
1𝑛
+ 𝛽
𝑗
𝐺
𝑗,𝑛
)
,

(4)

where 𝛽
𝑗,𝑖
is the estimated real effect of 𝑋

𝑖
on outcome 𝑗 for

𝑗 = (𝐴, 𝐵). To estimate the effects of 𝑋
1
on outcomes 𝐴

and 𝐵 based on known/suspected confounders and applying
standard multivariate logistic regression as the adjustment
method, we have

𝑃 (𝑌
𝑗,𝑛
= 1 | 𝑋

𝑖𝑛
, 𝐾
𝑗,𝑖
)

=

exp (𝛽
𝑗,1
𝑋
1𝑛
+ ∑
40

𝑖=2
𝛽


𝑗,𝑖
𝑋
𝑖𝑛
𝐾
𝑗,𝑖
)

1 + exp (𝛽
𝑗,1
𝑋
1𝑛
+ ∑
40

𝑖=2
𝛽
𝑗,𝑖
𝑋
𝑖𝑛
𝐾
𝑗,𝑖
)
,

(5)

where 𝛽
𝑗,𝑖

is the estimated effect of 𝑋
𝑖
on outcome 𝑗 for

𝑗 = (𝐴, 𝐵). To estimate the confounding effects on 𝑋
1
on

outcomes 𝐴 and 𝐵 using the proxy outcome 𝐶, the logistic
model for adjustment becomes

𝑃 (𝑌
𝐶,𝑛
= 1 | 𝑋

𝑖𝑛
, 𝐾
𝑗,𝑖
)

=

exp (𝛽
𝑗,1
𝑋
1𝑛
+ ∑
40

𝑖=2
𝛽


𝑗,𝑖
𝑋
𝑖𝑛
𝐾
𝑗,𝑖
)

1 + exp (𝛽
𝑗,1
𝑋
1𝑛
+ ∑
40

𝑖=2
𝛽
𝑗,𝑖
𝑋
𝑖𝑛
𝐾
𝑗,𝑖
)
,

(6)

where 𝛽
𝑗,𝑖
is the estimated effect of 𝑋

𝑖
on outcome 𝐶 (proxy

outcome) for 𝑗 = (𝐴, 𝐵).

The adjusted effects of𝑋
1
on𝐴 and𝐵 are𝛽

𝐴,1
= 𝛽


𝐴,1
−𝛽


𝐴,1

and 𝛽
𝐵,1
= 𝛽


𝐵,1
− 𝛽


𝐵,1
, respectively.

2.2. Classification of Effect of𝑋
1
on𝐴 and𝐵. Based on the fact

model, 𝑋
1
increases risk of outcome 𝐴 if 𝛽

𝐴,1
> 0.05 and 𝑃

value for 𝛽
𝐴,1
< 0.05; otherwise 𝑋

1
has no effect on 𝐴. Also,

𝑋
1
increases risk of outcome 𝐵 if 𝛽

𝐵,1
> 0.05 and 𝑃 value for

𝛽
𝐵,1
< 0.05; otherwise 𝑋

1
has no effect on 𝐵. The same effect

patterns hold analogously for the conventionalmodel and the
alternative approach by replacing the regression coefficient
𝛽
𝑗,1

with𝛽
𝑗,1

and𝛽
𝑗,1
, respectively. Classifications of the effect

of 𝑋
1
based on the fact model are then used as the gold

standard to compare with the classifications based on the
conventional approach and the alternative approach.

2.3. Empirical Application. A simple example is provided to
clarify the methodology. For additional illustration of the
proxy outcome method to adjust for residual confounding
effects, interested readers are referred to the first author’s
recently published research [26]. Briefly, when investigating
the effect of alcohol use (exposure) on general health status
(outcome), both measured and unmeasured confounding
factors are involved. Many of these confounding factors are
clustered within the family such as socioeconomic deter-
minants, environmental factors, lifestyle, and genetic sus-
ceptibility. Although current alcohol use by adults does not
produce any physiological effect on their children’s current
health, observed effect of current alcohol use (exposure) on
their children’s health status (proxy outcome) can be used as
an approximation of confounding effects.

This example used the data from the 2010National Health
Interview Survey. A first logistic regression model was fitted
to compare the likelihood of having undesirable (poor or
fair) health status (outcome) between lifetime abstainers
and current light drinkers (exposure). A second logistic
regression model was then applied to compare the likelihood
of having undesirable health status in the children (proxy
outcome) in relation to the drinking status of their parents. To
adjust for confounding effects, natural logarithm of the odds
ratios from the second model was introduced as an offset
variable into the first model.

3. Results

Estimates based on the knowledge and conventional model
from one replicate are shown in Tables 1 and 2 as an example.
Both outcomes 𝐴 and 𝐵 are treated as the outcomes of
interest, while outcome 𝐶 is used as the proxy outcome. In
this replicate, between outcomes 𝐴 and 𝐶, there are four
common causal factors. These account for 33% and 40% of
all causal factors for 𝐴 and 𝐶, respectively. Except for the
exposure of interest (𝑋

1
), 54% of causal factors for 𝐴 are

known. The true effect of 𝑋
1
on outcome 𝐴 (𝛽

𝐴,1
) based on

the fact model is 1.27 (𝑃 value < 0.001) indicating that 𝑋
1

is a real causal factor to 𝐴. The estimated effect based on
the conventional approach (𝛽

𝐴,1
) is 0.79 (𝑃 value < 0.001).

The estimated effect based on the alternative approach (𝛽
𝐴,1

)
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Table 1: Data example of a replicate/scenario, estimated effects (coefficients from logistic models) of exposure (𝑋
1
), and known

“causal”/confounding factors of 𝐴 on 𝐴 and proxy outcome 𝐶.

Effects on A Effects on C Indicators for real causal factors
(1 = Yes, 0 = No)

Coefficient 𝑃 value Coefficient 𝑃 value Causal to A Causal to C
𝑋
1

0.79 0.000 0.09 0.011 1 0
𝑋
2

0.19 0.000 0.92 0.000 0 1
𝑋
3

0.69 0.000 0.03 0.360 1 0
𝑋
4

0.46 0.000 0.50 0.000 0 0
𝑋
5

∗ ∗ 1 1
𝑋
6

∗ ∗ 1 1
𝑋
7

0.87 0.000 0.29 0.000 1 0
𝑋
8

0.20 0.000 0.84 0.000 0 1
𝑋
9

0.04 0.293 0.80 0.000 0 1
𝑋
10

0.77 0.000 0.13 0.000 1 0
𝑋
11

∗ ∗ 1 0
𝑋
12

0.15 0.000 0.79 0.000 0 1
𝑋
13

∗ ∗ 1 0
𝑋
14

∗ ∗ 0 0
𝑋
15

0.85 0.000 0.91 0.000 1 1
𝑋
16

∗ ∗ 1 1
𝑋
17

0.73 0.000 0.10 0.009 1 0
𝑋
18

0.15 0.000 0.89 0.000 0 1
𝑋
19

∗ ∗ 0 1
𝑋
20

0.95 0.000 0.35 0.000 1 0
𝑋
21

∗ ∗ 0 0
𝑋
22

0.27 0.000 0.16 0.000 0 0
𝑋
23

0.25 0.000 0.19 0.000 0 0
𝑋
24

0.20 0.000 0.18 0.000 0 0
𝑋
25

∗ ∗ 0 0
𝑋
26

∗ ∗ 0 0
𝑋
27

∗ ∗ 0 0
𝑋
28

∗ ∗ 0 0
𝑋
29

0.50 0.000 0.47 0.000 0 0
𝑋
30

∗ ∗ 0 0
𝑋
31

∗ ∗ 0 0
𝑋
32

∗ ∗ 0 0
𝑋
33

∗ ∗ 0 0
𝑋
34

∗ ∗ 0 0
𝑋
35

∗ ∗ 0 0
𝑋
36

∗ ∗ 0 0
𝑋
37

∗ ∗ 0 0
𝑋
38

0.13 0.001 0.17 0.000 0 0
𝑋
39

∗ ∗ 0 0
𝑋
40

0.16 0.000 0.17 0.000 0 0
∗indicates variable is not known as a “causal” factor for A, therefore is not included in the models.
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Table 2: Data example of a replicate/scenario, estimated effects (coefficients from logistic models) of exposure (𝑋
1
), and known

“causal”/confounding factors of 𝐵 on 𝐵 and proxy outcome 𝐶.

Effects on B Effects on C Indicators for real causal factors
(1 = Yes, 0 = No)

Coefficient 𝑃 value Coefficient 𝑃 value Causal to B Causal to C
𝑋
1

0.12 0.001 0.16 0.000 0 0
𝑋
2

∗ ∗ 1 1
𝑋
3

∗ ∗ 1 0
𝑋
4

0.39 0.000 0.62 0.000 0 0
𝑋
5

∗ ∗ 0 1
𝑋
6

∗ ∗ 0 1
𝑋
7

0.24 0.000 0.43 0.000 0 0
𝑋
8

∗ ∗ 1 1
𝑋
9

∗ ∗ 0 1
𝑋
10

∗ ∗ 0 0
𝑋
11

∗ ∗ 0 0
𝑋
12

1.22 0.000 0.88 0.000 1 1
𝑋
13

1.15 0.000 0.17 0.000 1 0
𝑋
14

0.23 0.000 0.27 0.000 0 0
𝑋
15

0.16 0.000 1.04 0.000 0 1
𝑋
16

0.31 0.000 1.56 0.000 0 1
𝑋
17

0.13 0.000 0.19 0.000 0 0
𝑋
18

∗ ∗ 1 1
𝑋
19

∗ ∗ 0 1
𝑋
20

0.28 0.000 0.43 0.000 0 0
𝑋
21

∗ ∗ 0 0
𝑋
22

0.17 0.000 0.24 0.000 0 0
𝑋
23

∗ ∗ 0 0
𝑋
24

∗ ∗ 0 0
𝑋
25

∗ ∗ 0 0
𝑋
26

∗ ∗ 0 0
𝑋
27

∗ ∗ 0 0
𝑋
28

0.23 0.000 0.26 0.000 0 0
𝑋
29

0.31 0.000 0.58 0.000 0 0
𝑋
30

∗ ∗ 0 0
𝑋
31

∗ ∗ 0 0
𝑋
32

∗ ∗ 0 0
𝑋
33

∗ ∗ 0 0
𝑋
34

∗ ∗ 0 0
𝑋
35

∗ ∗ 0 0
𝑋
36

∗ ∗ 0 0
𝑋
37

∗ ∗ 0 0
𝑋
38

∗ ∗ 0 0
𝑋
39

∗ ∗ 0 0
𝑋
40

∗ ∗ 0 0
∗indicates variable is not known as a “causal” factor for B, therefore is not included in the models.
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Table 3: Effect of𝑋
1
on 𝐴 and 𝐵 based on the fact model, conventional approach, and the alternative approach.

Fact model Conventional approach Alternative approach (%)
𝑋
1
causal to A but not B (%) 𝑋

1
causal to A and B (%) 𝑋

1
causal to A but not B (%) 𝑋

1
causal to A and B (%)

𝑋
1
causal to A but not B 93 (18.6%) 394 (78.8%) 347 (69.4%) 140 (28.0%)

𝑋
1
causal to A and B 1 (0.2%) 12 (2.4%) 4 (0.8%) 9 (1.8%)

Table 4: Empirical application, predicting adults’ health status (outcome of interest) and their children’s health status (proxy outcome) by
alcohol use (proxy outcome).

Have undesirable health status in adults Have undesirable health status in children
Odds Ratio 95% confidence interval Odds ratio 95% confidence interval

Parents’ drinking behaviour
Lifetime abstainers 1.00 Reference 1.00 Reference
Current light drinkers 0.54 0.42 0.69 0.60 0.50 0.71

is 0.79 − 0.09 = 0.70. Both the conventional approach and
alternative approach lead to the same correct conclusion that
𝑋
1
is a causal factor to 𝐴.
Between outcomes 𝐵 and 𝐶 there are also four common

factors. These account for 67% and 40% of all causal factors
for𝐵 and𝐶, respectively. Except the exposure of interest (𝑋

1
),

33% of causal factors for𝐵 are known.The true effect of𝑋
1
on

outcome𝐵 (𝛽
𝐵,1
) based on the factmodel is−0.024 (𝑃 value =

0.668) indicating that 𝑋
1
is not a causal factor to 𝐵. The

estimated effect based on the conventional approach (𝛽
𝐵,1
)

is 0.12 (𝑃 value < 0.001). The estimated effect based on the
alternative approach (𝛽

𝐵,1
) is 0.12 − 0.16 = −0.04. Therefore,

based on estimation from the conventional approach one
would mistakenly draw the conclusion that “𝑋

1
is a causal

factor to 𝐵.” However, given that 𝛽
𝐵,1
< 0.05, the alternative

approach has led to the correct conclusion that 𝑋
1
is not a

causal factor to 𝐵.
Table 3 summarises findings from the 500 replicates.

Based on the fact model, the exposure of interest (𝑋
1
) is

classified as a causal factor for outcome 𝐴 in all replicates.
This is in perfect agreement with the simulation process
that 𝑋

1
is set to be a causal factor for 𝐴. In the simulation

process, 𝑋
1
is set to be a noncausal factor for 𝐵; in 97.4%

of the 500 replicates, the fact model concludes that 𝑋
1
is

not a causal factor for 𝐵, but in 2.6% of the replicates
the fact model concludes that 𝑋

1
is a causal factor for 𝐵.

The disagreement between the simulation process and the
fact model in these 2.6% replicates is a result of type I
error (setting the two-sided confidence interval to 95%).
Nevertheless, in all replicates, both the conventional and
alternative approaches have classified𝑋

1
as a causal factor for

𝐴. When comparing the estimates between the conventional
approach and the fact model, the two models have led to the
same conclusion in only 21% of the replicates, while in 72.2%
of the replicates, the alternative approach has led to the same
conclusion as the fact model. When the simulation process is
used as the gold standard for classification (i.e., 𝑋

1
is causal

for𝐴, but not causal for𝐵), the sensitivity of the new approach
is 100%, and the specificity is 70.2%.

Table 4 presents results of the example. Alcohol use by
adults has similar effects on their health status and their

children’s health status, whereas the effect on children’s health
status is mediated by confounding factors. To account for
the uncontrolled confounding effects when estimating the
effect of adults’ alcohol use on their health status, an offset
variable, which takes on the value of the natural logarithm of
1 for lifetime abstainers and 0.60 for current light drinkers, is
added to the model. The adjustment changes the odds ratio
from 0.54 (𝑃 < 0.001) to 0.90 (𝑃 = 0.38).

4. Discussion

In this study, we introduce a new analysis approach for
causal effect. Although the new approach is only applicable
to measurements of relative effects (i.e., risk ratios, odds
ratios), it does not require any distributional assumption for
the confounding variables in relation to the outcome, the
exposure, and other known confounding variables. Instead,
the approach merely assumes that the causes for the out-
come of interest and proxy outcome are partly overlapped
and correlated. The choice of an optimal proxy outcome
is achievable by directly applying field expertise without
advanced knowledge in statistics.The simulation results show
that the alternative approach is far more accurate than the
conventional approach in classifying causal associations, even
under conditions of low to moderate correlation between the
causes for the outcome and causes for the proxy outcome.The
proposed approach appears to be suitable for observational
studies in social science and health research that evaluate
the health impact of behaviour and mental health problems,
especially where clusters of causes for various outcomes are
strongly correlated and overlapped in these fields [12, 27, 28].

It should be remarked that the analysis can only be
performed when effects are measured by relative risk dif-
ference such as risk ratio or odds ratio. Another limitation
is that false classification remains possible, even though
the proposed method appears to have an advantage over
the conventional approach. In this study, we demonstrate
a new simulation process that incorporates the component
causes, competing events, difference between the fact and
the knowledge, to model realistic scenarios in observational
studies. This simulation process could be further developed
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and used to determine how knowledge that deviates from the
fact can introduce bias in estimates.

5. Conclusion

In conclusion, the proposed proxy outcome approach can be
applied in observational studies in social science and health
research that evaluate the health impact of behaviour and
mental health problems.
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