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Abstract
The potential association between the prognosis of the pancreatic adenocarcinoma (PAAD) and its microenvironment is unclear. This
study aims to construct a prognostic index (PI) model of the PAAD microenvironment to predict PAAD patient survival outcomes.
The mRNA sequencing and the clinical parameters data were obtained from The Cancer Genome Atlas. Immune and stromal

scores were computed using the expression data algorithm to capture infiltration of immune and stromal cells in the PAAD tissue,
where patients were categorized as high and low score groups according to these scores. Differentially expressed genes were
identified using the R package LIMMA. Univariate and multivariate Cox regression analysis were conducted to select candidate
survival-correlated gene signatures from the tumor microenvironment for constructing a model. The Kaplan-Meier method was used
to access overall survival of the primary and validation cohorts. The immunological features of the PI model was explored using the
Tumor Immune Estimation Resource (TIMER) database. Bioinformatic analyses were conducted based on the DAVID database.
A total of 1266 overlapping differentially expressed genes and 49 prognosis-associated genes were identified. A 7-mRNA

signature (GBP5, BICC1, SLC7A14, CYSLTR1, P2RY6, VENTX, and RAB39B) was screened for the construction of a PI model (area
under the curve = 0.791). In both the primary and validation cohorts, Kaplan Meier analysis revealed that the overall survival of the
high-risk group was significantly worse compared to the low-risk group (P< .0001, P= .0028 respectively). The TIMER database
described that the 7 signature genes were correlated with immune infiltrating cells and tumor purity. Bioinformatic analyses revealed
that these prognosis-associated genes were significantly enriched during inflammation, the defense response, would response,
calcium ion transport, and plasma membrane part.
A list of the prognosis-correlated genes was generated based on the PAAD microenvironment. A 7-mRNA PI model may be used

for predicting the prognosis of PAAD patients.

Abbreviations: AUC = area under the curve, DEGs = differentially expressed genes, ESTIMATE = estimation of stromal and
immune cells in malignant tumours using expression data, PAAD = pancreatic adenocarcinoma, PI = prognostic index, TCGA = the
cancer genome atlas, tROC = time-dependent receiver operating curve.
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1. Introduction

Pancreatic adenocarcinoma (PAAD) is a malignant cancer that
ranked as the seventh cause of cancer associated deaths (n =
432,000) with a new diagnosis rate of n=459,000 in 2018.[1]

Among all pancreatic malignancies, pancreatic ductal adenocar-
cinoma (PDAC) accounts for a 95% mortality rate with a 5-year
survival rate of only 5%.[2] To achieve a better prognosis,
immunotherapy treatments, along with conventional methods
including surgery and adjuvant therapies, were added to the
therapy regimen for PAAD patients.
The development and progression of cancer is complex and is

regulated by an intricate network of both intrinsic and extrinsic
factors. The genetic compositions of the tumor determine its
initiation, progression, and evolution.[3] Extrinsically, the tumor
microenvironment that consists of surrounding blood vessels,
immune cells, signaling molecules, fibroblasts and the extracel-
lular matrix (ECM)[4,5] interacts with cancer tissues and affects
tumor cell behavior.[6,7] Amongst the tumor microenvironment
constituents, the immune and the stromal cells play crucial roles
in the diagnostic, efficacy and prognostic assessment of the
tumors.[8,9] Estimation of the Stromal and Immune cells in
Malignant Tumors using Expression data (ESTIMATE), is a
reliable algorithm designed by Yoshihara et al. that enables the
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prediction of tumor purity using gene expression data.[10] In this
algorithm, the infiltration of immune cells and the content of
stromal cells in the cancerous tissues are determined according to
specific gene signatures of immune and stromal cells. The
ESTIMATE algorithm has been utilized in the breast cancer,
melanoma, prostate cancer, colon cancer, glioblastoma and
others.[11–15] However, to date, the potential relationship
between the prognosis of the PAAD and its microenvironment
remains unclear.
In this study, the ESTIMATE algorithm-derived immune and

stromal scores as well as PAAD RNA-seq data from The Cancer
Genome Atlas (TCGA) were used to generate a list of the
microenvironment-related genes with the goal of constructing an
mRNA-based prognostic index (PI) model to predict adverse
clinical outcomes for PAAD patients. This PI model can be
further used to find potential immunotherapy biomarkers for
PAAD.
2. Material and methods

2.1. Publicly available data sources

Level3 sets of sequence-based mRNA expression data (RNA-seq
data) and clinical data for PAAD cases were obtained from
TCGA database (https://tcga-data.nci.nih.gov/tcga/). Level3
RNA-seq data was normalized using the transcripts per kilobase
million (TPM) algorithm to determine differentially expressed
genes (DEGs) and analyze survival rates. The ESTIMATE
algorithm was utilized to calculate the immune /stromal scores
based on RNA-seq version 2 data that was quantified through
RNA-seq using the Expectation Maximization (RSEM).[10] In
order to identify the DEGs in the PAAD microenvironment,
patients were categorized in low or high immune/ stromal scores
groups based on the median immune/ stromal score. Patients with
a survival time >30 days were included in further survival
analysis. A total of 171 patients with survival information were
enrolled as a primary cohort, where 86 patients were randomized
to the validation cohort using a random number sequence. This
study was approved by the Institutional Medical Ethics
Committee of the First Affiliated Hospital of Guangxi Medical
University.
2.2. Detection of DEGs

The R package LIMMA was used to identify DEGs.[16] Fold
change (FC) > 2 and adj. P< .05 were set as the cutoffs.
2.3. Identification and validation of the prognosis index
model

Univariate Cox regression survival analysis was performed to
assess whether DEGs correlated with the survival of PAAD
patients. Then, statistically significant DEGs (P< .05) were used
in the construction of the PI model. Furthermore, the multivariate
Cox regression analysis was conducted for PI model component
genes to evaluate the prognostic value of the DEGs in PAAD
patients. PI was calculated using the following formula:
(xi indicates the expression value of corresponding gene and bi

refers to the coefficient). To validate the prognostic effect of the PI
model, the coefficients of the component genes of the PI model in
the primary cohort were utilized to evaluate the PI value of the
validation cohort. The median PI value was utilized as the cutoff
2

to determine the high/low-risk groups in the primary and
validation cohorts. To access the efficiency of the PI model, a
time-dependent receiver operating curve (tROC) and area under
the curve (AUC) value were determined using the survival ROC
package (version 1.0.3) in R (version 3.3.0). The Kaplan-Meier
analysis was next performed to assess the overall survival of the
primary and validation cohorts.
2.4. Investigation of the immunological feature of the PI
model

Tumor Immune Estimation Resource (TIMER) database (https://
cistrome.shinyapps.io/timer/), is an online open platform that
integrates the gene expression profiles of over 10,000 samples
across 32 cancer types from the TCGA. The TIMER calculates
the abundance of the tumor-infiltrating immune cells (TIICs) with
a deconvolution algorithm,[17,18] that enables investigators to
explore and visualize the immunological feature of genes using
correlation analysis between the level of gene expression and
TIICs.[17] TIICs consisted of 6 types of cells including: B cells,
CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells. The correlation between TIICs and DEGs of the PI
model were calculated from the TIMER database. Similarly, the
correlation analysis between tumor purity and DEGs of the PI
model was performed using the TIMER platform.
2.5. GO and KEGG clustering analysis of DEGs

TDEGs were transferred to the annotated portal of DAVID 6.7
(https://david-d.ncifcrf.gov/). Based on the DAVID 6.7 database,
an enrichment annotation of the gene ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) was
conducted. The statistically significant GO and KEGG terms
(P< .05) were selected.
2.6. Identification of expression of the signature genes in
PI model

Gene Expression Profiling Interactive Analysis (GEPIA) is an
online open platform which integrates the RNA-seq data from
the Genotype-Tissue Expression (GTEx) project and TCGA
database, delivering customizable functionalities including
profiling plotting, differential expression analysis and so on.[19]

Thus, we applied the GEPIA to compare the signature genes
expression of PI model in PAAD and normal pancreatic tissues.
FC > 1.5 and P< .05 were set as the cutoffs.
2.7. Detection of protein expression of the signature
genes in the PI model

The protein expression of the signature genes in the PI model was
identified using the human protein atlas database, which is an
interactive open-access database providing numerous antibody-
based images of tumor and healthy tissues.[20]
2.8. Statistical analysis

The analysis of variance (ANOVA) method was perforemed to
compare immune/stromal scores between the subtype groups.
The Mann-Whitney U test was applied to identify the difference
in the immune/stromal score between the early and the advanced
TNM stage. ANOVA, Mann-Whitney U test, Kaplan–Meier
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Figure 1. Immune and stromal scores correlate with PAAD subtypes and TNM stage. A. Distribution of immune scores for the PAAD subtypes. The boxplot graph
shows a significant correlation between PAAD subtypes and immune scores (n=176, P= .014). B. Distribution of stromal scores for the PAAD subtypes. The
boxplot graph reveals a significant difference between PAAD subtypes and stromal scores (n=176, P= .015).C. Distribution of the immune scores for early and
advanced TNM stages for PAAD cases. The boxplot graph indicates a significantly higher immune score in advanced TNM stages (stage IIA, stage IIB, stage III, and
stage IV) compared to early TNM stages (stage I, stage IA and stage IB) (n=175, P= .0367). D. The boxplot graph shows no significant differences between TNM
stage and stromal scores (n=175, P= .1536).
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analysis and the log-rank test were conducted using GraphPad
Prism (GraphPad Prism 7.04, Inc., La Jolla, CA). Multivariate
Cox regression survival analysis and generating random number
sequence were carried out using SPSS (Version 24, SPSS Inc.
Chicago). The DEGs of the RNA-seq data (TPM) were identified
using the R package “LIMMA”. Univariate Cox regression
survival analysis was performed with the R package “Survival”.
tROC curve and AUC value were generated using the survival
ROC package in R (version 3.3.0). In the current study. A P-value
of< .05 was considered as statistically significant.
3. Results

3.1. Correlation between stromal and immune scores
clinical parameters

The RNA-seq and clinical data of all the 178 PAAD patients were
downloaded from the TCGA database. Amongst them, 80
(44.9%) patients were female, while the rest 98 (55.1%) were
male. The patients were divided into 5 subtypes on the basis of
their pathological diagnosis - 147 (82.58%) pancreas-adenocar-
cinoma ductal type (PDAC), 4 (2.25%) pancreas-colloid
(mucinous non-cystic) carcinoma (PCC), 25 (14.04%) other
subtype, 1 (0.56%) case discrepancy, and 1 (0.56%) Pancreas-
Undifferentiated Carcinoma. Subtype groups with more than 3
cases were included in our analysis. On the basis of the
ESTIMATE algorithm, the stromal and/or immune scores were
negatively associated with tumor purity. The immune scores were
distributed between -1559.87 and 3037.78, respectively. As
shown in Figure 1A, average immune scores arranged from the
highest to the lowest as follows: pancreas-adenocarcinoma ductal
type > pancreas-colloid (mucinous non-cystic) carcinoma >
3

other subtype. Similarly, average stromal scores of the pancreas-
adenocarcinoma ductal type were the highest of all the 3
subtypes, followed by pancreas-colloid (mucinous non-cystic)
carcinoma, and other subtype (Fig. 1B), which indicated that
both immune and stromal scores were significantly correlated
with subtype classification. In addition, a Mann-Whitney U test
revealed that the immune score was significantly increased in
advanced TNM stage (stage IIA, stage IIB, stage III, and stage IV)
compared to early TNM stage (stage I, stage IA and stage IB)
(P= .0367, Fig. 1C), indicating that high immune infiltration was
closely correlated with the advanced tumor stage of PAAD.
Consistently, a higher stromal score was related to an advanced
TNM stage (P= .1536, Fig. 1D), although no statistically
significant differences were noted.

3.2. Comparison of gene expression profile

To explore the relationship of overall gene expression profiles for
immune/stromal scores, cases were divided into 2 groups (high
and low score group) on the basis of their stromal and/or immune
score. For the group of immune score, 1388 genes were up-
regulated, and 35 genes were down-regulated in the high score
group compared to the low score. Similarly, a total of 1925 genes
expressions were increased, and 89 genes expressions were
decreased in the high stromal score group compared to the low
stromal score group. The heatmaps showed that the top 100
differential gene expression profiles of cases belong to the mmune
score group (FC >2, P< .05, Fig. 2A) and stromal score group
(FC >2, P< .05, Fig. 2B). Furthermore, Venn diagrams in
Figure 3 revealed 1245 genes commonly up-regulated in the high
scores groups and 21 genes that were commonly down-regulated.
As the overlapping DEGs between the groups accounted for the
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Figure 3. Overlapping DEGs for the high immune and stromal scores groups.
A. Venn diagrams show that 1245 DEGs are up-regulated in the stromal and
immune score groups. B. Venn diagrams show the 21 DEGs were down-
regulated in the stromal and immune score groups.

Figure 2. Comparison of the gene expression profile. A. A Heatmap displaying immune scores of the top 100 DEGs identified in the high score vs. low score groups
(P< .05, fold change >2). B. A Heatmap displaying stromal scores of the top 100 DEGs in the high score vs. low score groups (P< .05, fold change >2).
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majority of the DEGs in the high scores groups, these were further
analyzed.

3.3. Enrichment analysis of overlapping DEGs

To identify underlying function of overlapping DEGs, GO and
KEGG analyses were carried out. The GO annotation verified that
403, 44 and 93 terms were significantly clustered (P< .05) by
DEGs for biological processes (BPs), cellular components (CCs)
and molecular functions (MFs), respectively, and the KEGG
analysis demonstrated that 28 significant pathways were involved.
The top10enrichedGOtermsandKEGGpathwayswere shown in
Figure 4. The top three BP terms were immune response, defense
response and inflammatory response. The top three CC terms are
plasma membrane, integral to plasma membrane, and intrinsic to
plasmamembrane. ForMF terms, cytokine binding, carbohydrate
binding, and sugar binding were the three most significant terms.
Moreover, the threemost significantKEGGpathways included the
cytokine-cytokine receptor interaction, hematopoietic cell lineage
and cell adhesion molecules (CAMs).

3.4. Identification and validation of the PI model

To investigate the prognostic value of the DEGs, a PI model of
PAAD patients was constructed via univariate and multivariate



Figure 4. Enrichment analysis of overlapping DEGs. A. The top 10 significant cellular component terms. B. The top 10 significant biological process terms. C. The
top 10 significant molecular function terms. D. The top 10 significant KEGG pathways (P< .05).
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Cox regression survival analysis of the TCGA database. Among
1245 overlapping up-regulated DEGs, a total of 49 DEGs were
significantly correlated with overall survival of the PAAD
patients (P< .05), based on the univariate Cox regression
survival analysis (Table 1). Furthermore, multivariate Cox
regression survival analysis revealed that 7 (GBP5, BICC1,
SLC7A14, CYSLTR1, P2RY6, VENTX, and RAB39B) out of 49
DEGs were independent prognostic factors for overall survival
and were selected as components of PI model (Table 2). Most of
these genes are closely associated with the immune response or
the systemic autoimmune diseases.[21–23] To promote the
practicality of the PI model in clinical practice, the following
formula was used to generate the PI value for each patient: PI=
(0.031x expressionGBP5)+(0.020x expressionBICC1) + (0.121x
expressionSLC7A14) + (0.052x expressionCYSLTR1) + (0.078x
expressionP2RY6) + (�0.449x expressionVENTX) + (�0.322x
expressionRAB39B). Thus, the patients were classified as low-risk
or high-risk based on the median PI value as the cut-off point in
primary and validation cohorts. The predicting ability of this PI
model was estimated with the tROC curve. As displayed by the
tROC curve in Figure 5A, the model demonstrated the high
efficacy in assessing the survival outcome of PAAD patients with
an AUC value of 0.791. Kaplan-Meier survival analysis suggests
that the prognosis of PAAD patients in the high-risk group was
significantly worse compared to the low-risk group both in the
5

primary and validation cohorts ([P< .001 (Fig. 5B) and P= .0028
(Fig. 5C), respectively].

3.5. Immunological features of the PI model

Given the increasing correlation between the immunological
characteristics of the tumor microenvironment and survival
outcome in cancer cases, we further explored the association
between the abundance of TIICs and gene signatures of the PI
model obtained from the tumor microenvironment of PAAD
using the TIMER database. As shown in Figure 6, the expression
levels of GBP5 (cor=�0.25, P=9.54�10�4), BICC1 (cor=�
0.29, P=1.14�10�4), CYSLTR1 (cor=�0.259, P=6.02�
10�4), and P2RY6 (cor=�0.183, P=1.63�10�2) were signifi-
cantly and negatively correlated with tumor purity, The
expression levels of SLC7A14 (cor=�0.091 P=2.36�10�1),
VENTX (cor=�0.08, P=2.99�10�1) and RAB39B (cor=�
0.122, P=1.11�10�1) exhibited slight trends towards a negative
correlation with tumor purity, although this trend was not
statistically significant. The expression level of the GBP5 showed
a significant positive correlation with all TIICs including B cells
(partial.cor=0.397, P=7.84�10�8), CD8+ T cells (partial.cor=
0.396, P=8.14�10�8), CD4+ T cells (partial.cor=0.274, P=
3.18�10�4), macrophages (partial.cor=0.451, P=6.08�
10�10), neutrophils (partial.cor=0.584, P=4.77�10�17) and

http://www.md-journal.com


Table 1

Univariate Cox regression analysis of 49 DEGs in the TCGA cohort of PAAD cases.

Gene symbol HR coef 95% CI lower 95% CI upper P value

CRHBP 0.574 �0.555 �1.049 �0.062 .027
RAB39B 0.868 �0.141 �0.229 �0.054 .002
MAN1C1 0.954 �0.047 �0.086 �0.008 .019
CERKL 0.956 �0.045 �0.086 �0.003 .034
NRXN1 0.841 �0.173 �0.326 �0.019 .028
LINGO3 0.732 �0.313 �0.574 �0.051 .019
PHACTR1 0.824 �0.194 �0.353 �0.034 .017
MS4A4E 0.797 �0.227 �0.435 �0.019 .033
GALNT16 0.847 �0.166 �0.275 �0.058 .003
STAT4 0.932 �0.071 �0.141 �0.001 .048
ANK2 0.928 �0.074 �0.135 �0.014 .016
PLD4 0.905 �0.100 �0.198 �0.002 .045
SLC7A14 0.926 �0.077 �0.153 0.000 .049
VENTX 0.823 �0.194 �0.363 �0.025 .024
CCNA1 0.668 �0.403 �0.740 �0.066 .019
SCML4 0.756 �0.280 �0.542 �0.018 .036
XKR4 0.244 �1.413 �2.494 �0.331 .010
PHOSPHO1 0.696 �0.362 �0.691 �0.034 .031
DHH 0.670 �0.400 �0.732 �0.069 .018
KLHL4 1.173 0.160 0.004 0.316 .045
BEND6 1.138 0.129 0.007 0.251 .038
ZFHX4 1.120 0.113 0.002 0.225 .047
ZFPM2 1.076 0.073 0.002 0.144 .045
P2RY6 1.070 0.068 0.026 0.110 .001
FGF10 1.065 0.063 0.004 0.122 .036
CHSY3 1.063 0.061 0.010 0.112 .019
CYSLTR1 1.062 0.060 0.022 0.098 .002
STAC 1.058 0.056 0.007 0.104 .024
NOX4 1.050 0.049 0.010 0.087 .014
TNFSF4 1.050 0.049 0.017 0.080 .003
PI15 1.047 0.046 0.009 0.083 .016
VGLL3 1.042 0.041 0.014 0.068 .003
CLEC5A 1.039 0.038 0.003 0.074 .035
DSE 1.039 0.038 0.002 0.073 .036
MILR1 1.025 0.024 0.005 0.044 .015
RSAD2 1.024 0.023 0.010 0.036 .000
GBP5 1.020 0.020 0.002 0.038 .027
ADAMTS12 1.018 0.018 0.007 0.029 .001
BICC1 1.017 0.017 0.006 0.027 .001
FAM110D 0.948 �0.054 �0.103 �0.005 .031
CCL3L3 0.921 �0.083 �0.149 �0.016 .015
AFF3 0.814 �0.206 �0.361 �0.052 .009
JPH4 0.772 �0.259 �0.513 �0.006 .045
PCDH10 0.664 �0.409 �0.795 �0.024 .038
GFRA2 0.663 �0.411 �0.736 �0.087 .013
SLC8A3 0.541 �0.614 �1.110 �0.119 .015
DPEP3 0.438 �0.826 �1.573 �0.079 .030
KIAA1045 0.404 �0.907 �1.676 �0.138 .021
SCN4A 0.166 �1.798 �3.090 �0.506 .006

coef= coefficient.
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dendritic cells (partial.cor=0.676, P=3.83�10�24) (Fig. 6A).
The expression levels of BICC1 were significantly positively
correlated with B cells (partial. cor=0.17, P=2.59�10�2), CD8
+ T cells (partial.cor=0.47, P=8.40�10�11), macrophages
(partial.cor=0.478, P=3.69�10�11), neutrophils (partial.cor=
0.465, P=1.55�10�10) and dendritic cells (partial.cor=0.438,
P=2.02�10�9), while the association between BICC1 expres-
sion and CD4+ T cells was not statistically significant (partial.
cor=0.031, P=6.85�10�1) (Fig. 6B). For SLC7A14, there
was a positive correlation with CD8+ T cells (partial.cor=0.166,
6

P=3.01�10�2), CD4+ T cells (partial.cor=0.206, P=7.16�
10�3) and macrophages (partial.cor=0.318, P=2.25�10�5),
but there was not a statistically significant correlation with B cells
(partial.cor=0.033, P=6.64�10�1), neutrophils (partial.cor=
0.061, P=4.31�10�1) and dendritic cells (partial.cor=0.102,
P=1.83�10�1) (Fig. 6C). CYSLTR1 exhibited a positive
correlation with the B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils and dendritic cells with P=9.12�
10�9 (partial.cor=0.422), P=1.67�10�10 (partial.cor=0.464),
P=3.75�10�4 (partial.cor=0.271), P=6.21�10�12 (partial.



Table 2

Components of prognostic index model.

Gene symbol Coef HR HR (95% CI) P value

GBP5 0.031 1.031 1.011–1.052 .002
BICC1 0.020 1.021 1.009–1.033 .000
SLC7A14 0.121 1.128 1.016–1.253 .024
CYSLTR1 0.052 1.053 1.019–1.089 .002
P2RY6 0.078 1.081 1.034–1.130 .001
VENTX �0.449 0.639 0.515–0.791 <.001
RAB39B �0.322 0.725 0.596–0.881 .001

coef=coefficient.

He et al. Medicine (2020) 99:29 www.md-journal.com
cor=0.495), P=6.07�10�13 (partial.cor=0.515), and P=
1.96�10�17 (partial.cor=0.59), respectively (Fig. 6D). P2RY6
was positively associated with CD4+ T cells (partial.cor=0.337,
P=7.52�10�6), neutrophils (partial.cor=0.319, P=2.16�
10�5) and dendritic cells (partial.cor=0.326, P=1.38�10�5),
while there was no significant correlations for B cells, CD8+ T
cells and macrophages (P> .05, Fig. 6E). Figure 6F showed that
VENTX is positively associated with CD4+ T cells (partial.cor=
0.535, P=6.34�10�14), macrophages (partial.cor=0.234, P=
2.08�10�3), neutrophils (partial.cor=0.311, P=3.54�10�5)
and dendritic cells (partial.cor=0.197, P=9.71�10�3), while
there was no significant correlation with B or CD8+ T cells
(P> .05). Figure 6G demonstrate a significant positive correlation
between RAB39B and B cells (partial.cor=0.16, P=3.71�
10�2), CD8+ T cells (partial.cor=0.163, P=3.29�10�2), CD4+
T cells (partial.cor=0.344, P=4.57�10�6), macrophages
(partial.cor=0.364, P=9.79�10�7), neutrophils (partial.cor=
0.162, P=3.42�10�2) and dendritic cells (partial.cor=0.203,
P=7.64�10�3).

3.6. Enrichment analysis of prognosis-related genes

The enrichment analysis of these genes also described a
relationship with the immune response. The significant GO
terms of the BPs and the CCs includes the defense response,
inflammatory response, response to wounding, calcium ion
transport and plasma membrane part (Fig. 7).

3.7. Gene expression of the PI model

As shown in the boxplot graphs of Figure 8, 4 of the 7 signature
genes (GBP5, BICC1, CYSLTR1 and P2RY6) were significantly
Figure 5. tROC curves and Kaplan-Meier survival curves of the PI model. A. tRO
primary cohort (P< .001). C. Kaplan-Meier survival curve of the validation cohort
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up-regulated in 179 PAAD tissues compared to 171 normal
tissues based on the GEPIA (FC>1.5, P< .05).

3.8. Protein expression of the PI model

The protein expression of the 7 genes (GBP5, BICC1, SLC7A14,
CYSLTR1, P2RY6, VENTX, and RAB39B) were obtained from
the human protein atlas database. Only the protein expression of
GBP5 (antibody, HPA028656), SLC7A14 (antibody,
HPA045929), CYSLTR1 (antibody, HPA010546), P2RY6
(antibody, CAB022740), VENTX (antibody, HPA050955),
and RAB39B (antibody, HPA001114) were available in this
database. The protein expression of GBP5, CYSLTR1 and
VENTX seemed to be up-regulated in PAAD tissue compared to
normal tissue. GBP5 had a medium antibody staining in PAAD,
while it was deficient in normal pancreatic tissue (Fig. 9A and B).
The staining of both CYSLTR1 and VENTX was medium in
PAAD; however, the staining of them was low in normal
pancreatic tissue (Fig. 9E, F, I, and J). The protein expression of
SLC7A14 was deficient in both PAAD and normal pancreatic
tissue (Fig. 9C, D). P2RY6 and RAB39B exhibited medium
staining in both PAAD and normal pancreatic tissue (Fig. 9G, H,
K, and L). Because of the small samples in the human protein atlas
database, larger samples will be required to verify these findings
in the future.

4. Discussion

PAAD is a highly malignant cancer. Its high degree of
malignancy, limitations in diagnosis and treatment led to the
high mortality rates. Therefore, further work is urgently needed
to find out more potential predictive biomarkers and novel
therapeutic targets. In this study, we emphasize the genetic
features of the tumor microenvironment, which may function in
the development of PAAD and in turn influence patient overall
survival. Our workmight provide new insights into the biological
interpretation of PAAD and its microenvironment, thereby
offering additional potential targets to predict clinical outcomes
of the PAAD patients.
First, a total of 1245 DEGs were ifound up-regulated in both

high immune and high stromal scores groups. Meanwhile, we
observed that these DEGs were up-regulated in the PAAD
microenvironment. In order to explore the potential role of these
genes in the tumor microenvironment, enrichment analysis was
carried out. Most of these DEGs were closely correlated with the
tumormicroenvironment, as visualized by the GO and the KEGG
C curve for the PI model (AUC=0.791). B. Kaplan-Meier survival curve of the
(P= .0028).
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Figure 6. Immunological features of the PI model. A. The correlation between GBP5 and tumor purity/TIICs (B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils and dendritic cells). B. The correlation between BICC1 and tumor purity/TIICs. C. The correlation between SLC7A14 and tumor purity/TIICs. D. The
correlation between CYSLTR1 and tumor purity/TIICs. E. The correlation between P2RY6 and tumor purity/TIICs. F. The correlation between VENTX and tumor
purity/TIICs. G. The correlation between RAB39B and tumor purity/TIICs.
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analysis (Fig. 4). The 3 most statistically significant items of BPs
included immune response, defense response and inflammatory
response. In respect to CCs, the top three statistically significant
terms were the plasma membrane, intrinsic to plasma membrane,
8

and integral to plasma membrane. For MFs, DEGs were most
closely enriched to carbohydrate binding, cytokine binding and
sugar binding. In addition, the KEGG analysis revealed that these
DEGs were significantly enriched in numerous immune-related



Figure 8. Expression of the genes in prognostic indexmodel fromGEPIA database
up-regulated in PAAD compared with in normal tissues (FC> 1.5, P< .05). B. BICC1
(FC > 1.5, P< .05). C. The expression of SLC7A14 did not differ between PAAD a
compared with in normal tissues (FC> 1.5, P< .05). E. P2RY6 was significantly up-r
The expression of VENTX did not differ between PAAD and normal tissues. G. The

Figure 7. GO enrichment analysis. The significant GO terms for prognosis-
related genes (P< .001).
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pathways such as the intestinal immune network for IgA
production, CAMs and cytokine-cytokine receptor interaction.
Most of these biological process or pathways affects the tumor
microenvironment, which in turn influences the development and
progression of PAAD.[24–27]

Next, univariate and multivariate Cox regression survival
analysis was conducted for 1245 genes. A total of 49 genes
correlated with worse overall survival in PAAD patients and
amongst these, 7 genes (GBP5, BICC1, SLC7A14, CYSLTR1,
P2RY6, VENTX, and RAB39B) were considered as components
of the PI model that would undergo multivariate Cox regression
survival analysis. The PI model effectively distinguished the high-
risk patients both in the primary and validation cohorts
(P< .001, P= .0028, respectively).
Recently, more researchers is focusing on the association

between PAAD and its microenvironment. A number of studies
have shown that inflammation triggered infiltration of immune
cells in the PAAD microenvironment was closely associated with
(179 PAAD tissues and 171 normal pancreatic tissues). A. GBP5was significantly
was significantly up-regulated in PAAD tissues compared with in normal tissues
nd normal tissues. D. CYSLTR1 was significantly up-regulated in PAAD tissues
egulated in PAAD tissues compared with in normal tissues (FC> 1.5, P< .05). F.
expression of RAB39B did not differ between PAAD and normal tissues.

http://www.md-journal.com


Figure 9. Protein expression of the genes in prognostic index model from the human protein atlas (magnification, x40 or x400). A. Medium staining of GBP5 in
PAAD (antibody, HPA028656). B. Expression deficiency of GBP5 in normal pancreatic tissue (antibody, HPA028656). C. Expression deficiency of SLC7A14 in
PAAD (antibody, HPA045929). D. Expression deficiency of SLC7A14 in normal pancreatic tissue (antibody, HPA045929). E. Medium staining of CYSLTR1 in PAAD
(antibody, HPA010546). F. Low staining of CYSLTR1 in normal pancreatic tissue (antibody, HPA010546). G. Medium staining of P2RY6 in PAAD (antibody,
CAB022740). H. Medium staining of P2RY6 in normal pancreatic tissue (antibody, CAB022740). I. Medium staining of VENTX in PAAD (antibody, HPA050955). J.
Low staining of VENTX in normal pancreatic tissue (antibody, HPA050955). K. Medium staining of RAB39B in PAAD (antibody, HPA001114), L. Medium staining of
RAB39B in normal pancreatic tissue (antibody, HPA001114).
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pancreatic cancer cells growth, metastasis and poor clinical
outcomes.[24,28,29] In this study, we found that a greater immune
score was significantly correlated with advanced TNM stage
(stage IIA, stage IIB, stage III, and stage IV) (P= .0367), which
indicate that interactions of the surrounding microenvironment
play an important role in the development and progression of
PAAD.
Bioinformatic analysis of prognosis-associated genes in PAAD

is a highlight of this study. The most important clinical value of
this study was the development and validation of a 7-gene
signature PI model predicting efficacy for accessing the prognosis
of the PAAD patients (AUC=0.791). Previously, other work
constructed prognostic models for PAAD using other genomic
signatures. The AUC values of a 3 hypomethylated gene signature
proposed by Chen et al, and a 5 key lncRNAs prognostic model
established by Song et al., achieved 0.69 and 0.742, respective-
ly.[30,31] Wu et al. developed a 3-lncRNA signature from which 1
signature associates with tumor immune responses for survival
prediction in PAAD (AUC=0.742).[32] In this study, the AUC
value of the 7-gene signature PI model was greater than observed
in previous prognostic models,[30–32] which indicated that the 7-
gene signature PI model achieved more efficient prognostic
performance than the 3 previous prognostic models. On the other
hand, several novel immune correlated signatures in the PI model
were also observed, which might provide potential therapeutic
10
targets contributing to immunity therapy. Several genes in our
prognostic model have also been identified as immune correlated
genes critically affecting tumor evolution. For example, GBP5
(guanylate-binding protein 5) is a member of the TRAFAC class
dynamin-like GTPase superfamily. The protein encoded by this
gene serves as an activator of the NLRP3 inflammasome
assembly and play a critical role in innate immunity inflammation
and macrophage activation.[21,33,34] Recently, Qian et al.
reported that GBP5might contribute to anti-PD-1/PD-L1 therapy
in glioma by acting as an IFN-g-induced gene in the tumor
microenvironment.[35] Additionally, the immune modulator
GBP5 was up-regulated in gastric adenocarcinoma, hinting an
important role in tumor pathobiology.[36] Moreover, increased
expression of CYSLTR1 (cysteinyl leukotriene receptor 1) was
responsible for the production of leukotrienes (a type inflamma-
tory eicosanoid) which play an important role in the development
of various cancer and indicate poor survival of colorectal and
breast cancer patients.[37–39] VENTX encoding a member of the
Vent family of homeobox protein, affects the differentiation and
proliferation of human immune cells and multipotent progenitor
cells.[40,41] Le et al. demonstrated that VENTX regulates the
tumor microenvironment in colon cancer tumorigenesis in a
mouse model.[42] The roles of the remaining 4 genes (BICC1,
SLC7A14, P2RY6, and RAB39B) were not yet reported in the
tumor microenvironment. We are the first to report that these
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genes might be involved in the evolution of PAAD and act as
independent factors influencing the prognosis of the PAAD
patients. On 1 hand, GO andKEGG enrichment analysis revealed
that 2 genes (GBP5 and CYSLTR1) were involved in immune-
related biological processes such as the immune response,
inflammatory response, defense response, and response to
wounding. On the other hand, univariate and multivariate
Cox regression analysis revealed that these were independent
prognostic factors for PAAD patients. Thus, we infer that GBP5
and CYSLTR1 might have an impact on tumor immunity, thus
affecting the prognosis of PAAD patients, which might provide
novel immune-related targets.
The rapid development of cancer immunotherapy makes it

necessary to understand the relationship between the tumor and
host immune system. However, there are major computational
and experimental challenges that need to be overcome to
understand interactions of the tumor-immune system. Fortu-
nately, TIMER provided a user-friendly web interface that
allowed researchers to explore the associations between the
immune infiltration and gene expression.[17] The immunological
feature of each gene in the TIMER database was validated
through many different ways, such as a comparison with silico
simulation, orthogonal inferences and a pathological method.[18]

Therefore, in this study, the immunological features of gene
signatures involved in the PI model were revealed using the
TIMER database. Correlation analysis reveal that GBP5, BICC1,
CYSLTR1, and P2RY6 were negative correlated with the tumor
purity, and the expression level of SLC7A14, VENTX and
RAB39B exhibited a slight, negative correlation with tumor
purity, which indicated that the 7 gene signatures of the PI model
were closely associated with the PAADmicroenvironment. The 7
genes were positively correlated with several types of TIICs. Both
GBP5 and RAB39B were significantly associated with all types of
TIICs including B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages and dendritic cells. SLC7A14 and BICC1 were
most significant associated with macrophages in 6 types of TIICs.
CYSLTR1 exhibited the most significantly positive correlation
with dendritic cells. Both P2RY6 and VENTX were significantly
associated with a greater number of CD4+ T cells. Nevertheless,
further research is needed to better understand the immunologi-
cal features of the PAAD microenvironment.
Although survival-related genes and a 7-mRNA signature PI

model were identified and generated from the PAAD microenvi-
ronment in this study, several limitations still exist. First, even
with strict standards, information bias was still likely. Second,
some of the cohorts utilized showed small sample sizes for critical
clinical parameters like survival time and tumor stage. Further-
more, multi-centered validation is still required before the model
can be applied to clinical practice. Finally, more evidence
concerning the interaction between immune-related genes and the
PAADmicroenvironment is needed to be confirmed using both in
vivo and in vitro studies.
This study identified a list of the tumor microenvironment-

associated genes. Many of these genes might be closely
correlated with clinical outcomes of PAAD patients, which
could likely become novel biomarkers for PAAD. Additionally,
a novel 7-mRNA signature PI model was identified and
validated, which has the ability to predict prognosis. Further-
more, additional studies of these genes might be helpful in the
comprehension between the tumor microenvironment and the
PAAD prognosis.
11
5. Conclusion

In conclusion, a list of the prognosis-correlated genes was
generated from the microenvironment of the PAAD and a
7-mRNA PI model may be utilized to predict the prognosis of
PAAD patients.
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