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Purpose: Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease that often
results in high mortality due to sudden rupture. This paper aims to explore potential
molecular mechanisms and effective targeted therapies to prevent and delay AAA rupture.

Methods:Wedownloaded twomicroarray datasets (GSE98278 andGSE17901) from the
Gene Expression Omnibus (GEO) database. Differential analysis and single-sample gene
set enrichment analysis (ssGSEA) of hypoxia scores were performed on 48 AAA patients in
GSE98278. We identified hypoxia- and ruptured AAA-related gene modules using
weighted gene coexpression network analysis (WGCNA). Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using
the R package clusterProfiler. For candidate genes, validation was conducted on the
mouse dataset GSE17901. Finally, we predicted drug candidates associated with the hub
genes using the HERB Chinese medicine database.

Results: Eighty-two differentially expressed genes were screened in the ruptured and
stable groups; 103 differentially expressed genes were identified between the high- and
low-hypoxia groups; and WGCNA identified 58 differentially expressed genes. Finally, nine
candidate genes were screened, including two hub genes (MEDAG and SERPINE1). We
identified pathways such as cytokine–cytokine receptor interaction and T-helper 1-type
immune response involved in AAA hypoxia and rupture. We predicted 93 traditional
Chinese medicines (TCMs) associated with MEDAG and SERPINE1.

Conclusion:We identified the hypoxic molecules MEDAG and SERPINE1 associated with
AAA rupture. Our study provides an additional direction for the association between
hypoxia and AAA rupture.
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INTRODUCTION

Abdominal aortic aneurysm (AAA) is a common, severe
cardiovascular disease that involves localized dilatation
with a diameter of 3.0 cm or more and is often
asymptomatic until rupture (Guirguis-Blake et al., 2019).
Frequent ultrasound screening or imaging for unrelated
abdominal symptoms is helpful in early diagnosis (Chaikof
et al., 2018). Although the current incidence of AAA has
decreased, mortality due to AAA rupture is still high at 81%
(Force UPST Owens et al., 2019). At present, open surgery or
endovascular aortic repair can be performed when AAA is
≥5.5 cm in diameter or expanding at a rate of 10.0 mm/year or
symptoms (Chaikof et al., 2018). However, small AAAs can
rupture during follow-up (Oliver-Williams et al., 2019), and
there is a lack of adequate medical therapies to change the
progression of AAAs (Golledge, 2019). Therefore, further
exploring the pathophysiology and molecular expression
differences between ruptured and unruptured AAAs is
necessary to identify effective noninvasive therapeutic
targets.

AAA is a multifactorial disease, and numerous studies have
indicated that the occurrence and development of AAA
involve immune cell inflammatory infiltration, increased
oxidative stress in the aortic wall, and extracellular matrix
degeneration (Emeto et al., 2016; Sakalihasan et al., 2018).
Arterial wall hypoxia is an indispensable mechanism that can
exacerbate neovascularization and the inflammatory
response, increasing vascular vulnerability and the risk of
rupture (Vijaynagar et al., 2013; Blassova et al., 2019). The
hypoxic microenvironment results in the activation of
hypoxia-inducible factor (HIF)-1, which can regulate the
expression of several angiogenesis-related genes, including
vascular endothelial growth factor (VEGF) and its receptors
FLT-1, FLK-1, ANG-1, ANG-2, and TIE-2, thus affecting the
state of AAA (Zimna and Kurpisz, 2015). However, the
specific mechanisms of hypoxia involving AAA rupture
remain unclear, and its related molecular network requires
further exploration.

Weighted gene coexpression network analysis (WGCNA)
is a systems biology method that identifies gene sets of interest
and analyzes significant associations with phenotypes (Zhang
and Horvath, 2005). WGCNA is now widely used to study
many diseases, primarily in terms of cancer-like
differentiation, drug treatment targets, and prognosis (Yin
et al., 2020; Long et al., 2021). Currently, the hypoxia-related
gene signature of AAA rupture has not been explored in detail,
and an in-depth understanding of the hypoxia gene signature
will help to assess the association between the degree of
hypoxia and AAA rupture.

In our study, we performed bioinformatics analysis of Gene
Expression Omnibus (GEO) datasets on AAA rupture,
investigated the correlation between hypoxia and rupture,
identified hypoxia-related molecules involved in AAA
rupture, and provided new molecular targets for the
assessment and treatment of AAA.

METHODS

Data Collection
The publicly available datasets related to ruptured AAA, GSE98278
and GSE17901, were obtained from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). The human dataset GSE98278
consists of 31 elective stable AAA (eAAA) and 17 ruptured
AAA (rAAA) samples (Gäbel et al., 2017). The mouse dataset
GSE17901 was used to validate the hub genes, which included three
ruptured AAAs and four stable AAAs (Spin et al., 2011).

Gene Set Enrichment Analysis
We used java Gene Set Enrichment Analysis (GSEA) Desktop
program v3.0 to explore the functional variations of genes
associated with AAA rupture (Mootha et al., 2003;
Subramanian et al., 2005). The H. all.v7.4. symbols.gmt gene
sets from the Molecular Signatures Database (MSigDB) (http://
www.broadinstitute.org/gsea/msigdb/) were regarded as the
reference gene sets, and gene set permutation was performed
1,000 times for each analysis (Subramanian et al., 2005). Values of
p < 0.05 and false discovery rate (FDR) q < 0.25 were considered
statistically significant.

Assessment of Hypoxia Status
Two hundred genes with hypoxia signatures were acquired from
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/), and the
hypoxia status of AAA was assessed by the single-sample gene
set enrichment analysis (ssGSEA) algorithm in the R package
GSVA for the GSE98278 dataset. The patients were divided into
high and low hypoxia score groups based on the median
hypoxia score. The R code used for analysis is provided as
Supplementary Material.

Identification of Differentially Expressed
Genes
The R package limma (version 3.3.3) was used to identify
differentially expressed genes (DEGs) between eAAA and
rAAA and between the high and low hypoxia score groups. |
Fold change| ≥2 and p < 0.05 were considered significant.

Functional Enrichment Analysis
The DEGs were subjected to enrichment analysis with Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) terms using the R package clusterProfiler
(version 3.14.3) to obtain gene set enrichment results. In the
GSEA runs, the minimum gene set size was set to 5, the
maximum gene set size was set to 5,000, and a p value of
<0.05 and FDR of <0.25 were considered statistically
significant. To perform GO and KEGG pathway functional
enrichment analyses of key module genes, we used Cytoscape
(version 3.9.0, National Resource for Network Biology) with
the plug-in ClueGO (version 2.5.8) (Bindea et al., 2009). In this
study, functional analysis was selected as the analysis mode,
Homo sapiens as the organism, and groups as the visual style.

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 9265082

Teng et al. Hypoxia-Related Genes in AAA

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.broadinstitute.org/gsea/msigdb/
http://www.broadinstitute.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Construction of a Weighted Gene
CoexpressionNetwork andCandidate Gene
Identification
First, we excluded the top 50% of genes with the smallest median
absolute deviation (MAD) in the gene expression profiles. We
removed outlier genes and samples using the goodSamplesGenes
method of the R packageWGCNA.We chose soft-threshold β = 8
(scale-free R2 = 0.89) to construct a scale-free coexpression
network. Next, signature gene module identification was
performed with hierarchical clustering (minimum module size
was at least 30 genes). In addition, we merged modules with
distances less than 0.25, resulting in 25 coexpression modules.
Notably, the gray module was considered the set of genes that
could not be assigned to any module.

Finally, we calculated the correlation of clinical characteristics
and gene expression to obtain the gene significance (GS) and
module membership (MM) by calculating the feature vector of
each module and the expression correlation of the gene. Based on
the cutoff criteria (|MM| > 0.7 and |GS| > 0.2), 58 genes with high
connectivity in the module of clinical characteristics were
identified as the key genes of the pivotal modules. Then, the
intersection between DEGs and key genes was taken, and nine
candidate genes were identified.

Validation of Candidate Genes and
Selection of Key Genes
The mouse gene expression profile GSE17901 was extracted to
compare the expression of candidate genes in rAAA and eAAA,
and genes with p < 0.05 were identified as hub genes. The
common genes in the human dataset and mouse dataset were
defined as the final hub genes.

Construction of the Competitive
Endogenous RNA Network
We retrieved miRNAs predicted by seven algorithms
(TargetScan, miRanda, Pictar2, PITA, microT, miRmap, and
RNA22) from the starBase database (v2.0; Sun Yat-sen
University, Guangzhou, China) (Mirfakhraee et al., 1985) that
may bind to the final hub genes, and the miRNAs identified by ≥ 3
of these algorithms were selected. Then, we obtained the miRNA-
lncRNA target data from CLIP data (high stringency, ≥3) and
performed correlation analysis with the final hub genes in gene
expression profiling interactive analysis (GEPIA). We selected
lncRNAs that were positively correlated with the hub genes.
LncRNA–miRNA–mRNA interactions were imported into
Cytoscape (version 3.9.0, National Resource for Network
Biology) for ceRNA network construction.

Prediction of Traditional Chinese Medicine
HERB (http://herb.ac.cn/) is a high-throughput experiment- and
reference-guided database of TCM (Fang et al., 2021). Fisher’s
exact test was used in the HERB database to infer the correlation
between target genes and TCM. We imported the final key genes
into HERB to explore relevant TCMs.

RESULTS

Identification and Functional Enrichment
Analysis of Differential Expressed Genes in
Ruptured Abdominal Aortic Aneurysm and
Elective Stable Abdominal Aortic Aneurysm
A total of 82 DEGs were identified between 17 rAAA and 31 eAAA
samples, including 35 upregulated genes and 47 downregulated genes
(Figure 1A). We used GO and KEGG functional enrichment
analyses to explore the potential biological functions of the above
DEGs. Figure 1B shows that the DEGs were mainly involved in
cellular divalent inorganic cation homeostasis, myeloid leukocyte
differentiation, and cellular response to cadmium ion in the
biological process (BP) category; the collagen-containing
extracellular matrix, platelet alpha granule, and plasma membrane
raft in the cellular component (CC) category; and receptor-ligand
activity, signaling receptor activator activity, and cytokine activity in
the molecular function (MF) category. The KEGG enrichment
analysis revealed that the DEGs were mostly enriched in
cytokine–cytokine receptor interaction, viral protein interaction
with cytokine and cytokine receptor, and the Toll-like receptor
signaling pathway (Figure 1C).

Identification and Functional Enrichment
Analysis of Differential Expressed Genes
Associated With the Hypoxic State
The GSEA results showed that hypoxia-related genes were highly
enriched in rAAA (Figure 2A), suggesting that hypoxia is involved in
the process and rupture of AAA. Then, we performed hypoxia
scoring in patients in the GSE98278 dataset by ssGSEA, and 48
patients were divided into two groups of high and low hypoxia. A
total of 103 hypoxia-related DEGs were identified by comparing gene
expression in the high- and low-hypoxia groups (Figure 2B). The
hypoxia-related DEGs were subjected to GO and KEGG functional
enrichment analyses, and the top 10 gene pathways are shown in
Figures 2C,D. We detected enrichment in several BPs, mainly in
cellular response to chemical stress, oxidative stress, and cellular
response to oxidative stress; the MF analysis emphasized the role of
receptor–ligand activity, signaling receptor activator activity, and
cytokine activity in the DEGs. KEGG functional enrichment
analysis showed that cytokine–cytokine receptor interaction, the
HIF-1 signaling pathway, and rheumatoid arthritis were the most
critical pathways.

Construction of a Weighted Gene
Coexpression Network
After cleaning the data in the GSE98278 dataset by WGCNA, we
performed coexpression network construction analysis on 4102 genes
from 48 samples. Then, the scale-free network was constructed by
setting the soft threshold to 8, the independence to 0.89, and the
average connectivity close to 0 (Figure 3A). A total of 25 correlated
coexpression modules were obtained, where the blue module (596
genes), black module (467 genes), and dark turquoise module (401
genes) were the three most significant clusters (Figure 3B). In the 25
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modules, there were good correlations in gene expression between
hypoxia and the AAA signature modules, in which the salmon
module had the highest correlation with hypoxia (r = 0.65, p =
4.8e-7) and had a positive correlation with rAAA (r = 0.30, p = 0.04);
the orange module had the highest correlation with rAAA (r = 0.54,
p = 7.1e-5) and had a high correlation with the high hypoxia group
(r = 0.61, p = 4.2e-6) (Figure 3C). These correlations were confirmed
by analyzing hierarchical clustering, the heatmap, and the adjacency
relationships (Figure 3D).

Identification of Hypoxia- and Ruptured
Abdominal Aortic Aneurysm-Associated
Hub Genes
The MM and GS scores showed a high positive correlation with each
other in the orange module and salmon module (Figure 3E), and 58
candidate genes with a high correlation with clinical characteristics
were identified from the above modules. GO functional enrichment
analysis showed that the BPs could be divided into several groups,
with the top three enrichment groups being regulation of translation

in response to endoplasmic reticulum stress, response to
peptidoglycan, and detoxification of copper ion (Figure 3F). We
found that the T-helper 1 type immune response, smooth muscle cell
differentiation, and brown fat cell differentiation were coenriched
pathways from the orange and salmon modules (Figure 4A). The
overlap of three cohort candidate genes was identified using a Venn
diagram, including rAAA (Figure 4B, yellow set), high hypoxic group
AAA (Figure 4B, pink set), and pivotal modules (Figure 4B, blue set).
We extracted nine candidate genes (GFPT2, SERPINE1, LIF,
SLC39A14, IL1RL1, ADM, MEDAG, STC1, and VEGFA)
associated with rupture and high hypoxia.

Validation of Candidate Genes
We performed differential validation of the nine candidate genes
identified above using seven samples from the mouse dataset
GSE17901 (Figure 4C). Among them, MEDAG (p = 0.003) and
SERPINE1 (p = 0.029) were considered the final key genes, which
were significantly different in the mouse dataset (Figure 4D). They
were common genes appearing in both the human AAA dataset and
the mouse AAA dataset. Thus, these two genes are potential

FIGURE 1 | Differential analysis between rAAA and eAAA. (A) The scatter plot shows the DEGs between the rAAA and eAAA groups. Red represents relatively
upregulated genes, and green represents downregulated genes. (B) Bubble plot of GO enrichment analysis of DEGs. The size of the dots corresponds to the number of
genes, and the color of the dots represents the p value. (C) Bubble plots of the top 10 KEGG pathways for molecular function.
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biomarkers that may be involved in the molecular mechanisms of
hypoxia-related AAA progression and rupture.

Construction of the Competitive
Endogenous RNA Network
We predicted miRNAs and lncRNAs that may be involved in
regulating MEDAG and SERPINE1 from the starBase database
(v2.0; Sun Yat-sen University, Guangzhou, China) and performed
coexpression validation. Then, we obtained 58 miRNA-lncRNA
and 14 miRNA–mRNA interactions. A ceRNA network

containing 72 edges and 41 nodes (including 26 lncRNAs, 13
miRNAs, and two mRNAs) was constructed (Figure 4E). These
miRNAs may influence the expression of MEDAG and
SERPINE1 and play a role in the development of AAA.

Prediction of Gene and Traditional Chinese
Medicine Interactions
We imported the two final key genes MEDAG and SERPINE1
into the HERB database, and the gene and TCM interactions
showed 93 drugs associated with the above two genes. Among

FIGURE 2 |Differential and functional enrichment analyses of hypoxic states in AAA. (A)GSEA showed a high enrichment of hypoxic gene sets in the rupture group.
(B) The scatter plot shows the DEGs between the high and low hypoxia scoring groups. (C) Bubble plot of the top 10 GO pathways by biological process and molecular
function. (D) Bubble plot of the top 10 KEGG pathways enrichment analysis for molecular function.
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these, there was only one TCM associated with MEDAG -
sunflower seed; 92 medicines were associated with SERPINE1,
and ginkgo seed had the smallest p value (Table 1).

DISCUSSION

In this study, we first identified hypoxia-related candidate genes
between ruptured and stable AAA by performing combination

analysis with differential analysis, ssGSEA hypoxia score analysis,
and WGCNA on the GSE98278 dataset, verified the differential
expression of candidate genes in the GSE17901 dataset, and
finally selected two hub genes, MEDAG and SERPINE1.
Subsequently, the ceRNA network that regulates the
expression of MEDAG and SERPINE1 was explored by
predicting the miRNAs and lncRNAs that may bind to the
hub genes. TCM has become increasingly popular in recent
years worldwide due to its long history and multiple

FIGURE 3 | Construction of the gene coexpression network by WGCNA. (A) Soft-threshold power for WGCNA. The soft-thresholding power was selected from
1–20, the coefficient threshold was set to 0.89, and the soft threshold was set to 8. (B)Dendrogram of the gene cluster analysis of all filtered gene sets. The first row at the
bottom of the dendrogram indicates the unmerged dynamic tree cut, and the second row shows the 25 merged modules, with different colors indicating different
modules. (C) Hierarchical clustering and correlation heatmap of all module genes. The bluer the color is, the higher the correlation. (D) Heatmap of the correlation
between different module genes and hypoxia and AAA status. Darker colors indicate higher correlations and smaller p values with greater statistical significance. (E) A
scatterplot of GS and MM scores of genes in the orange and salmon modules. (F) GO enrichment analysis of genes in the orange and salmon modules.
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pharmacological effects, and there have been a large number of
studies on cardiovascular diseases (Cheung, 2011; Rastogi et al.,
2016). Then, we explored potential TCMs associated with
MEDAG and SERPINE1 through the HERB database.

Several studies have shown that receptor–ligand interactions
contribute to the development of AAA. For example, the

interaction between toll-like receptor 2 (TLR2) and its
endogenous ligand promotes the development of AAA (Yan
et al., 2015), and the expression of RAGE and its ligand AGE
is highly elevated in human aneurysm specimens (Zhang et al.,
2009). In the functional enrichment analysis of the AAA ruptured
and stable groups and the high and low hypoxia groups, GO

FIGURE 4 | Screening and validation of hub genes. (A) The most relevant gene modules with coenriched GO entries of high hypoxia and rAAA. (B) The Venn
diagram shows nine candidate genes related to hypoxia and AAA rupture in the three cohorts. (C) Hierarchical clustering of the nine candidate genes in the mouse
dataset GSE17901, finally identifying the final hub genes MEDAG and SERPINE1. (D) Expression levels of MEDAG and SERPINE1 in GSE17901. (E) CeRNA network
diagram. Green nodes indicate lncRNAs, yellow nodes indicate miRNAs, and red nodes indicate mRNAs.

TABLE 1 | The TCM associated with MEDAG and SERPINE1.

Genes Herb name p-value

MEDAG XIANG RI KUI ZI; Sunflower Seed; Helianthus annuus 0.00032
SERPINE1 BAI GUO; Ginkgo seed; Semen Ginkgo 1.18E-07

SUO LUO ZI; Buckeye Seed; Semen Aesculi 2.88E-06
MEI ZHOU JIN LV MEI; Virginia Witch Hazel; Hamamelis virginiana 8.00E-06
GAO LIANG JIANG; Alpiniae Officirum Rhizome 9.84E-06
CHA YE; Common Tea; Camellia sinensis [Syn. Thea sinensis] 1.49E-05
MA CHI XIAN; all-grass of Purslane; Herba Portulacae 1.63E-05
BAI BIAN DOU; White Hyacinth Bean; Semen Lablab Album 1.70E-05
HUO MA REN; Hemp Seed; Semen Cannabis 2.83E-05
TU FU LING; Glabrous Greenbrier Rhizome; Rhizoma Smilacis Glabrae 3.55E-05
QIAO MAI; Common Buckwheat; Fagopyrum esculentum 3.68E-05
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showed that receptor–ligand activity was associated with rAAA
and high hypoxia. KEGG analysis showed that the
cytokine–cytokine receptor interaction signaling pathway was
the most prominent pathway common to both. These results
suggest that the interaction of hypoxia-related cytokines and their
receptors may promote the development and rupture of AAA
(Wang et al., 2015; Li et al., 2018).

We identified all modules and their genes in rAAA using
WGCNA. The orange and salmon modules were the pivotal
modules associated with AAA rupture and high hypoxia. The GO
analysis of the above two modules showed that the T-helper 1-
type immune response is a central pathway. In AAA,
inflammatory processes play a crucial role, accompanied by
cellular and humoral immunity (Prucha et al., 2019). Two
T-helper cell subsets, Th1 and Th2 cells, mediate these
different forms of immunity (Li et al., 2018). Previous studies
have suggested that Th1 is upregulated in AAA (Prucha et al.,
2019). The balance between Th1-type and Th2-type immune
responses may influence the progression of many inflammatory
diseases (including AAA) (Schulte et al., 2008).

It is worth mentioning that no reports have elucidated the role
of MEDAG in AAA. MEDAG is a novel adipogenesis gene
involved in visceral obesity that is strongly associated with the
onset and progression of type 2 diabetes (Yang and Yu, 2021) and
can increase the risk of obesity (D’Angelo et al., 2018), which is
related to the development and rupture of AAA. Although the
function of MEDAG in AAA has not been elucidated, we
hypothesized that it influences AAA rupture and hypoxia by
affecting lipid metabolism. This hypothesis agrees with the results
of GO functional enrichment analysis of the brown fat cell
differentiation pathway in our orange and salmon modules.
While sunflower seed, the only TCM associated with it, has a
preventive effect on acute hyperlipidemia and chronic
hypercholesterolemia, it has been shown that altered lipids in
the aorta lead to the development and ruptured aortic aneurysms
(Saito et al., 2019). However, whether hyperlipidemia and
hypercholesterolemia are associated with AAA progression is
controversial (Mulorz et al., 2020; Ikezoe et al., 2021).

SERPINE1, also known as PAI-1, plays an essential protective
role in AAA rupture as a significant inhibitor of tissue
plasminogen activator (tPA) and urokinase-type plasminogen
activator (uPA) and plays the same role in sex differences
(DiMusto et al., 2012; English et al., 2015). This gene is
relatively mature in AAA. Therefore, there are more TCMs
associated with this gene. Ginkgo seeds may affect AAA
rupture by reducing blood glucose levels through the
inhibition of α-glucosidase (Sun et al., 2021). It also has anti-
inflammatory, antioxidant, and ischemia/reperfusion injury
treatment benefits (Pereira et al., 2013; Gargouri et al., 2018;
Yan et al., 2020).

To further understand how miRNAs are involved in the
regulation of MEDAG and SERPINE1 and to gain insights
into these mechanisms, we constructed a ceRNA network
diagram in which miR-21-5p downregulation of MEDAG and
SERPINE1 was associated with AAA hypoxia and rupture, which

is consistent with findings from previously published studies
(Plana et al., 2020). Our study showed that SNHG1/miR-21-
5p/MEDAG is a potential pathway to regulate MEDAG
expression. However, further experiments are needed to
demonstrate this hypothesis.

Although our study predicted that the hypoxia-related genes
MEDAG and SERPINE1 are involved in the development of
AAA, this study still has some limitations. First, the sample size of
the dataset from the GEO database was small, with only 31 rAAA
and 17 eAAA samples. Second, the validation dataset we chose
was a mouse dataset, and angiotensin II-induced AAA in mice
has a different inherent pathology than humans and is small in
size. The screening results need to be further verified. Third, our
study predicted the central genes MEDAG and SERPINE1, which
are involved in the progression of AAA, with hypoxia-related
genes and identified TCMs associated with the hub genes.
Nevertheless, these findings need to be confirmed by in vitro
and in vivo experiments in AAA.

CONCLUSION

In conclusion, our study identified two hub genes (MEDAG and
SERPINE1) associated with AAA hypoxia and rupture by a
combination analysis of differential gene selection, ssGSEA
hypoxia score, and WGCNA. We also identified a potential
regulatory pathway, SNHG1/miR-21-5p/MEDAG. In addition,
we predicted a potentially useful TCM association with MEDAG
and SERPINE1 using the HERB database. Furthermore, our study
found that pathways such as cytokine–cytokine receptor
interaction and T-helper 1-type immune response are involved
in AAA hypoxia and rupture.
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GLOSSARY

AAA abdominal aortic aneurysm

HIF hypoxia-inducible factor

VEGF vascular endothelial growth factor

FLT Fms related receptor tyrosine kinase

FLK fetal liver kinase

ANG angiogenin

TIE tyrosine kinase with immunoglobulin and epidermal growth factor
homology domains

WGCNA weighted gene co-expression network analysis

GEO gene expression omnibus

GSE gene expression omnibus

GSEA gene set enrichment analysis

FDP false discovery rate

MSigDB molecular signatures database

ssGSEA single sample gene set enrichment analysis

GSVA gene set variation analysis

DEGs differential expressed genes

eAAA elective stable abdominal aortic aneurysm

rAAA ruptured abdominal aortic aneurysm

GO gene ontology

KEGG kyoto encyclopedia of genes and genomes

MAD median absolute deviation

GS gene significance

MM module membership

GEPIA gene expression profiling interactive analysis

lncRNA long noncoding RNA

miRNA microRNA

mRNA messenger RNA

CeRNA competitive endogenous RNA

TCM traditional chinese medicine

BP biological process

CC cellular component

MF molecular function

GFPT glutamine fructose-6-phosphate amidotransferase

SERPINE serpin family E member

LIF leukemia inhibitory factor

SLC39A14 solute carrier family 39, member 14

IL1RL1 interleukin one receptor-like one

ADM adriamycin-resistant

MEDAG mesenteric estrogen-dependent adipogenesis gene

STC stanniocalcin

VEGFA vascular endothelial growth factor A
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