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Anaphylaxis is a notorious type 2 immune response which may result in a systemic response and lead to death. A precondition for
the unfolding of the anaphylactic shock is the secretion of inflammatory mediators from mast cells in response to an allergen,
mostly through activation of the cells via the IgE-dependent pathway. While mast cells are specialized secretory cells that can
secrete through a variety of exocytic modes, the most predominant mode exerted by the mast cell during anaphylaxis is
compound exocytosis—a specialized form of regulated exocytosis where secretory granules fuse to one another. Here, we review
the modes of regulated exocytosis in the mast cell and focus on compound exocytosis. We review historical landmarks in the
research of compound exocytosis in mast cells and the methods available for investigating compound exocytosis. We also review
the molecular mechanisms reported to underlie compound exocytosis in mast cells and expand further with reviewing key
findings from other cell types. Finally, we discuss the possible reasons for the mast cell to utilize compound exocytosis during
anaphylaxis, the conflicting evidence in different mast cell models, and the open questions in the field which remain to be answered.

1. Allergy and Anaphylaxis

Type 2 immune responses are tightly associated with allergy,
a manifestation of clinical symptoms that are caused by
hypersensitivity to food, insects, plants, or other airborne
allergens. Severity of allergic reactions may range from local
discomfort in cases such as a skin rash to death by anaphy-
laxis, defined by the World Health Organization as a severe,
life threatening, generalized, or systemic hypersensitivity
reaction [1]. The anaphylactic reaction is fast and can be trig-
gered in various organs and tissues such as the skin, cardiac,
gastrointestinal, and bronchopulmonary systems [2–5]. In
lethal cases of anaphylactic shock, death may occur within
an hour [6] and in some cases, even shorter than that [6, 7].

Key players in allergic reactions are mast cells (MCs)
and basophils that by expressing the high affinity for
immunoglobulin E (IgE) receptor (FcεRI) respond to
allergen-specific IgE, whose formation is triggered by IL4
[8]. Following the crosslinking of cell-bound IgE molecules
by their respective allergens and the consequent aggregation

of the FcεRI, the MCs and basophils are activated effecting
the robust release of a wide spectrum of inflammatory medi-
ators [9–12]. Notably, though both basophils and MCs
express the FcεRI, the IgE-dependent anaphylaxis reaction
appears to be primarily mediated by MCs, as indicated by
the failure of MC-deficient mice to develop an anaphylactic
reaction in response to IgE/antigen [13]. Indeed, the blood
level of tryptase, that is, exclusively released by activated
MCs, is one of the most reliable diagnostic tests for anaphy-
laxis [4, 5, 14], and many cases of idiopathic anaphylaxis turn
out to result from MC disorders [15]. Therefore, collectively,
the evidence points to MCs as the key regulators of most
forms of anaphylaxis.

MCs can also be activated independently of IgE by the
complement system [16] or by a family of natural or syn-
thetic basic secretagogues [17]. The latter were recently
shown to activate MCs by binding to Mrgx2, a member
of the family of G protein-coupled receptors (GPCRs)
[17–20]. In humans, most of the IgE-independent anaphy-
lactic responses are triggered by a variety of medications
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[4, 5, 16] and appear to rely on MC activation [21, 22].
Nonetheless, the majority of anaphylactic responses are
IgE-dependent [23, 24].

2. Modes of Regulated Exocytosis in MCs

The hallmark of the allergic reaction is the immediate release
by regulated exocytosis of inflammatory mediators that are
presynthesized and prestored in MC secretory granules
(SGs) [25]. The release process may occur by different mech-
anisms, including full exocytosis, kiss-and-run exocytosis,
piecemeal degranulation, and compound exocytosis [26, 27].

During full exocytosis, which was first described in 1950
[28], a single secretory vesicle fully fuses with the plasma
membrane (PM), resulting in the collapse of the SG and
release of the SG content to the extracellular milieu
(Figure 1(a)). In this form of exocytosis, homeostasis of the
cell shape and its size is achieved by the tight coupling of
the exocytic events with endocytosis of the PM that takes
place in areas distal to the fusion site and is followed by
recycling of the membrane to generate new secretory ves-
icles [29, 30].

Kiss-and-run exocytosis was suggested in the 1970s, as an
alternative mode of exocytosis [31–33], during which a single
secretory vesicle fuses with the PM, but does not collapse.
Instead, a transient fusion pore is formed at the PM, which
subsequently closes by the pinching off of the SG back into
the cytoplasm (Figure 1(b)) allowing secretion of small cargo
such as amines [34, 35], without exchange of lipids or
proteins between the SG and the plasma membranes, while
retaining a constant omega shape throughout the exocytic
process. A more recently discovered close relative of
kiss-and-run is cavicapture. Sometimes mistaken for kiss-an-
d-run, during cavicapture, a transient fusion pore is also
formed and an omega shape is retained. However, the
fusion pore dilates to allow secretion of larger cargo, such
as small proteins, and partial exchange of membrane com-
ponents between the SG and the PM before the pinching
off of the SG [36–44]. In comparison to full exocytosis,
kiss-and-run exocytosis and cavicapture exocytosis offer a
faster and more effective mechanism for granule recycling.
Importantly, the fact that secretion takes place through a
transient fusion pore of a definitive size implies that this
mechanism may serve to restrict the size or limit the
amount of cargo that can be released.
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Figure 1: Modes of regulated exocytosis. A schematic presentation depicting the different modes of regulated exocytosis. (a) During full
exocytosis, a SG (I) docks to the PM (II) and fuses with it to fully discharge all of its content (III), while fully collapsing into the
PM (IV+V). (b) In kiss-and-run exocytosis, a SG (I) docks to the PM (II) and fuses with it (III) but does not collapse. Instead, the SG is
retrieved back into the cytoplasm (IV+V). (c) During piecemeal degranulation, a “resting” SG (I) swells and packs a small amount of
cargo into a budding vesicle (II). The small vesicle then buds off the “mother” SG (III) and is transported to the PM (IV) where it fully
fuses with the PM and secretes its content to the extracellular milieu (V). (d) During compound exocytosis of a multigranular nature,
several SGs fuse together to form a giant SG (I+II), which then fuses with the PM (III) to secrete its content, resulting in an empty
degranulating sac (IV). (e) In compound exocytosis of a sequential nature, a single SG first fuses with the PM and begins secreting its
content (I). However, the SG does not collapse into the PM, but instead a second SG fuses with the first one (II) and secretes its content
through the primary SG which acts as a channel connecting to the extracellular milieu. This process continues with more SGs fusing with
the growing channel (III) until secretion ends and all secretory cargo is released, resulting in an empty degranulating sac (IV).
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Piecemeal degranulation, a relatively rare form of
regulated degranulation, was identified in MCs [45] and
suggested to involve release through intermediate vesicles
without the need of SG transport to the cell cortex and SG
fusion with the PM. A mechanism, termed “the shuttling
vesicle,” was suggested, whereby the SG swells and portions
of its content are packed into small vesicles that bud from
the SG and traffic to the PM, fusing and releasing their con-
tent [46] (Figure 1(c)).

Finally, compound exocytosis refers to exocytic events
that involve homotypic fusion of several SGs, prior to
(multigranular) or after (sequential) SG fusion with the
PM. In multigranular exocytosis, several SGs fuse together
to establish a giant SG, which then fuses with the PM,
resulting in robust discharge of the SG’s content
(Figure 1(d)). In sequential exocytosis, a single SG fuses
with the PM, but before collapsing or retrieval, it serves
as a hook for a second SG, which fuses with the first one
and so on and so forth (Figure 1(e)). This form of exocytosis
creates a channel through which SGs that are located distal
from the PM can release their content bypassing the need
of transport to the cell periphery [47, 48].

Though all of these modes of regulated exocytosis have
been shown to occur in MCs [26, 45, 47–53], it has been
argued that, in vivo, compound exocytosis is the predom-
inant form of regulated exocytosis during the allergic
response [45]. Recently, it was shown that the mode of
exocytosis is dictated by the stimulus type. Hence, while
IgE-independent secretion triggered by substance P,
endothelin 1, C3a, or C5a occurs by full fusion exocytosis,
the characteristic mode of IgE-dependent exocytosis of
MCs is compound exocytosis [54]. Therefore, compound
exocytosis appears to be the hallmark of the immediate MC
response during type 2 immunity responses to IgE/antigen.

3. Methods for Monitoring
Compound Exocytosis

The first indication for the existence of a compound mode of
exocytosis was obtained during the 1960s, on the basis of
analyses of transmission electron microscopy images of
stimulated pancreatic acinar cells [55] and MCs [56–58].
The latter revealed altered morphology of the SGs, where
some granules, of lower electron density, also appeared to
be connected to the PM, suggesting their active involvement
in content discharge; however, others were fused to each
other, though not necessarily connected to the PM. These
studies demonstrated the occurrence of homotypic SG fusion
in MCs. However, since transmission electron microscopy
reveals only a thin section of the cell, connection to the PM
of the fused granules might have been missed in the analyzed
section. Therefore, these fused ultrastructures could be inter-
preted as multigranular fusion that occurred independently
of fusion with the PM or that the SGs have fused to each
other following a primary fusion event with the PM. Subse-
quent studies by Röhlich et al. [47] that were based on the
light and transmission electron microscopies of MCs that
were activated by the synthetic basic secretagogue, com-
pound 48/80, have demonstrated that the “intracellular

cavities” which communicated with extracellular space grew
overtime after cell activation and spread into the cell center.
These observations thus drove the conclusion that regu-
lated exocytosis in MCs involves sequential SG fusion.
Notably, these early studies that employed rat peritoneal
MCs as a model have all implicated compound exocytosis
in mediating MC responses to c48/80, unlike the more
recent studies, mentioned above [54], that identified full
exocytosis as the mode of secretion of MCs that are acti-
vated independently of IgE. Possible reasons for this
discrepancy will be discussed below.

In the 1980s, electrophysiological measurements became
a new technology for monitoring exocytosis and distinguish-
ing between its distinct modes. Capacitance measurements
by patch clamp enabled to estimate the increase in size of
the cell surface membrane and thereby differentiate between
fusion events of a single granule and fusion of multigranular
structures that would yield a larger increase in membrane
size and its corresponding change in capacitance [59–62].
Amperometric measurements, using a carbon fiber micro-
electrode, placed closely to the cell, recorded electrochemical
changes that occurred when an oxidizable cargo, such as
serotonin, in the case of the MCs [34], was released during
degranulation. Combining both measurements then allowed
to correlate the fusion events with the actual amounts of
cargo released and thereby define the mode of exocytosis.
Application of such combined patch clamp measurements
to peritoneal MCs derived from mice or rats revealed the
homotypic fusion of the SGs that occurs both prior and
sequential to fusion with the PM [48, 60] and the compensa-
tory endocytic process of compound endocytosis [44].

Patch clamp and electron microscopy were the only
methods available for tracking compound exocytosis for
decades. However, recent developments in light microscopy
and the use of fluorescent reporters led to the establishment
of new methods that allow monitoring the dynamics and
spatiotemporal features of the exocytic events, including
compound exocytosis, by live cell microscopy. In general,
these methods can be categorized into two groups: (I) the
tracking of the diffusion of a fluorescent marker from the
SG to the extracellular milieu [54, 63–65] or (II) the tracking
of the diffusion of a dye from the extracellular milieu into the
fusing SG. The first approach requires SG loading with a
fluorescent dye, such as fluorescently labeled dextrans
[54, 63, 64, 66] that are taken up by the cells and sorted
to the SGs [67–70], or cell transfection with a fluorescent
reporter that would be targeted to the SGs and released
in a regulated fashion [63, 65]. SG reporters that have
been used in this regard include fluorescent-CD63 that
translocates from the SG to the PM during exocytosis
[71], neuropeptide Y (NPY) fused to mRFP [63], and
β-hexosaminidase-pHluorin [65]. The second approach
relies on the addition of a dye to the cell culture media
and tracking its penetration into the cell, through the
fusion pore at the plasma membrane and into the SG
[72, 73]. The advantage of this method is that it also
allows to estimate the size of the fusion pore by using dyes
of different globular sizes and defining the threshold size
of the penetrating dye [51, 72, 74–76]. An alternative
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version to this approach is the use of fluorescent avidin
that binds to glycoproteins that are exteriorized during
exocytosis [77]. This method was recently shown to suc-
cessfully track in vivo exocytosis of MCs in mice [54].

The choice of reporters for MC exocytosis needs to take
into account the fact that MC SGs maintain an acidic pH
[78–80]. Therefore, to be able to visualize the SGs, a fluores-
cent protein that is insensitive to low pH needs to be
employed. Such is the case of NPY-mRFP that is being used
for this purpose [63, 81]. Alternatively, the actual fusion
events can be monitored by using a pH-sensitive dye or
protein such as fluorescein isothiocyanate (FITC) or the
green fluorescent protein (GFP) variants. In this approach,
the dye or transfected reporter is quenched when inside
the acidic SG. However, once a fusion pore is formed
and the SG’s lumen alkalinizes due to its exposure to the
external milieu, the dye/reporter regains their fluorescence,
thus emitting a fluorescent signal concomitantly to the for-
mation of the fusion pore [66, 82]. Based on this principle,
FITC-dextran and β-hexosaminidase-pHluorin have been
recently used for monitoring exocytosis in MCs [54, 63–
65]. Moreover, these methods allow to correlate exocytosis
with spatiotemporal changes in desired proteins or Ca2+

oscillations [54, 63–66]. Recording the robustness and dura-
tion of fluorescent signals also allows to distinguish between
the different modes of exocytosis. For example, compound
exocytosis can be distinguished from other exocytic modes
simply through recording only long-lasting secretory events
by setting long time intervals between acquisitions [82].
These modern live cell imaging techniques mark a new era,
where exocytic events can be monitored in real time along-
side protein trafficking and signaling events that occur in
the cell. Thereby, these new methodologies improve our
abilities to elucidate the underlying mechanisms of exocytic
events, including compound exocytosis and identifying the
molecular machineries involved. An instrumental tool
towards this goal was achieved during our recent screen of
Rab GTPases for their functional and phenotypic impacts
on MC exocytosis [81]. During this screen, we noticed that
expression of a constitutively active mutant of Rab5 results
in the formation of giant SGs [81]. Further analysis revealed
that expression of the constitutively active mutant of Rab5
increased the SGs’ size while reducing their number, and
conversely, silencing of Rab5 has increased the SG number
but reduced their size [83]. This converse relationship has
identified Rab5 as a regulator of SG fusion during their
biogenesis. Because the giant SGs formed in cells that
express a constitutively active mutant of Rab5 are exocyto-
sis competent, they provide a useful model system that is
easy to visualize and quantify by microscopy and therefore
offers opportunities to the mechanisms of SG fusion, as
discussed below.

4. Underlying Molecular Mechanisms of
Compound Exocytosis

MC degranulation has been extensively studied over the past
decades, and many key signaling events and machineries
have been discovered and thoroughly reviewed in the

literature [26, 27, 84–90]. However, the specific fusion
machineries or precise mechanisms that link MC signaling
with the distinct modes of exocytosis are only beginning to
clear up. In particular, elucidating the underlying mechanism
of compound exocytosis is challenging due to two main
reasons: first, studying secretion as readout does not allow
the distinction between the fusion machineries that medi-
ate granule-granule fusion and those responsible for
granule-PM fusion; and second, perturbation of one mode
of exocytosis may be compensated by the takeover of an
alternative mode, thus leaving the overall secretion unaf-
fected. Therefore, also in this respect, real-time imaging
of the secretory process may be the ultimate methodology
to address this question.

The first hypothesis, proposing a mechanism for com-
pound exocytosis, was put forward by Alvarez de Toledo
and Fernandez [48], who, based on their electrophysiological
measurements, proposed a model according to which, fol-
lowing the contact between the SG and the PM, the proper-
ties of the SG membrane change due to either the
integration of PM proteins or changes in lipid composition.
These changes then prime the SG allowing the fusion of a
second SG to the first one. Consistent with this notion was
the demonstration that SNAP23, a PM-localized SNARE
protein, translocates to the SGs upon stimulation of perme-
abilized rat peritoneal MCs with Ca2+ and GTPγS, conditions
that also stimulated compound exocytosis [91]. Notably,
translocation of SNAP23 occurs also under conditions of
low temperature and hence does not require SG fusion. How-
ever, activation of SNAP23 function requires its phosphory-
lation by IκB kinase 2 (IKKβ) [54, 63, 92]. Whether or not
this phosphorylation requires prior SG fusion with the PM
is presently unknown. We have shown that in RBL-2H3 cells,
both a phosphomimetic mutant and a phosphodeficient
mutant of SNAP23 reside at the SGs in the absence of a cell
trigger [63]. Therefore, the cellular location of SNAP23 may
depend on phosphorylation cycles, which in turn may
depend on fusion with the PM. Another SNARE protein
involved in compound exocytosis is VAMP8 that was impli-
cated in mediating SG-SG fusion during compound exocyto-
sis in pancreatic acinar cells [93]. Based on our results,
VAMP8 acts downstream of Rab5 in mediating homotypic
SG fusion in RBL-2H3 cells [83], which makes VAMP8 an
attractive candidate for mediating granule-granule fusion
during compound exocytosis also in MCs.

Which of the syntaxin proteins that are expressed in MCs
is involved in compound exocytosis is still debatable. In
resting RBL-2H3 cells, both SNAP23 and syntaxin 4 (stx4)
localize to the PM, but only SNAP23 translocates to the
SGs upon IgE/antigen triggering [94]. In contrast, stx3 local-
izes to the SGs [71, 95]. While these results may implicate
stx4 in mediating SG fusion with the PM and stx3 in
mediating homotypic SG fusion, coimmunoprecipitation
studies demonstrated complex assembly between SNAP23
and stx4 and its dependence on IKKβ-mediated phosphor-
ylation of SNAP23 [54, 92, 96]. These results therefore
support a role of stx4 in compound exocytosis. Moreover,
the coassembly of VAMP8 [93] with this complex further
supports this concept.
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Recent data has pointed to the mammalian
uncoordinated-18 (Munc18) proteins as important regula-
tors of compound exocytosis [13, 97]. Also known as
stx-binding proteins, Munc18 proteins have been shown to
bind to syntaxins to promote their closed conformation.
Nonetheless, Munc18 proteins appear to be essential for
SNARE complex assembly by clasping two complementary
SNAREs and preventing their diffusion across membranes
(reviewed in [98]). In addition, this family of proteins directly
participates in vesicle trafficking and fusion events (reviewed
in [84]). MCs express Munc18-1, Munc18-2, and Munc18-3
[99, 100]. Munc18-2 has been shown to coimmunoprecipi-
tate mainly with stx3 and to a lesser extent with stx2, while
Munc18-3 coimmunoprecipitates with stx4 [99]. However,
Gutierrez et al. have recently demonstrated that the knockout
of Munc18-1 or Munc18-3 does not affect secretion by
mouse peritoneal MCs or development of anaphylactic
responses, while the Munc18-2 knockout almost completely
abolished secretion and multigranular compartments within
the cells, along with strongly hindering the development of
a systemic anaphylactic response in the knockout mice
[97]. In accordance with these observations, independent
research by Wu et al. has failed to assign a role for
Munc18-1 in MCs during anaphylactic responses in vitro
or in vivo [101]. However, Bin et al. have shown a small
inhibition of exocytosis in response to IgE/antigen in
Munc18-1-knocked-down RBL-2H3 cells and an even
stronger inhibition of secretion in a double knockdown
of Munc18-1 and Munc18-2, implying a synergistic role
for these proteins [102]. Indeed, Brochetta et al. reported
that Munc18-2 acts independently but synergistically with
stx3 in mediating microtubule-dependent transport of
stx3-positive vesicles to the PM [71]. Taken together, these
data suggest that Munc18-2 is essential for the secretion of
anaphylactic factors from MCs, possibly contributing to
SG-SG fusion by mediating SG transport along the
microtubules.

Munc13 proteins also play an important role in SNARE
configuration. Munc13-4 acts sequentially to Munc18 and
has been shown to mediate the transition of stx proteins from
a closed to an open conformation, leading to the proper
SNARE assembly during vesicle priming [103–105]. Indeed,
mutations in Munc13-4 lead to type 3 familial hemopha-
gocytic lymphohistiocytosis—a disorder in which cytotoxic
T cells’ granules dock, but do not fuse with the PM [106].
Furthermore, Munc13-4 has also been shown to play a
role in fusion of recycling with late endosomes in cyto-
toxic T cells, a step that is required for the formation of
secretory vesicles [107]. MCs express both Munc13-2 and
Munc13-4 [13, 108]. However, while the knockout of
Munc13-4 inhibited anaphylactic shock in the knockout
mice, as well as MC secretion and SG-SG fusion in the
bone marrow and peritoneal MCs derived from these mice
[13], Munc13-2 only slowed down the rate of secretion
[13], suggesting that Munc13-4 is the essential player in
compound exocytosis.

In RBL-2H3 cells, Woo et al. have shown that Munc13-4
functions as a Ca2+ sensor through its C2A and C2B domains
[109]. A similar role of Munc13-4, as a Ca2+ sensor during

SG tethering, has also been shown in platelets, which are
known to secrete through compound exocytosis [110]. In
MCs, the function of Munc13-4 is inhibited by the direct
interaction of Munc13-4 with Rab37 [111]. Taken together,
these data point to Munc13-4 as a regulator of anaphylaxis
by regulating compound exocytosis and to Rab37 as an
inhibitor of its function. In this context, it is interesting to
note that compound exocytosis induced by FcεRI activation
in MCs cultured from human peripheral blood requires
continuous oscillations of high Ca2+ while activation by sub-
stance P, which results in noncompound exocytosis, requires
a short Ca2+ burst [54]. These results are consistent with a
role of a Ca2+ sensor in dictating the mode of exocytosis that
will take place in activated cells.

Other intriguing candidates for regulating compound
exocytosis are the secretory carrier membrane proteins
(SCAMPs) SCAMP1 and SCAMP2 that have previously been
implicated in regulated exocytosis in neuroendocrine PC12
cells and in MCs [112–117]. Both SCAMP1 and SCAMP2
have been implicated in the regulation of fusion pore closure
in PC12 cells [114, 116, 117]. However, while SCAMP1 facil-
itates the closure of the fusion pore and thereby limits the
extent of compound exocytosis, SCAMP2 is essential for
the dilation of the fusion pore [114, 116, 117] and may thus
be crucial for maintaining a long-lived fusion pore that is
required for compound exocytosis [113, 115]. Notably,
SCMAP2 is abundantly expressed in both pancreatic acinar
cells and MCs [115, 118, 119], both of which utilize com-
pound exocytosis.

Finally, by monitoring the dequenching of SG-loaded
FITC-dextran and directly tracking compound exocytosis
events in FcεRI-triggered RBL-2H3 cells, we have recently
demonstrated that Rab5, which we have previously identified
as a regulator of SG-SG fusion during their biogenesis [83],
fulfills a similar function during compound exocytosis [63].
We have shown that silencing of Rab5 completely abolishes
compound exocytosis, while a constitutively active Rab5
mutant acts synergistically with SNAP23 in enhancing this
process [63]. The identification of Rab5 as a regulator of SG
fusion now provides us with a useful tool for exploring key
steps in this process by identifying the Rab5 effectors that
mediate its functions.

5. Lessons from Other Cells: Open
Questions in MCs

While differences in the exocytic machinery between cell
types are common [120], some key aspects of compound exo-
cytosis have not yet been addressed in MCs. Perhaps the
most uncharacterized aspect of compound exocytosis con-
cerns the differences between sequential exocytosis and mul-
tigranular exocytosis. In lactotrophs, protein kinase C (PKC)
activation has been shown to be crucial for both the primary
SG-PM fusion event and its following SG-SG fusion events of
sequential exocytosis [121]. In contrast, cAMP signaling is
required for the secondary fusion, revealing a possible mech-
anism for differentiating sequential exocytosis from multi-
granular exocytosis or full fusion exocytosis [121]. How
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precisely MC signaling couples to their different modes of
exocytosis remains to be resolved.

In pancreatic acinar cells, homotypic fusion between
zymogen granules was found to be markedly less sensitive
to Ca2+ than fusion between the zymogen granules with the
PM [122]. Similarly, Hartmann et al. found that in eosino-
phils, the rate of SG-PM fusion was sensitive to both GTPγS
and Ca2+, the rate of SG-SG fusion was sensitive to GTPγS
but insensitive to Ca2+, and the rate of fusion between a SG
and a granule that is already fused to the PM was sensitive
to Ca2+ but insensitive to GTPγS [123]. These observations
clearly point to different mechanisms that underlie granular
fusion events that occur during multigranular exocytosis or
sequential exocytosis and imply their regulation by distinct
GTPases and/or Ca2+ sensors. Consistent with this notion,
as already mentioned above, Gaudenzio et al. have shown
that different modes of exocytosis in MCs are coupled to dis-
tinct patterns of Ca2+ mobilization [54]. However, which
GTPases or Ca2+ sensors regulate MC exocytosis, remains
to be resolved. As described above, so far, Rab5 and
Munc13-4 have been recognized in this context; however,
their precise coupling to stimulus-specific signaling events
awaits future research.

Activation of eosinophils by concanavalin A induces
SG-SG fusion but not exocytosis [123]. Thus, a similar
mechanism may also apply to MCs, where pre-exposure
to a specific milieu or trigger may shift the exocytic
response to a predominant multigranular response when
the appropriate exocytic signal arrives.

Finally, an intricate part of the secretory machinery is the
actin cytoskeleton. During exocytosis, actin has been pro-
posed to serve as a barrier for exocytosis [124–126], prevent-
ing fusion of the SG with the PM, but has also been shown to
be crucial for SG transport and the squeezing of large or
dense exocytic compartments by an actomyosin meshwork,
to assist the expulsion of the SG’s content (reviewed in
[127]). Thus, since compound exocytosis relies on the secre-
tion of large SGs, it is plausible that secretion of multigranu-
lar compartments would require the assistance of the
actomyosin meshwork. Strikingly, growing evidence in the
lacrimal gland cells [128], salivary glands [129, 130], and
pancreatic acinar cells [131] reveals that inhibition of acto-
myosin assembly results in enhanced formation of large ves-
icles that are fused to the PM. Two possible mechanisms have
been suggested to underlie this phenotype. The first model
suggests that actin coats serve as a barrier to limit homotypic
SG fusion, similar to the role of the cortical actin in limiting
SG fusion with the PM. Such mechanism would require con-
trolled removal of the actin coating, thus allowing sequential
fusion and compound exocytosis to occur in a regulated
manner [132–134]. The second model suggests that inhibi-
tion of actomyosin complex formation inhibits the compen-
satory endocytosis that follows exocytosis. Under such
conditions, diffusion of proteins and lipids from the PM to
the fused SG-primed sequential fusion events results in
enlarged, i.e., fused SGs [93, 135]. Alternatively, actin struc-
tures, localized to the fusion pore, may stabilize the primary
fusion pore and thereby prevent SG collapse, thus facilitating
sequential exocytosis [125, 126]. In MCs, the role of actin in

the formation or stabilization of multigranular vesicles has
yet to be addressed.

6. Compound Exocytosis: What for?

Compound exocytosis allows the release of SGs that reside in
the cell center without the need for their transport to the cell
periphery [73]. It also allows the release of a substantial
amount of cargo at once. Indeed, multigranular fusion will
give rise to giant organelles that can store up to 4-fold more
cargo than a single SG [51]. Based on these features, com-
pound exocytosis has long been considered the most efficient
and most massive form of regulated exocytosis. This concept
undoubtedly applies to secretion by eosinophils and neutro-
phils. Both are parasite-killing cells, which also use both mul-
tigranular exocytosis and sequential exocytosis as a tool for
targeted and robust release of antiparasitic agents [62, 123,
136–140]. MCs are also antiparasitic cells known to be
important in helminth immunity [141–143]. They are also
capable of targeted secretion [144] and may have therefore
developed this mechanism for their host defense activities.

Compound exocytosis also provides a clear advantage
when cells need to secrete into a small lumen, such as in
the case of acinar cells [134]. Thus, rather than individually
fusing with the PM, which would require a large surface area
and an extended lumen to secrete to, release by compound
exocytosis allows multiple granules to discharge their content
through a single granule that has access to the lumen.

Finally, compound exocytosis also provides an important
advantage when cells are fully packed with SGs. Hence, while
fusion with the PM of multiple SGs will require extensive
compensatory endocytosis to maintain cell size homeostasis,
secretion through a multigranular channel will not affect the
cell size if the giant structure simply pinches off. In fact, it has
been suggested that the pinched-off, endocytosed degranula-
tion sac may serve as a new efficient secretory organelle [145].
Relevant to this advantage of compound exocytosis might be
the differences noted in the mode of exocytosis when com-
paring distinct MC types. Hence, as already alluded to earlier
in this review, while early studies have documented com-
pound exocytosis in compound 48/80-stimulated MCs [47,
48, 58], more recent studies have challenged this dogma
showing that substance P, C3a, C5a, and ET1 that like com-
pound 48/80 are considered basic secretagogues, do not stim-
ulate this mode of release [54]. The trivial explanation to this
discrepancy would be that the synthetic compound 48/80
induces secretion by a different mechanism than the physio-
logical ligands. However, an alternative view would be that
the mode of secretion is not only stimulus-dependent but
also cell type-dependent (Figure 2). In this context, rat
peritoneal MCs, which were used as a model in the earlier
studies [47, 58], are packed with SGs and may therefore
employ compound exocytosis for the reasons described
above. Indeed, this notion is supported by studies by
Balseiro-Gomez et al. who demonstrated that activation by
corticotropin-releasing hormone (CRH) of mucosal MCs
derived from the mouse intestine results in secretion of small
SGs, in what appeared to be piecemeal degranulation, while
activation of peritoneal MCs with the same agonist results
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in the formation of giant SGs and compound exocytosis
[146]. Therefore, taken together, the evidence seems to sug-
gest that compound exocytosis is a mechanism that serves
the needs of the cell itself or its obligations to the cell
environment.

7. Concluding Remarks

The mechanism by which MCs induce allergic responses,
including the notorious anaphylactic shock, mainly involves
secretion of preformed mediators through compound exocy-
tosis. Although little is known about the signaling pathways
that couple to the different modes of regulated exocytosis
and even less on the signals that determine which type of
compound exocytosis will take place, significant and exciting
discoveries have recently been made that advance our under-
standing. However, we are still a long way from fully under-
standing the pathways leading to compound exocytosis, and
fundamental questions in the field remain to be addressed.
What is the physiological importance of compound exocyto-
sis? What is the clinical significance of sequential secretion
vs. multigranular secretion? Is there a difference in the type
of cargo being secreted through different exocytic modes?
What are the traits of the different MC populations that
result in different exocytic responses to the same stimulus?
With the development of new methods for tracking and
manipulating compound exocytosis, newer approaches could
now be utilized along with more traditional methods to fur-
ther investigate these open questions.
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