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Can we infer tumor presence of single cell transcriptomes and their
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a b s t r a c t

There is a growing need to build a model that uses single cell RNA-seq (scRNA-seq) to separate malignant
cells from nonmalignant cells and to identify tumor of origin of single cells and/or circulating tumor cells
(CTCs). Currently, it is infeasible to build a tumor of origin model learnt from scRNA-seq by machine
learning (ML). We then wondered if an ML model learnt from bulk transcriptomes is applicable to
scRNA-seq to infer single cells’ tumor presence and further indicate their tumor of origin. We used k-
nearest neighbors, one-versus-all support vector machine, one-versus-one support vector machine, ran-
dom forest and introduced scTumorTrace to conduct a pioneering experiment containing leukocytes and
seven major cancer types where bulk RNA-seq and scRNA-seq data were available. 13 ML models learnt
from bulk RNA-seq were all reliable to use (F-score > 96%) shown by a validation set of bulk transcrip-
tomes, but none of them was applicable to scRNA-seq except scTumorTrace. Making inferences from bulk
RNA-seq to scRNA-seq was impaired by feature selection and improved by log2-transformed TPM units.
scTumorTrace with transcriptome-wide 2-tuples showed F-score beyond 98.74 and 94.29% in inferring
tumor presence and tumor of origin at single-cell resolution and correctly identified 45 single candidate
prostate CTCs but lineage-confirmed non-CTCs as leukocytes. We concluded that modern ML techniques
are quantitative and could hardly address the raised questions. scTumorTrace with transcriptome-wide
2-tuples is qualitative, standardization-free and not subject to log2-transformed quantities, enabling
us to infer tumor presence of single cell transcriptomes and their tumor of origin from bulk
transcriptomes.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Single cell RNA-seq (scRNA-seq) is already a powerful biomedi-
cine technique to study the tumor microenvironment (TME) [1],
tumor diagnosis [2], and therapeutic resistance [3] and can be used
to characterize circulating tumor cells (CTCs) [4]. For exploring the
complexity of the TME, it is essential to effectively separate malig-
nant cells from nonmalignant cells. The separation is equivalent to
determining whether there is tumor present in single cells and a
few tools have been developed for the separation by scRNA-seq
[1,5,6].

Carcinoma of unknown primary origin (CUP) is a rare disease
where malignant cells spread elsewhere in the body but routine
testing cannot locate their origin [7]. CTCs have recently been
attempted to find a starting point of occult primary cancer [8,9].
However, CTCs are cancer cells that shed from a primary or meta-
static tumor lesion and circulate in the blood stream. The primary
site the cancer began is usually known in current CTC clinical set-
tings [10]; in fact, CTCs tumor of origin itself remains problematic
if their tumor of origin is not given or not sure [11]. Using scRNA-
seq to infer single cells’ tumor of origin (scTOO) would be helpful in
answering CUP and CTCs tumor of origin.

Unfortunately, scRNA-seq has its disadvantages of low capture
efficiency and high dropouts [12,13]. The disadvantages can inter-
fere with an accurate portrayal of single cell expression programs.
scRNA-seq is currently costly and it is not economically feasible to
capture single cell transcriptomes of thousands of patients over a
wide range of cancer types for scTOO model training by machine
learning (ML). Alternatively, bulk transcriptomes may be a practi-
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cal approach to learning a multiclass model for the scTOO
inference.

Bulk RNA-seq detects an average of thousands of cells’ gene
expression and captures more transcripts with a lower level of
technical noise than scRNA-seq [12,14]. It has been shown that
60% tumor purity is sufficient for a bulk tumor sample to represent
a mass of malignant cells in the TME [15]. More importantly, public
repositories have an abundant supply of bulk RNA-seq data rang-
ing over plenty of tumor types with many hundreds of patients
per type. Bulk RNA-seq and scRNA-seq are quite different on bio-
logical and technical levels. It is, therefore, worth knowing whether
an ML multiclass model learnt from bulk transcriptomes can be
applicable to scRNA-seq data to infer single cells’ tumor presence
and their tumor of origin.
2. Materials and methods

2.1. Experimental design

We carried out a pioneering experiment with seven major can-
cer types (ovary, lung, liver, colorectum, breast, prostate, and mel-
anoma) and white blood cells (WBCs) sourced from two public
repositories (TCGA and GEO). The tumors we used were all
in situ, and the metastatic ones were discarded. WBCs were from
health people and non-tumor patients who suffered from non-
cancer diseases. We created a cohort of bulk RNA-seq samples
and randomly split it into training and test (validation) sets in
the ratio of 7:3 (Table S1). We used single cell RNA-seq data (ovary,
lung, liver, colorectum, melanoma and WBCs), CTC RNA-seq data
(breast and prostate) and lineage-confirmed non-positive CTC
RNA-seq data (prostate) to form an application set (Table S2).
scRNA-seq imputation was performed by the SCRABBLE algorithm
[16]. We only considered single cell transcriptomic profiles whose
genes were not preselected or not truncated. All of the single cells
(CTCs included) were patient-derived, and single cells from cell
lines were excluded.

We used four modern machine learning (ML) methods (kNN,
one-versus-all SVM, one-versus-one SVM and random forest) and
introduced a new learning technique (scTumorTrace) to build an
ML multiclass model learnt from bulk training data. The built ML
model was validated by bulk test data to show if it was reliable
to use; if yes, we applied it to scRNA-seq data (Table S2). Both bulk
RNA-seq and scRNA-seq data were normalized to the TPM (Tran-
scripts Per Million) units as expression quantities. We examined
standardization on two quantities: TPM and log2(TPM + 1). TPM
(respectively, log2(TPM + 1)) values were mean-centered with a
unit standard deviation and were termed z-score (respectively,
standardized log2 transformation). Standardization was applied
to each of a training, a test and an application set. We used the
TPM units for scTumorTrace and the two sorts of standardized
quantities for the four modern ML methods. We also examined
whether feature selection impacts on the applicability to scRNA-
seq. The examination was conducted in experiments of random
forest and scTumorTrace.
2.2. Modern machine learning

We used k = 3 with Euclidean distance for k-nearest neighbors
(kNN) and grew 100 trees to build random forest (RF). A linear ker-
nel function with the penalty of C = 1 was utilized for support vec-
tor machine in one-versus-all (OvA SVM) and one-versus-one (OvO
SVM) schemes.
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2.3. A new learning technique: scTumorTrace

We suppose that there are K classes C ¼ cuf gKu¼1 to be studied in
a training set D ¼ di ¼ xi; yið Þf gni¼1 where n ¼ P

unu and nu is the
number of samples di in cu. 8di 2 D, yi 2 C is a class label and
xi ¼ xi1 � � � xip

� �
is an expression vector profiled by a set of p genes

F. We define a transcriptomic 2-tuple x ¼ h; kð Þ between two
classes cu–cv 2 C: given two genes h–k 2 F, xih > xik (respectively,
xih < xik) holds in at least 90 percent of samples di with yi ¼ cu (re-
spectively, yi ¼ cv). 8cu; cv 2 C, we construct an entire set of muv 2-
tuples between cu and cv and refer to it as Xuv ¼ xlf gmuv

l¼1 . Upon the
training set D, we connect all the Xuvs to build an all-in-one panel
of transcriptomic 2-tuples for C, X ¼ Xr

uv jcu; cv 2 C; r ¼ 1; � � � ; K
2

� �� �
.

Given an unlabeled sample bd ¼ x; by� �
to be inferred, we define

its discriminant score f v ujxð Þ to indicate that a class cv predicts
the likelihood of by being cu.

f v ujxð Þ ¼
P

x2Xuv
xh > xk½ �

muv �muv Fxð Þ �muv xð Þ ð1Þ

In Eq. (1) Fx is the gene set that profiles bd, muv Fxð Þ is the num-
ber of invalid 2-tuples x 2 Xuv whose gene (h or k) is undefined in
Fx, and muv xð Þ is the number of meaningless 2-tuples x 2 Xuv

having xh ¼ xk. Following Eq. (1), we define S ujxð Þ as an overall
score of by being cu supported by the other classes.

S ujxð Þ ¼ K � 1ð Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
v–u

f v ujxð Þ
X
v–u

f v ujxð Þ > 0:5½ �
r

ð2Þ

Consequently, by is determined by by ¼ argmax
cu2C

S ujxð Þ. Note that

Q½ � is an indicator function (alias the Iverson bracket) for a state-
ment Q in Eq. (1) and Eq. (2).

2.4. Tumor presence inference

It is straightforward to infer single cells’ tumor presence in
terms of multiclass classification. A single cell is malignant, provid-
ing that a multiclass model identifies it as a cell from one of seven
cancer types.

2.5. Feature selection

We applied random forest recursive feature elimination (RFRFE)
[17] to a training set with an evaluation procedure of 10-fold cross-
validation and an error rate as an evaluation measure to select a
subset of 4608 genes for z-score (Fig. S1) and 1025 genes for stan-
dardized log2 transformation (Fig. S2). For scTumorTrace, we used
a simple filter to reduce amounts of transcriptomic 2-tuples from a
transcriptome-wide scale to a modest or a small scale (Table S3).
Upon a training set, we set a threshold for any two classes
cu; cv 2 C and retained genes whose expression intensities above
the threshold in>50% samples in both cu and cv . The retained genes
between cu and cv were used to discover Xuv . All the thresholds
and the amounts of used transcriptomic 2-tuples were in Table S4-
S5.

2.6. Performance metrics

Let nTP;nTN ;nFP;nFN ;nP;nN be the number of true positives, true
negatives, false positives, false negatives, positive (malignancy),
and negative cases, respectively. We used sensitivity (TPR), speci-
ficity (TNR), F-score (F1), accuracy (ACC) to evaluate the inference
of tumor presence.
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TPR ¼ nTP

nP
; TNR ¼ nTN

nN
; F1 ¼ 2nTP

2nTP þ nFP þ nFN
;ACC ¼ nTP þ nTN

nP þ nN

For an evaluation of scTOO inferences, we let Tk; pk;nk be the
number of correct predictions, predicted instances and actual
instances for a class ck, respectively and calculated its recall (Rk),
precision (Pk) and F-score (F1k).

Rk ¼ Tk

nk
; Pk ¼ Tk

pk
; F1k ¼ 2RkPk

Rk þ Pk

We then used macro recall (maR), macro precision (maP), macro
F-score (maF1), micro accuracy (miACC) as summary statistics.

maR ¼
P

Rk

K
; maP ¼

P
Pk

K
;maF1 ¼

P
F1k

K
;miACC ¼

P
TkP
nk
3. Results

The purpose of conducting the present study is to question
whether a multiclass model learnt from bulk transcriptomes by
machine learning can be applicable to single cell transcriptomes
to infer single cells’ tumor presence and their tumor of origin,
Fig. 1. Graphic outlines. (A) The purpose of the present s
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graphically illustrated in Fig. 1A. Details of howwe designed exper-
iments to answer were given in section 2.1. We also developed a
new learning technique (scTumorTrace) as a companion to our
study. scTumorTrace was outlined in Fig. 1B. and was described
in mathematical detail in section 2.3.

A validation set of bulk transcriptomic data showed that thir-
teen ML models learnt from bulk RNA-seq were all robust (F-
score > 96%, Table 1). It indicated that the thirteen classifiers were
all eligible to be examined on scRNA-seq data for their applicability
to single cells’ inferences. All the modern ML techniques were
unable to discriminate leukocytes from neoplastic cells (single
tumor cells and circulating tumor cells) while three scTumorTrace
classifiers were able to (Table 2). Their discriminating power
increased with a growing number of employed transcriptomic 2-
tuples (sensitivity, 97.24, 98.35 and 97.77%, and specificity,
65.10, 84.82 and 99.79%; Table 2 and Table S3-S5).

OvA SVM built on standardized log2-trandformed quantities
demonstrated limited effectiveness (F-score = 57.99%) in inferring
single cells’ tumor of origin (scTOO) and the other nine modern
ML models were not applicable to the inference (Table 3). Com-
pared to z-score, standardized log2 transformation helped a quan-
titative ML classifier learnt from bulk transcriptomes address
tudy. (B) A new learning technique of scTumorTrace.



Table 1
Summary statistics of predictive performance: bulk tissue of origin (validation).

ML Methods Feature Type FS Z Log2 #Feat R P F1 ACC Effective

kNN Quantitative N Y N 13,126 96.02 96.98 96.39 96.94 U

Y 99.39 99.23 99.30 99.47 U

OvA SVM Quantitative N Y N 13,126 99.47 99.31 99.38 99.58 U

Y 99.76 99.81 99.78 99.79 U

OvO SVM Quantitative N Y N 13,126 99.12 99.54 99.32 99.37 U

Y 99.67 99.77 99.72 99.68 U

RF Quantitative N Y N 13,126 99.37 99.15 99.25 99.26 U

Y 99.68 99.55 99.62 99.68 U

RF Quantitative Y Y N 4608 99.52 99.40 99.46 99.47 U

Y 1025 99.61 99.31 99.45 99.58 U

scTumorTrace Qualitative Y N N/Y 500+ 97.51 97.65 97.55 97.36 U

scTumorTrace Qualitative Y N N/Y 7 K+ 98.48 98.33 98.39 98.31 U

scTumorTrace Qualitative N N N/Y 200 K+ 99.04 98.62 98.80 99.05 U

kNN = k-nearest neighbors, OvA SVM = one-versus-all support vector machine, OvO SVM = one-versus-one support vector machine, RF = random forest, FS = feature selection
is used (Y) or not (N), Z = standardization (z-score) is used (Y) or not (N), Log2 = a log2 scale is used (Y) or not (N), #Feat = amount of features, 500+=500 features (2-tuples) on
average, 7 K+=7000 features (2-tuples) on average, 200 K+=0.2 million features (2-tuples) on average, R = recall%, P = precision%, F1 = f-score%, ACC = accuracy%, U= highly
effective.

Table 2
Summary statistics of predictive performance: tumor presence of single cell transcriptomes.

ML Methods Feature Type FS Z Log2 #Feat TPR TNR F1 ACC Effective

kNN Quantitative N Y N 13,126 99.95 0 61.20 44.09 �
Y 100 0 61.22 44.12 �

OvA SVM Quantitative N Y N 13,126 100 0 61.22 44.12 �
Y 99.52 0.13 61.05 43.98 �

OvO SVM Quantitative N Y N 13,126 100 0 61.22 44.12 �
Y 100 0 61.22 44.12 �

RF Quantitative N Y N 13,126 100 0 61.22 44.12 �
Y 100 0 61.22 44.12 �

RF Quantitative Y Y N 4608 100 0 61.22 44.12 �
Y 1025 100 0 61.22 44.12 �

scTumorTrace Qualitative Y N N/Y 500+ 97.24 65.10 80.55 79.28 D
scTumorTrace Qualitative Y N N/Y 7 K+ 98.35 84.82 90.40 90.79 ▲
scTumorTrace Qualitative N N N/Y 200 K+ 97.77 99.79 98.74 98.90 U

kNN = k-nearest neighbors, OvA SVM = one-versus-all support vector machine, OvO SVM = one-versus-one support vector machine, RF = random forest, FS = feature selection
is used (Y) or not (N), Z = standardization (z-score) is used (Y) or not (N), Log2 = a log2 scale is used (Y) or not (N), #Feat = amount of features, 500+=500 features (2-tuples) on
average, 7 K+=7000 features (2-tuples) on average, 200 K+=0.2 million features (2-tuples) on average, TPR = sensitivity%, TNR = specificity%, F1 = f-score%, ACC = accuracy%,�=
not effective, D = less effective, ▲= fairly effective, U= highly effective.

Table 3
Summary statistics of predictive performance: tumor of origin of single and/or circulating tumor cells.

ML Methods Feature Type FS Z Log2 #Feat R P F1 ACC Effective

kNN Quantitative N Y N 13,126 38.31 NaN NaN 9.21 �
Y 61.60 NaN NaN 29.58 �

OvA SVM Quantitative N Y N 13,126 63.77 NaN NaN 14.63 �
Y 80.96 57.50 57.99 42.80 D

OvO SVM Quantitative N Y N 13,126 51.96 NaN NaN 12.52 �
Y 71.83 NaN NaN 39.55 �

RF Quantitative N Y N 13,126 47.96 NaN NaN 12.40 �
Y 67.20 NaN NaN 41.21 �

RF Quantitative Y Y N 4608 38.39 NaN NaN 8.98 �
Y 1025 49.14 NaN NaN 16.67 �

scTumorTrace Qualitative Y N N/Y 500+ 63.60 54.46 55.57 74.89 D
scTumorTrace Qualitative Y N N/Y 7 K+ 75.60 NaN NaN 87.79 D
scTumorTrace Qualitative N N N/Y 200 K+ 91.96 97.38 94.29 98.57 U

kNN = k-nearest neighbors, OvA SVM = one-versus-all support vector machine, OvO SVM = one-versus-one support vector machine, RF = random forest, FS = feature selection
is used (Y) or not (N), Z = standardization (z-score) is used (Y) or not (N), Log2 = a log2 scale is used (Y) or not (N), #Feat = amount of features, 500+=500 features (2-tuples) on
average, 7 K+=7000 features (2-tuples) on average, 200 K+=0.2 million features (2-tuples) on average, R = recall%, P = precision%, F1 = f-score%, ACC = accuracy%, �= not
effective, D = less effective, U= highly effective.
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scTOO (see accuracy, Table 3). The five experiments of random for-
est and scTumorTrqace showed that feature selection caused sev-
ere damage to the scTOO inference from bulk transcriptomes no
matter what expression quantities were used (Table 3). scTumor-
Trace with transcriptome-wide 2-tuples (i.e. without performing
feature selection) was the only classifier that was well able to infer
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single cells tumor presence (F-score = 98.74%, Table 2) and their
tumor of origin (F-score = 94.29%, Table 3 and Fig. 2C).

Fig. 2D showed that 45 single candidate prostate CTCs but
lineage-confirmed non-CTCs (false CTCs) were all accurately iden-
tified as leukocytes by scTumorTrace. Mirrored histograms further
showed that almost all the false CTCs were identified unequivo-



Fig. 2. Confusion matrix of scTumorTrace with transcriptome-wide 2-tuples. (A) Bulk tissue of origin: training set. (B) Bulk tissue of origin: validation set. (C) Tumor of origin
of single cells and circulating tumor cells. (D) Inference of non-positive CTCs derived from prostate cancer patients.
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cally (Fig. 3). Although false-CTC 45 was not wrongly identified, its
inference was not very strongly supported by the other six cancer
types, i.e. no pale-red bars against blue bars among them (Fig. 3).
Its scRNA-seq profiling might be badly distorted and would not
be very dissimilar to that of prostate cancer; however, the slight
difference could still be detected by scTumorTrace. 3 out of 77
lineage-confirmed single prostate CTCs were also identified as
leukocytes. The three circulating cells (cell 3, 21 and 24) had sim-
ilar mirrored histograms to those of false-CTC 19, 20 and 37 (Fig. 3)
so their tumor presence might be in doubt. Overall, scTumorTrace
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had both AUROC and AUPRC far beyond 90% in scTOO inferences
except the breast cancer experiment (Fig. S3). 74 single breast CTCs
were identified as either breast-derived malignant cells (n = 42) or
leukocytes (n = 32) that resulted in a 98.04% AUROC and a 69.65%
AUPRC (Fig. 2C and Fig. S3).

4. Discussion

CTC detection platforms normally require enrichment strategies
and might not avoid false-positive or false-negative events [18,19].



Fig. 3. Mirrored histograms of discriminant scores for non-positive CTCs captured from prostate cancer patients. A mirrored histogram showed the likelihood of a single cell
being prostate cancer-derived (the top histogram in red) or being leukocytes-like (the bottom histogram in blue) supported by a third-party cancer type. Pale-red indicated a
cell to be inferred was against a single prostate CTC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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74 out of 77 lineage-confirmed single prostate CTCs were correctly
inferred (Fig. 2C), and their discriminant scores showed over-
whelming odds in favor of malignant cells derived from prostate
cancer (red bars vs. blue & pale-blue bars; Fig. S4). Although the
other three single prostate CTCs (cell 3, 21 and 24) seemedmisclas-
sified (as leukocytes), their discriminant scores were more similar
to the 45 single candidate prostate CTCs but lineage-confirmed
non-CTCs (blue bars vs. red & pale-red bars; Fig. 3). We, thus,
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doubted whether the three were false-positive events (i.e. tumor
absence). In 74 single breast CTCs inferences, Fig. S5 (inferred
leukocytes) and Fig. S6 (inferred breast-derived CTCs) showed that
there were no overwhelming discriminant scores for breast CTCs
(red bars) against leukocytes (blue bars). Here, red or pale-red bars
indicated whether scTumorTrace tended towards or tended against
breast cancer cells shaped by the other cancer types. Similarly, blue
or pale-blue bars indicated white blood cells delineation. 32 single
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breast CTCs were falsely identified as leukocytes, mainly because
their discriminant scores between breast cancer and WBCs tended
towards WBCs (pale-red against blue bars, Fig. S5). 40 out of 42
correctly inferred breast-derived CTCs also showed pale-red vs.
blue bars in breast cancer cells vs. white blood cells (Fig. S6).
Fig. S5 and Fig. S6 imply that discovered 2-tuples between breast
cancer and WBCs would not be applicable to single breast cancer
cell transcriptomes. Even so, Eq. (2) show that scTumorTrace can
still draw their inferences to a certain extent by transcriptomic
2-tuples between breast cancer and the other six cancer types. Cell
44 had overwhelming odds against single breast CTC with the
majority of pale-red bars (including overall score) so it would be
a false positive rather than a misclassified instance (Fig. S5).
Although accuracy did not reach a high level, scTumorTrace iden-
tified 74 single breast CTCs as either breast-derived malignant cells
(n = 42) or leukocytes (n = 32) - nothing else but the two classes
(Fig. 2C). Provided that tumor presence can be (or has been) exper-
imentally confirmed, scTumorTrace can simply be used to answer
CTCs tumor of origin with scRNA-seq profiling. Otherwise scTu-
morTrace can be an alternative remedy for the true identity of sin-
gle CTCs synchronized with their tumor of origin inference.

Our empirical study showed that scTumorTrace was capable of
inferring single cells’ tumor presence (sensitivity, 97.77%, positive
predictive value, 99.73%, and F-score, 98.74%). scTumorTrace can,
therefore, help separate neoplastic cancer cells from the TME
where tumor-infiltrating lymphocytes are present and interact clo-
sely with surrounding tumor cells. A recent method, CopyKAT, uses
scRNA-seq data to infer aneuploid copy number events for the sep-
aration. However, it is not suitable for those cancers with few copy
number alternations (CNA) and has biased detection of CNA events
provided that the data to be inferred has a complete absence of
tumor cells [6]. scTumorTrace employs transcriptome-wide 2-
tuples that can be discovered among all sorts of cancers so it is also
applicable to pediatric cancers and hematopoietic cancers for
which CopyKAT is not suitable. More importantly, CopyKAT needs
a bunch of scRNA-seq data for CNA inference while scTumorTrace
is a classifier of single-instance inference and infers cells one by
one no matter whether a tumor cell is absent or present in a
scRNA-seq dataset. Briefly, scTumorTrace can be applicable to even
one single cell but CopyKAT cannot.

Bulk RNA-seq estimates global expression of thousands of cells
and can capture more transcripts while scRNA-seq detects an indi-
vidual cell’s expression with low capture efficiency and exhibits
technical & biological cell-to-cell variation [20]. The present study
observed varying levels of expression quantification between bulk
RNA-seq and scRNA-seq (IQR: bulk training, 10.3495, bulk test,
10.3943, and single cells, 32.5449). This might explain why log2-
transformed quantities (IQR: bulk training, 2.8230, bulk test,
2.8157, and single cells, 5.0493) were of help for quantitative ML
techniques to infer scRNA-seq from bulk RNA-seq (Table 3). Since
gene programs learnt from bulk transcriptomic identities might
be distorted in single cell transcriptomes profiled by current
scRNA-seq technologies, inferring single cells’ tumor presence
and their tumor of origin from bulk RNA-seq is a big challenge. Per-
forming feature selection would make the challenge more chal-
lenging no matter the quantitative or the qualitative approaches.
The fewer the features were selected; the more chance the tumor
identities were damaged (Table 2-3). scTumorTrace can automati-
cally adjust transcriptomic 2-tuples for each individual cell in
accordance with its completeness of scRNA-seq profiling (see Eq.
(1)). Therefore, scTumorTrace maximizes its effectiveness only
when transcriptome-wide gene programs are available (Table 2-3
and Fig. 2C). scTumorTrace is a qualitative and a standardization-
free learning technique and is not subject to log2-transformed
quantities such that it can address the raised questions by ‘‘quali-
tative identities” inherent in both bulk transcriptomes and single
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cell transcriptomes; conversely, modern quantitative ML tech-
niques cannot.

scTumorTrace has a fundamental weakness in computation
time. This is due to a large number of transcriptome-wide 2-
tuples ranging from one thousand to hundreds of thousands. When
we extend the present study to more cancer types, an all-in-one
panel of transcriptomic 2-tuples X can grow rapidly. A faster ver-
sion should be developed, especially, for a high-throughput single
cell platform like 10X Genomics. Meanwhile, we will need to
improve the distinction between single breast cancer cells and
white blood cells. We will also have to apply scTumorTrace to a
broad range of cancer types such that we may suggest the primary
site of the CUP disease by either bulk tissue or single cell
transcriptomes.

5. Conclusions

Bulk RNA-seq and scRNA-seq are quite different on biological
and technical levels. We questioned whether a multiclass model
learnt from bulk RNA-seq is applicable to addressing single cells’
tumor presence and their tumor of origin (scTOO). Our pioneering
experiment produced three pieces of empirical evidence. Firstly,
standardized log2 transformation is helpful to a quantitative ML
method in improving its applicability. Secondly, performing fea-
ture selection causes damage to the applicability no matter the
quantitative or the qualitative ML approaches. Thirdly, it is unlikely
that we infer tumor presence of single cell transcriptomes and
scTOO from bulk transcriptomes by modern quantitative machine
learning. We might need to seek a qualitative learning technique
with transcriptome-wide gene programs for such inferences. scTu-
morTrace could then be tailored to the particular needs.
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