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Background: Glioma is a common intracranial malignant tumor with high rates of inva-
siveness and mortality. This study aimed to investigate the mechanism of rapamycin in 
glioma.
Methods: U118-MG cells were treated with and without rapamycin in vivo and then 
collected for RNA sequencing. Differentially expressed miRNAs (DEMs) were screened 
and verified. MiR-26a-5p was selected for functional verification, and the target gene of miR- 
26a-5p was identified. The effects of miR-26a-5p on cell proliferation, cell cycle, apoptosis, 
and autophagy were also investigated.
Results: In total, 58 up-regulated and 41 down-regulated DEMs were identified between 
rapamycin-treated and untreated U118-MG cells. MiR-26-5p levels were up-regulated in 
U118-MG cells treated with 12.5 μM rapamycin, and death-associated protein kinase 1 
(DAPK1) expression, a direct miR-26a-5p target gene, was down-regulated. Rapamycin 
substantially inhibited cell proliferation and cell percentage in the S phase and promoted 
cell apoptosis; miR-26a-5p inhibitor increased cell proliferation and cell cycle and decreased 
cell apoptosis; DAPK1 overexpression further induced cell proliferation, increased the cell 
number in the S phase, and inhibited apoptosis in glioma cells. Notably, rapamycin increased 
the autophagy-related Beclin1 protein expression levels and the LC3 II/I ratio.
Conclusion: Rapamycin exerts anti-tumor effects by promoting autophagy in glioma cells, 
which was dependent on the miR-26a-5p/DAPK1 pathway activation by rapamycin.
Keywords: rapamycin, autophagy, RNA sequencing, glioma cells, miR-26a-5p, death- 
associated protein kinase 1

Introduction
As a common intracranial malignant tumor, glioma, caused by the carcinogenesis of 
glial cells originating in the neuroectoderm, has a high mortality.1 Early diagnosis 
and effective treatment are effective approaches to prevent further glioma 
deterioration.2 Recent studies have reported intensive progress in glioma treatment, 
including immunotherapy, sophisticated surgical resection and advanced 
chemoradiation.2,3 However, due to complex pathogenesis and higher recurrence, 
unsatisfactory prognosis and poor survival still exist.2 Therefore, it is essential to 
identify novel diagnostic and prognostic biomarkers and therapeutic targets, and to 
further elucidate the underlying molecular mechanisms of glioma.

The DAPK family contains five kinases, namely DAPK1, DAPK 2, ZIPK, 
DRAK1, and DRAK2, among which DAPK1 is a Ca2/CaM-dependent Ser/Thr 
protein kinase.4 In 1995, Deiss et al discovered the DAPK1 gene through functional 
gene cloning technology when Hela cell death was induced with interferon-γ.5 This 
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gene, located at chromosome 9q34.1, with a protein mole-
cular weight of 160 kD, participates in many pathologic 
and physiologic processes including cell necrosis, apopto-
sis, and autophagy and is related to the biological activity 
of tumors.6–8

It is well-known that the continuous updating of high- 
throughput sequencing and computer algorithms has 
revealed a large number of non-coding RNAs involved 
in various biological functions, including cell differentia-
tion, apoptosis, migration, invasion, and proliferation in 
human diseases.9 MicroRNAs (miRNAs) are endogenous 
non-coding small-molecule RNAs that widely exist in 
several conditions.10 A growing number of studies have 
focused on and explored the functions of miRNAs in 
cancers.11 Previous studies have reported the abnormal 
expression of miRNAs in glioma and identified several 
miRNAs, including miRNA-204-5p,12 miRNA-637,13 

miRNA-155,14 and miRNA-485-5p as diagnostic and 
prognostic biomarkers.15

Rapamycin, also known as sirolimus, is a common 
inhibitor of mammalian target of rapamycin (mTOR).16 

Hyperactivation of mTOR kinase usually occurs in various 
cancers and plays a critical role in cell growth, prolifera-
tion, autophagy and metabolism.17 Previous studies have 
demonstrated the tumor-inhibiting effect of rapamycin on 
glioma/glioblastoma.18–22 Rapamycin induces glioma 
stem/progenitor cell differentiation by activating 
autophagy.23 Yang et al showed suppressed growth and 
proliferation of human U87MG glioma cells by rapamycin 
combined with nimuatine, with cells arrested in the G1 
phase.24 Moreover, rapamycin has been shown to promote 
autophagy and Beclin1 gene expression, increase the LC3 
II/I ratio, and decrease P62 gene expression.25

This study determined the effects of rapamycin on 
the proliferation, cell cycle, apoptosis, and autophagy of 
glioma cells, and whether the inhibitory effect of rapa-
mycin on glioma cell growth may be related to the miR- 
26a-5p/DAPK1 pathway, which provides evidence for 
future studies of the mechanisms of action of 
rapamycin.

Materials and Methods
Cell Culture
Four glioma cell lines (U87, U118-MG, U251 and A172) 
were obtained from Shanghai Obio Technology Co., Ltd., 
and then maintained in complete DMEM medium 
(Hyclone) at 37 °C and 5% CO2.

CCK8 Assay
U87, U118-MG, U251, and A172 cells (5 × 103/each well) 
were grown in 96-well plates, respectively, and then 
exposed to rapamycin (Sigma) at different concentrations 
(0, 12.5, 50, 100, 150, 200, and 250 μM) for 12, 24, 48, 
and 72 h followed by the addition of 100 μL of CCK8 
(Biosharp) for 1 h. Microplate spectrophotometer was used 
to evaluate cell viability based on the absorbance at 
450 nm.

Western Blotting
U118-MG cells were exposed to 10 and 100 μM rapamy-
cin for 0, 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 h.

Cells were then lysed by RIPA lysis buffer (Gibco), 
and proteins extracted using commercial kit (Pierce, 
Rockford, IL, USA). After being resolved visa SDS 
PAGE, protein samples were transferred to a PVDF mem-
brane, which was blocked and reacted with DAPK1, LC3, 
Beclin1, or β-actin primary antibody (1:800, Abcam) over-
night at 4 °C. After incubation with secondary antibody 
(1:5000, Abcam), protein levels were detected via 
enhanced chemiluminescence (Millipore, USA).

RNA Extraction and Sequencing
U118-MG cells were treated with 12.5 μM of rapamycin 
for 48 h. Cells were then collected, and total RNA isolated 
using RNAiso Plus (Takara, Shiga, Japan). RNA detection 
was carried out using a spectrophotometer (NanoDrop 
Technologies, Wilmington, Delaware, USA), and RNA 
with 2.0 < A260/A280 < 2.2 was used for subsequent 
RNA sequencing. Subsequently, TruSeq® Small RNA 
Library Prep Kit for Illumina® (New England Biolabs 
Inc., Beverly, MA, USA) was used to construct the RNA- 
seq library, with the Illumina Hiseq 2500 platform 
(Illumina, San Diego, CA, USA) used for sequencing.

Data Analysis
Data preprocessing was performed use the Oligo package 
(version 1.36.1, http://bioconductor.org/packages/release/ 
bioc/html/oligo.html) of R software, which mainly con-
sisted of background correction, normalization and expres-
sion calculation. The classical Bayes method provided by 
the Limma package was employed to screen DEMs 
between control cells and cells treated with rapamycin. 
The p-value was estimated with the adjusted p-value 
(adj.p.value) was then determined based on the 
Benjamini & Hochberg method. Notably, the DEMs in 
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this study were defined according to the cutoffs of p < 0.05 
and |log fold change (FC)| > 0.5. Meanwhile, a Venn 
diagram was generated based on the obtained DEMs.

qRT-PCR Analysis
Total RNA was obtained using Trizol (Invitrogen) follow-
ing the manufacturer’s instructions. ReverAid First Strand 
cDNA Synthesis Kit (Invitrogen) was used to obtain 
cDNA by RNA reverse transcription. qRT-PCR was car-
ried out using SYBR Green qPCR Master Mix (Roche). 
PCR primers were: miR-143 sense primer 5ʹ-GGG GTG 
AGA TGA AGC ACT GTA GCT C-3ʹ and antisense 
primer 5ʹ-GGG GTA AGG CAC GCG GTG AAT GCC 
AA-3ʹ; miR-26a-5p sense primer 5ʹ-GGG GTT CAA GTA 
ATC CAG GA-3ʹ and antisense primer 5ʹ-TGC GTG TCG 
TGG AGT C-3ʹ; and U6 sense primer 5ʹ-CTC ACT TCG 
GCA GCA CAT A-3ʹ and antisense primer 5ʹ-AAC TCT 
TCA CGA TTT TGT CTG TC-3ʹ; U6 served as the inter-
nal control. Finally, miRNA expression data was evaluated 
by the 2−ΔΔCt method.

Luciferase Reporter Assay
Dual-luciferase activity assays were used to identify the 
targeted relationship between miR-26a-5p and DAPK1. 
The DAPK1 3ʹ-UTR-wild-type (WT) or mutant (MUT) 
were cloned into a pGL3 vector, and named DAPK1- 
WT, and DAPK1-MUT, respectively. MiR-26a-5p mimic 
or mimic control was co-transfected with DAPK1-WT or 
DAPK1-MUT into 293T cells, respectively, for 48 h using 
Lipofectamine 2000. Luciferase activity measurements 
were carried out using the Dual-Glo Luciferase Assay 
System (Promega).

Cell Transient Transfection and 
Treatment
MiR-26a-5p inhibitor, inhibitor NC, DAPK1 overexpression 
vector (pc-DAPK1), and pcDNA3.1 were provided by Jirui 
Technology CO., Ltd. (Shanghai, China). To evaluate the 
effect of miR-26a-5p on rapamycin-treated U118-MG cells, 
U118-MG cells were grown in 6-well plates for 24 h, and 
then transiently transfected with the above vectors using 
Lipofectamine 3000 (Thermo). Following 24 h of transfec-
tion, cells were treated with 12.5 μM rapamycin for 48 h.

Ethynyldeoxyuridine (EdU) Assay
The EdU kit (Invitrogen) was used for cell proliferation 
detection. Specifically, transfected U118-MG cells were 

incubated with 12.5 μM rapamycin and 10 μM EdU for 
48 h, followed by cell collection and rinsing with PBS. 
Following treatment with 4% paraformaldehyde to fix 
cells for 15 min away from light, cells were incubated 
with working solution for 30 min. A flow cytometer (BD, 
CA, USA) was used to calculate the percentage of EdU- 
positive cells.

Flow Cytometry Assay
Cell cycle and apoptosis were evaluated by flow cytome-
try. Cells from various treatments were digested with 
trypsin and harvested. For cell cycle assays, cells were 
incubated on ice in 70% ethanol for 2 h and then stained 
with propidium iodide (PI) for 30 min at 37 °C in the dark. 
Apoptosis was detected according to instructions of the 
FITC-Annexin V Apoptosis kit (BD, CA, USA). A flow 
cytometer (BD, CA, USA) was used to measure the cell 
cycle and calculate the apoptotic cells numbers.

Statistical Analysis
Values are expressed as mean ± SD from three indepen-
dent experiments. And the SPSS software was used for 
one-way analysis of variance followed by multiple com-
parisons, and p < 0.05 and P < 0.01 were considered the 
threshold for significant difference and very significant 
difference, respectively.

Results
Effect of Rapamycin on Different Glioma 
Cell
Four glioma cells (U87, U118-MG, U251, and A172 cells) 
were exposed to different rapamycin concentrations. CCK8 
assay showed that rapamycin inhibited the cell viability of 
U118-MG and U87 cells at 24, 48 and 72 hours, and at 48 
and 72 hours, respectively, (Figure 1A). A172 and U251 cell 
viability was not dose-dependent upon rapamycin treatment 
(Supplementary Figure S1A). U87 and U118-MG cell treat-
ment with different concentrations of rapamycin (10 and 100 
μM), respectively, and Western blotting showed that rapa-
mycin treatment decreased DAPK1 and P62 expression, and 
elevated the LC3 II/I ratio in U118-MG and U87 cells 
(Supplementary Figure S1B). Furthermore, for U118-MG 
cells treated with increased rapamycin concentration for 
72 h, results showed that 150–250 μM rapamycin treatment 
caused massive cell death, with P62 expression was 
obviously reduced after treatment with 12.5 μM rapamycin 
(Figure 1B). The 12.5 μM rapamycin concentration was 
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selected to treat U118-MG cells for 48 h for 
microRNA second-generation sequencing.

Sequencing Data Analysis and Verification
As shown in the Venn diagram (Figure 2A), 99 DEMs 
between U118-MG cells treated with and without 12.5 
μM rapamycin, including 58 up-regulated DEMs and 41 
down-regulated DEMs, were screened according to the 

methods described above. Hsa-mir-143-3p, hsa-miR 
-124-3p, and hsa-miR-26a-5p were then selected for 
verification via RT-qPCR. Results revealed that after 
12.5 μMrapamycin treatment for 48 h, hsa-miR-143-3p 
and hsa-miR-26a-5p levels were up-regulated, however, 
hsa-miR-124-3p could not be detected (Figure 2B). Hsa- 
miR-26-5p was selected for functional verification in 
subsequent experiments.

Figure 1 Rapamycin effect on U118-MG and U87 cells. (A) Viability of U118-MG and U87 cells treated with different rapamycin for 12, 24, 48, and 72 h assessed via CCK-8 
assay. (B) DAPK1 and P62 expression in U118-MG cells treated with different rapamycin concentrations analyzed via Western blotting.

Figure 2 Bioinformatics analysis and verification. (A) Venn diagram showing differentially expressed miRNAs between U118-MG cells treated with and without 12.5 μM 
rapamycin. (B) Hsa-mir-143-3p and hsa-miR-26a-5p levels in U118-MG cells treated with or without 12.5 μM rapamycin analyzed via RT-qPCR. At least three repeats were 
conducted, and the mean ± SD is presented, **P<0.01.
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DAPK1 Was Verified as a Functional 
Target of miR-26a-5p
DAPK1 was considered a potential target gene of miR- 
26a-5p according to TargetScan databases (Figure 3A). 
Luciferase receptor assay showed that after co- 
transfection with DAPK1-WT and miR-26a-5p mimic, 
the luciferase activity was reduced compared to co- 
transfection with mimic control, where no significant dif-
ference was found after DAPK1-MUT treatment 
(Figure 3B), suggesting that DAPK1 is a direct miR-26a- 
5p target gene.

Effect of Rapamycin on Cell Proliferation, 
Cell Cycle and Apoptosis in Glioma Cells
The Edu assay showed that rapamycin significantly 
inhibited cell proliferation, and the addition of 
a miR26a inhibitor increased cell proliferation, whereas 
the addition of pc-DAPK1 significantly promoted cell 
proliferation (Figure 4A). Cell cycle analysis results 
showed that rapamycin significantly inhibited the num-
ber of S phase cells, whereas the addition of pc-DAPK1 
significantly increased the number of S phase cells 
(Figure 4B). Additionally, rapamycin treatment pro-
moted apoptosis, while the addition of miR-26a-5p inhi-
bitor inhibited apoptosis, and the overexpression of 
DAPK1 further decreased the number of apoptotic 
cells (Figure 4C).

Effect of Rapamycin on Cell Autophagy in 
Glioma Cells
When U118-MG cells were treated with rapamycin, miR- 
26a-5p inhibitor and/or pc-DAPK1 for 48 h, RT-qPCR 
showed that miR-26a-5p levels were significantly increased 
after treatment with rapamycin, whereas miR-26a-5p levels 
were significantly inhibited by the miR-26a-5p inhibitor 
(Figure 5A). However, DAPK1 mRNA expression levels 
decreased significantly after rapamycin treatment, increasing 
significantly with the addition of miR-26a-5p inhibitor and 
pc-DAPK1 (Figure 5B). Additionally, Western blotting 
showed that after treatment with rapamycin, DAPK1 protein 
expression levels decreased significantly, whereas Beclin1 
protein expression levels and LC3 II/I ratio increased sig-
nificantly (Figure 5C). Additionally, to further verify that 
rapamycin can promote glioma cell autophagy, an immuno-
fluorescence assay was used to detect LC3 expression. 
Results showed that rapamycin promoted glioma cell autop-
hagy through the miR-26a-5p/DAPK1 signaling pathway 
(Figure 5D).

Discussion
Glioma is a primary brain tumor that seriously affects 
human health. DAPK1 has been confirmed to be related 
to glioma cell activity, meaning DAPK1 may be a target 
for glioma therapy. DAPK1, calcium/calmodulin-regulated 
serine/threonine kinase, plays key roles in mediating cell 

Figure 3 MiR-26a-5p target gene identification. (A) Prediction of the binding site of miR-26a-5p and death associated protein kinase 1 (DAPK1) using the TargetScan 
database; (B) target regulation of miR-26a-5p to DAPK1 proved by luciferase reporter system. At least three repeats were conducted, and the mean ± SD is presented, 
**P<0.01.
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apoptosis and autophagy.26 Autophagy is a lysosomal- 
mediated process involved in cell growth, differentiation, 
viability and other pathological and physiological 
processes.27 It degrades damaged intracellular organelles, 
abnormal protein and other substances deposition, and 
maintains cellular homeostasis.28 Therefore, autophagy is 

a conservative in vivo system that plays a dual role in 
tumor occurrence and development.29

Few studies have focused on the illuminating mechan-
ism of action of rapamycin in glioma cell via bioinfor-
matics analyses. Additionally, accumulating evidence has 
indicated a generally low miR-26a-5p expression in 

Figure 4 Rapamycin effect on cell proliferation, cell cycle and apoptosis in glioma cells. (A) Cell proliferation in U118-MG and U87 cells co-treated with rapamycin, miR-26a- 
5p inhibitor, and/or pc-DAPK1 assessed via Ethynyldeoxyuridine assay. (B) Cell cycle of U118-MG and U87 cells co-treated with rapamycin, miR-26a-5p inhibitor, and/or pc- 
death associated protein kinase 1 (DAPK1) analyzed via flow cytometry assay. (C) Apoptosis of U118-MG and U87 cells co-treated with rapamycin, miR-26a-5p inhibitor, 
and/or pc-DAPK1 detected using flow cytometry assay. At least three repeats were conducted, and the mean ± SD is presented, *P<0.05, **P<0.01.
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several cancers, including bladder cancer,30 colorectal 
carcinoma,31 prostate cancer,32 and lung cancer,33 whereas 
high miR-26a-5p expression levels can inhibit tumor 
growth. In the present study, we found that 58 DEMs 
were up-regulated and 41 DEMs were down-regulated in 
rapamycin-treated U118-MG cells based on bioinformatics 

analysis. MiR-26-5p was proved to be highly expressed in 
U118-MG cells treated with 12.5 μM rapamycin. 
Additionally, studies have shown that rapamycin can inhi-
bit cell proliferation, arrest the cell cycle in the G1 phase, 
and promote apoptosis.20–22 In this study, rapamycin inhib-
ited cell proliferation and the number of cells in S phase 

Figure 5 Rapamycin effect on cell autophagy in glioma cells. (A) MiR-26a-5p levels in U118-MG and U87 cells co-treated with rapamycin, miR-26a-5p inhibitor, and/or pc- 
DAPK1 for 48 h detected using RT-qPCR. (B) DAPK1 mRNA levels in U118-MG and U87 cells co-treated with rapamycin, miR-26a-5p inhibitor, and/or pc-DAPK1 for 48 
h detected using RT-qPCR. (C) DAPK1 protein expression, Beclin1, and LC3 levels in U118-MG and U87 cells co-treated with rapamycin, miR-26a-5p inhibitor, and/or pc- 
DAPK1 detected using Western blotting. (D) Immunofluorescence detection of LC3 protein expression. At least three repeats were conducted, and the mean ± SD is 
presented, *P<0.05, **P<0.01.
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and promoted apoptosis; the addition of miR-26a-5p inhi-
bitor reduced the rapamycin effect on inhibiting cell pro-
liferation, stagnated the cell cycle in S phase, promoting 
apoptosis, and increased Beclin1 protein expression levels 
and LC3 II/I ratio. Therefore, rapamycin may inhibit 
glioma cell growth by up-regulating miR-26a-5p 
expression.

Studies have confirmed that Beclin1 and LC3 II/I ratio 
are indices of autophagy activity.34 This study demon-
strated that rapamycin could regulate Beclin1 and LC3 
expression. Generally, more than 30 autophagy-related 
(ATG) genes are involved in every step of this process.34 

Among them, microtubule associated protein1 light chain 
3, a mammalian homolog of yeast Atg8, is considered 
a key regulator of autophagy, participating in several 
steps, including the growth of autophagic membranes, 
recognition of autophagic cargoes, and fusion of autopha-
gosomes with lysosomes.35–37 LC3 is synthesized as 
a precursor form cleaved by the protease ATG4B, resulting 
in the cytosolic isoform LC3-I. In turn, LC3-I is conju-
gated to phosphatidylethanolamine to form LC3-II upon 
autophagy induction.38–40 LC3-II binds to the autophago-
some membrane and remains bound to it until it is 
degraded in the autolysosomes. LC3-II is an important 
marker for assessing autophagy activity and is the only 
reliable autophagy marker to date.41 Therefore, in this 
study, LC3 protein expression was detected via immuno-
fluorescence. Results showed that rapamycin increased 
LC3 expression, which further revealed that rapamycin 
could promote autophagy.

Furthermore, DAPK1 was confirmed as the direct 
target gene of miR-26a-5p. MiR-26a-5p could reduce 
DAPK1expression, which could be attenuated by the 
addition of the miR-26a-5p inhibitor. Furthermore, rapa-
mycin could up-regulate miR-26a-5p expression. 
Notably, rapamycin could also reduce DAPK1 expres-
sion and promote autophagy-related protein expression. 
Rapamycin treatment increased Beclin1 and LC3 II/I 
expression levels.

Conclusions
In this study, we found that miR-26a-5p was overex-
pressed in rapamycin-treated glioma cells, whereas 
DAPK1 expression was inhibited. Additionally, rapamycin 
may exert its antitumor effect by promoting autophagy 
depending on miR-26a-5p/DAPK1 pathway activation by 
rapamycin.
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