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Abstract: Different cultivars of pear trees are often planted in one orchard to enhance yield for its
gametophytic self-incompatibility. Therefore, an accurate and robust modelling method is needed for
the non-destructive determination of leaf nitrogen (N) concentration in pear orchards with mixed
cultivars. This study proposes a new technique based on in-field visible-near infrared (VIS-NIR)
spectroscopy and the Adaboost algorithm initiated with machine learning methods. The performance
was evaluated by estimating leaf N concentration for a total of 1285 samples from different cultivars,
growth regions, and tree ages and compared with traditional techniques, including vegetation indices,
partial least squares regression, singular support vector regression (SVR) and neural networks (NN).
The results demonstrated that the leaf reflectance responded to the leaf nitrogen concentration were
more sensitive to the types of cultivars than to the different growing regions and tree ages. Moreover,
the AdaBoost.RT-BP had the best accuracy in both the training (R2 = 0.96, root mean relative error
(RMSE) = 1.03 g kg−1) and the test datasets (R2 = 0.91, RMSE = 1.29 g kg−1), and was the most robust
in repeated experiments. This study provides a new insight for monitoring the status of pear trees by
the in-field VIS-NIR spectroscopy for better N managements in heterogeneous pear orchards.

Keywords: mixed cultivars; VIS-NIR spectroscopy; Adaboost; support vector regression; back-
propagation neural networks

1. Introduction

Pear has been cultivated in China for at least 3000 years [1,2]. It is currently widely
grown over an area of 1.12× 106 ha [3]. China’s pear production (1.87× 107 tons) represents
75 percent of the world’s total yield [4]. However, over-fertilization of nitrogen (N) and
phosphorus, common in pear orchards of North China [5–7], has led to a low N use
efficiency and severe environmental degradation, resulting in accelerated soil acidification,
salinization and water quality impairment [8–10]. For steady growth and increased fruit
production, it is necessary to know the timely N status of pear trees, so that orchardists
can provide the correct amount of N fertilizer, optimize N use efficiency, and avoid N
losses [11,12]. Despite the costly and labor-intensive chemical tissue testing method of leaf
N determination, the recent development and improvement of spectroscopy techniques
provide a rapid, non-destructive method for linking leaf N concentration and spectral
signatures [13–17].

There are two broad approaches for analyzing hyperspectral data set modeling: physi-
cally based and empirically based [18,19]. Recently, both types of leaf N retrieval methods
have expanded into subcategories and combinations thereof [20], which can be classified
into five methods (adapted from Berger et al., 2020).
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• Physically based model inversion methods (radiative transfer models, RTMs)
• Parametric regression methods (vegetation indices with narrow spectra)
• Nonparametric regression methods (including linear and nonlinear approaches)
• Alternative data (sun-induced fluorescence)
• Mixed regression methods.

In general, a parametric regression method is defined by narrow spectra and is then
linked to the leaf N concentration through a fitting function [21], which is focused on the
visible and near-infrared spectral domains (400–900 nm). In addition, the trend that uses the
physically based model inversion methods of RTMs, nonlinear nonparametric regression
methods of machine learning, and hybrid techniques, increase. As physically based RTMs,
Li et al. (2018) modified the PROSPECT model version into an N-PROSPECT by replacing
the specific absorption coefficients corresponding from the leaf chlorophylls to the leaf N
concentration, which succeeded in retrieving both leaf and canopy N status [22]. However,
this approach was restricted to different cultivars. The observed spectra in various field
conditions were influenced by extraneous factors, including both leaf structure and the
environmental conditions of the workplace [23]. Our previous study has compared the
two methods in modeling the leaf nitrogen concentration of pear leaves:

• Nonlinear nonparametric method of partial least squares regression (PLSR), R2 = 0.85
• Parametric regression method of difference vegetation indices (DVI), R2 = 0.46.

The PLSR is reported as an effective method for dealing with near-infrared reflectance
spectra’ high collinearity [18,24,25]. However, leaf N concentrations and spectra collected
in-field of pear trees may vary significantly in different cultivars grown in different regions.
As a member of the Rosaceae family, pear presents typical gametophytic self-incompatibility.
Therefore, different cultivars of pear trees are often cultivated in one pear orchard to enhance
yield and quality [26]. The leaf reflectance of different pear cultivars responding to the leaf
nitrogen concentrations have still not been characterized. Recently, machine learning regres-
sion algorithms (nonparametric regression approaches), apply nonlinear transformations to
capture the nonlinear relationships of mixed spectroscopic data with target variables [27].
Support vector regression (SVR) and neural networks (NN) are two of the most widely non-
linear nonparametric methods used for estimating foliage biophysical parameters [28–32].
The Adaptive Boosting (Adaboost) algorithm, proposed by Freund (1997), is one of the most
successful recognition algorithms in the field of machine learning. The Adaboost algorithm
assumes that a combination of weak learners can be “boosted” into an accurate strong learner,
which creates a set of weak learners by maintaining a collection of weights over training data
and adjusts them after each weak learning cycle adaptively [33]. Recent research has demon-
strated that Adaboost-based machine learnings could achieve high accuracy in modelling
with multi-class imbalanced data compared to the regular back-propagation neural networks
or the convolutional neural network [34,35]. Adaboost has been applied in ensemble learning
due to its excellent classification performance, including image recognition, fruit biochemical
parameter estimation, and complex change prediction modelling [36–39].

Based on our previous studies, the objectives of this paper were twofold: (1) to evaluate
the effect and relationship of different cultivars, growth regions, and tree ages on pear leaf
reflectance; and (2) to apply a highly accurate and robust mixed algorithm for estimating leaf
N concentration of different cultivars, growth regions and tree ages in pear orchards.

2. Materials and Methods
2.1. Study Area

The study was conducted in intensive pear production orchards of four main growing
regions in the east, north, southwest, and northwest of China. The location, climate, soil,
physical and chemical characteristics, tree age, and yield of sampled orchards are detailed
in Table 1. Pear leaves were sampled from five cultivars named ‘Kotobuki shinsui’ (Pyrus
pyrifolia Nakai), ‘Huangguan’ (P. bretschneideri Rehd.), Yali (P. bretschneideri), ‘Yuanhuang’
(P. communis), and ‘Cuiguan’ (P. pyrifolia) in different orchards. Climatic differences (tem-
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perature and precipitation) among the eastern, western, northern, and southern regions
lead to differences in the cultivars and maturity time. For example, Kotobuki shinsui is
mainly cultivated in the southern areas because of its relatively large precipitation demand.
Huangguan is widely cultivated in mainland China, but its maturity time depends on the
effective accumulated temperature. In Gansu Province, Huangguan pear trees blossom in
late April, and the fruit is harvested in late September. However, in Jiangsu province, the
tree blossom and fruit harvest of Huangguan take place at least one month earlier than
in Gansu. Among the six sampled sites, orchards in Yixing and Pengzhou were relatively
young (less than ten years old), and yields were relatively low. Pear trees in orchards of
Gaochun, Xuzhou, Xinji, and Jingtai were in the full productive age (over ten years old),
and yields were higher than that of young orchards. The application rate of N fertilizers
in the six orchards ranged from 0 to 490 kg N ha−1. The different N treatments were
conducted by considering tree ages, the local soil conditions, and average yields. The
N treatments in all the regions were the located fertilization experiments by the modern
agricultural industry technology system, with 2–5 replicates of 2–5 trees, each arranged in
2 alternate tree rows during 2015–2016. Fruit yields of different cultivars grown in different
regions differed from the cultivar characteristic, local climate, and orchard management.
The average yield listed in Table 1 were the average values of different N managements.
Because of the experimental fertilization, both N deficiency and over-application of N often
took place in the same orchard.

Table 1. Main characteristics of the sampling areas.

Jiangsu Hebei Gansu Sichuan

Gaochun Yixing Xuzhou Xinji Jingtai Pengzhou
Location 32.27 N, 118.95 E 31.35 N, 119.74 E 34.26 N, 117.19 E 37.92 N, 115.22 E 37.21 N, 104.06 E 31.03 N, 103.76 E

Annual mean
temperature (◦C) 15.9 15.7 14.5 12.5 9.1 15.7

Annual mean
precipitation (mm) 1157 1177 853 488 186 933

Climate type subtropical
monsoon climate

subtropical
monsoon climate

temperate
monsoon climate

temperate
monsoon climate

temperate
continental climate

subtropical
monsoon climate

main soil texture clay loamy clay loamy brown soil sandy soil sierozem clay loamy
Soil pH 6.80 6.39 7.78 7.49 8.07 7.51

Soil organic matter
(g kg−1)

17.07 15.65 9.5 21.6 12.44 7.42

Soil available N
(mg kg−1) 69.37 21.15 74.97 33.3 62.93 63.35

Soil available P
(mg kg−1) 48.18 18.61 70.20 31.1 68.97 58.46

Soil available K
(mg kg−1) 146.3 127.8 182.0 119.0 157.05 211.18

N rate (kg N ha−1) 0, 165, 330, 490 0, 66, 132, 198 180–350 150–390 220, 462 110, 235
Planting density

(m) 4 × 4 4 × 3 4 × 4 4 × 4 4 × 4 4 × 3

Cultivars Kotobuki shinsui Cuiguan Huangguan,
Yuanhuang

Huangguan, Yali,
Yuanhuang Huangguan Cuiguan

Tree age (years) 12 5 14 20 17 8

Average Yield
(kg ha−1)

16,500 2475
47,800

(Huangguan)
45,050

(Yuanhuang)

45,000
(Huangguan)

41,250
(Yuanhuang)
52,500 (Yali)

50,600 12,800

2.2. Spectra Collection

Nitrogen concentrations in the middle leaves of new shoots from the external side (east,
south, west, and north) of the canopy during the 50–80 days after full bloom (50–80 DAFB)
were suggested to assess the tree’s N status [40]. In 2015 and 2016, eight to ten leaves per
tree were sampled from different cultivars grown in different regions. All leaf samples were
collected from multiple plants and were free of insect or fungal infestation. To obtain the high
signal-to-noise ratio of leaf spectra, the in-field leaf spectral measurements were conducted
using the ASD FieldSpec 3 spectroscopy (Analytical Spectral Devices, Boulder, CO, USA),
the assembly of which attached a leaf clip with the black background and a plant probe
with an internal stable light source [40]. The FieldSpec 3 spectroscopy covered wavelengths
from 350 nm to 2500 nm, with high spectral resolution and resampling accuracy. Before leaf
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spectra measurement, the leaf-clip with Teflon white standard should be applied to adjust the
maximum reflectance (99.9%) conditions. The leaf clip with the black background was used to
collect the leaf spectra through the ratio of leaf reflectance and the standard white reflectance.
The adaxial leaf surface should be faced to the plant probe. Two symmetrical points beside
the leaf vein were designed to collect the spectra. Final leaf spectra were obtained by the
average spectrum of the two points.

2.3. Determination of Leaf Nitrogen Concentration

Leaf N concentration of dry mass was determined by the Dumas method using
an Elementar Vario Macro CHN analyzer (Elementar Analysensyteme GmbH, Hanau,
Germany). The leaves which completed spectra measurements were taken to the laboratory
for analysis. The leaf samples were dried in an oven first, at 105 ◦C for 1 h to de-enzyme
and then at 70 ◦C for 72 h to remove the water. The central vein in the middle of the leaves
should be removed. The dried mesophyll was finely ground, mixed, and weighted in the
Tin boat for determination with standard acetanilide samples.

2.4. Sample Division

Considering the large amount of data used in this paper, we chose the k-fold method
to perform the cross-test. It is essential to ensure the distribution uniformity of data in
each training and test subsets, consistent with the original data distribution. Therefore,
stratified sampling is adopted to select the training set and test set. The 1285 samples were
collected and composed of 11 subsets. Two-thirds of each subset was randomly selected as
the training set and the rest as the test set. In addition, the stratified random sampling was
repeated 20 times to test the uniformity and robustness of the modelling methods.

2.5. Modelling Methods

In addition to the new machine learning methods, parametric regression methods
and linear nonparametric regression methods were also conducted and compared. The
parametric regression models are composed of the leaf N concentration and narrowband
indices (difference vegetation index DVI, ratio vegetation index—RVI, and normalized
difference vegetation index—NDVI) with the method of Yao et al., 2010 [41]. To simplify
the computation and to decrease the collinearity of leaf spectra, the narrowband vegetation
indices were read and calculated at intervals of 10 nm within the range of 350–2500 nm.
All the obtained DVI, RVI, and NDVI were regressed with the reference leaf N concen-
tration by the linear equation. Next, the best linear model and its sensitive bands will be
achieved. The establishment of the linear nonparametric regression method (partial least
squares regression) was conducted in MATLAB R2017b (MathWorks, Natick, MA, USA).
In addition, we used quadratic loss as the loss function. The regular neural network (NN)
is composed of three layers: (1) input layer; (2) hidden layer; and (3) the output layer. NN’s
task is to minimize the error between the reference and calculated values by adjusting the
layers’ weights. In this study, the neural network had three layers, in which the number of
neurons in the input layer is not fixed. We used principal components analysis (PCA) for
dimensionality reduction and then used sufficient principal components to explain 99.99%
of the variance. The hidden layer has 14 neurons, and the output layer has one neuron. The
support vector regression (SVR) is mainly used in the regression analysis, which belongs
to a supervised learning algorithm [42,43]. We used an SVR with the radial basis function
kernel [44]. In this study, the kernel function of SVR is the Gaussian kernel function. The
form is as follows:

k(x, z) = exp

(
−||x− z||2

2σ2

)
(1)

In this study, Adaboost was adapted to combine with a regression method to realize
the final high-precision regression model. The Adaboost algorithm was initiated in NN and
SVR regression modelling procedures to improve NN and SVR’s predictive ability. Because
the dimensionality of training data is very high (2151), the principal component analysis
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would reduce the training and test sample’s dimension. Consequently, the component
conforms to the condition of AdaBoost, and the computational time, could be saved (see
the diagram and detail calculation steps in the Supplementary Materials of Figure S1 and
attached formulas).

Moreover, the randomness of the result produced by NN and SVR would decrease sig-
nificantly after many Adaboost iterations. As a result, the outcomes corresponding to several
independent runs of the mixed method are similar. To test the robustness and stability, the
process of the hybrid algorithm is computed with 20 repetitions [45–47]. The computational
steps of the AdaBoost.RT-BP and Adaboost-SVR can be find in the Supplementary Materials.
The NN, SVR, parametric regression methods, and the new machine learning methods, were
calculated and completed in MATLAB R2017b (MathWorks, Natick, MA, USA).

The accuracy and precision of different models were evaluated by the coefficient of
determination (R2) between predicted and chemical-determined N concentrations, and
root mean squared error (RMSE). According to the criteria of Saeys et al. (2005), training
and test results with an R2 value greater than 0.91 are considered to be excellent, whereas
R2 between 0.82 and 0.90 represents a good prediction [48]. RMSE values of training and
test results should be small to approximate the measured value. The equations used to
calculate these parameters are as follows:

Coefficient of determination:

R2(y, ŷ) = 1− ∑
msamples
i=1 (yi − ŷi)

2

∑
msamples
i=1 (yi − y)2

(2)

In which, y = 1
nsamples

∑
nsamples
i=1 yi

Root mean squared error:

RMSE(y, ŷ) =

√√√√ 1
msamples

msamples

∑
i=1

(yi − ŷi)
2 (3)

where yi is the true value of number i, ŷi is the predicted value of number i.

3. Results
3.1. Leaf N Concentrationon

Statistics of leaf N concentration of the different sample sites are shown in Table 2.
Samples were collected from different years, cultivars, and regions of mainland China.
The average leaf N concentrations of Yali and Kotobuki shinsui were 25.3 and 23.7 g kg−1,
respectively, which were significantly lower than that of other cultivars. Nevertheless, we
found no significant difference in the average leaf N concentrations of 5-year Cuiguan trees
in Yixing and 8-year Cuiguan trees in Pengzhou. The same tendency was found between
the 20-year Huangguan in Xinji and the 17-year Huangguan in Jingtai. Differences in leaf
N due to trees’ year and cultivation regions were less than those, due to different cultivars.
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Table 2. Statistics of leaf nitrogen concentrations of different cultivars.

Year Sample Subset Cultivar Sample Number
Leaf Nitrogen Concentration (g kg−1)

Min. Max. Mean †

2015

Gaochun Kotobuki Shinsui 160 12.7 35.7 23.7 ± 5.0b
Yixing Cuiguan 200 21.0 42.0 29.6 ± 4.5a
Xinji Huangguan 189 22.5 36.9 29.5 ± 2.7a
Xinji Yali 193 16.7 29.7 23.6 ± 2.3b
Xinji Yuanhuang 197 21.4 35.6 26.7 ± 2.6ab

2016

Pengzhou Cuiguan 96 21.7 38.5 28.0 ± 3.6a
Xuzhou Huangguan 40 25.5 32.3 28.8 ± 1.5a
Xuzhou Yuanhuang 46 22.1 32.2 26.9 ± 2.6ab

Xinji Huangguan 49 26.3 33.0 28.0 ± 1.5a
Xinji Yali 35 22.4 31.1 25.9 ± 2.1b

Jingtai Huangguan 80 22.6 32.4 28.5 ± 2.3a
† Values were expressed as mean ± SD. Different letters indicated the significantly different of groups by the least significant difference
(LSD) multiple range test (p < 0.05) in SPSS 18.0 software.

3.2. Leaf Reflectance Spectra

The leaf reflectance of five pear cultivars with leaf N concentration of 25.0 g kg−1 and
30.0 g kg−1 were artificially selected to compare the differences induced by the cultivars
(Figure 1). The distribution of leaf spectra collected from different cultivars showed the
same trait as other foliar spectra. However, the leaf spectra of different cultivars differed at
certain bands. In detail, the relationship between spectra and leaf N concentration for each
cultivar were significantly different at the same leaf nitrogen concentration difference value.
The spectra in visible and near-infrared regions of Kotobuki Shinsui and Cuiguan differed
with different leaf nitrogen concentrations. In addition, the spectra in near infrared regions
of Huangguan differed with different leaf nitrogen concentrations. However, the leaf
spectra in all regions of Yali and Yuanhuang were not apparently differed from different
leaf nitrogen concentrations.

The correlation coefficients between the leaf N concentration and the leaf spectra
of different cultivars, were plotted to better understand inter-cultivar variability for this
parameter (Figure 2). The trends of the correlation coefficients of Kotobuki shinsui, Cuiguan,
and Yali were found to be similar, with a higher correlation in the 550 nm (green peak)
and 720 nm (red edge), but the values of the correlation coefficients in the green peak and
the red edge varied from one cultivar to the other (Figure 2a). Nevertheless, the trends in
the correlation coefficients of Huangguan and Yuanhuang (Figure 2b) were significantly
different to that of the three cultivars in Figure 2a. The correlation coefficient values of
Huangguaan at 850 nm to 1350 nm band were higher than those of other wavelengths,
while the leaf spectra at wavelengths 670 nm and 1920 nm of Yuanhuang presented high
correlation values (Figure 2b). The leaf weight per unit area of different cultivars affected
by the same difference value of leaf nitrogen concentration in the supplementary could
partially demonstrate that there is a difference in leaf structures between different cultivars
(Figure S2).
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were found to be significantly different compared with the three cultivars above. 
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parametric regression models composed of the leaf N concentration and narrowband in-
dices (difference vegetation index DVI, ratio vegetation index—RVI, and normalized dif-
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Figure 2. Correlation coefficient between different varieties of leaf nitrogen concentration and the
original spectra. The trend of correlation coefficients of Kotobuki shinsui, Cuiguan, and Yali were
found to be similar to each other, which showed a higher correlation in the 550 nm (green peak) and
720 nm (red edge). Nevertheless, the trend of correlation coefficient of Huangguan and Yuanhuang
were found to be significantly different compared with the three cultivars above.

3.3. Modelling Results

The 1285 samples were collected and composed of 11 subsets and two-thirds of each
subset was randomly selected as the training set and the rest as the test set (Table 3).
The parametric regression models composed of the leaf N concentration and narrowband
indices (difference vegetation index DVI, ratio vegetation index—RVI, and normalized
difference vegetation index—NDVI) by Yao et al. (2010) were used to identify the bands
that resulted in high R2 values. Contour maps of R2 for the linear relationship between
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the narrowband indices and the leaf N concentrations of different cultivars were shown in
Figure S3.

Table 3. Statistical values of N concentration of pear leaves used for training and test.

Data Sets Sample No. Leaf Nitrogen Concentration (g kg−1)
Min. Max. Mean ††

All 1285 12.74 41.99 26.98 ± 3.96
Training 856 12.74 41.99 26.93 ± 3.86

Test 429 13.11 41.74 27.03 ± 4.17
†† Values were expressed as mean ± SD.

The R2 between leaf N concentration and DVI, RVI, and NDVI ranged from 0.35 to
0.45 in training as well as 0.32 to 0.42 in the test. The wavelengths of 2170 nm and 2160 nm
indicated the highest R2 between leaf N concentration and DVI, while the wavelengths
(1720 nm and 580 nm) resulted in the highest correlation with RVI and NDVI. DVI had
the highest R2 among the three vegetation indices. Compared with the vegetation indices,
PLSR showed a good modelling accuracy during training (R2 = 0.85), but the predictive
accuracy during the test (R2 = 0.76) was relatively lower. Compared with the singular
modelling methods of SVR and NN, Adaboost-initiated NN significantly improved the
model accuracy in both training and test (Table 4). However, the AdaBoost SVR algorithm
performs essentially identically to the standard SVR algorithm (limited improvement of the
modelling accuracy in the test subset). The R2 of Adaboost combined with NN for a test was
above 0.9, which was significantly higher than that of other methods. AdaBoost.RT-BP had
advantages over other methods, and fitted with the leaf reflectance and N concentration of
different pear cultivars. The five machine learning methods of RMSE ranged from 1.03 to
1.57 g kg−1 and 1.29 to 1.78 g kg−1, respectively. Similarly, the errors of AdaBoost.RT-BP in
both the training and test sets were lower than those of other methods. AdaBoost.RT-BP
had the best modelling accuracy in both the training and test sets.

Table 4. Coefficient of determination and errors of training and test of nine modelling methods.

Modelling Methods ††† Training Test Wavelength of
Max. R2

R2 RMSE
(g kg−1) R2 RMSE

(g kg−1)

DVI 0.45 3.77 0.42 4.55 2170 nm, 2160 nm
RVI 0.40 5.98 0.38 6.15 1720 nm, 580 nm

NDVI 0.35 7.06 0.32 7.48 1720 nm, 580 nm
PLSR 0.85 2.07 0.76 3.46 ——
SVR 0.94 1.57 0.83 1.78 ——
NN 0.95 1.33 0.86 1.66 ——

Adaboost-SVR 0.93 1.58 0.85 1.66 ——
AdaBoost.RT-BP 0.96 1.03 0.91 1.29 ——

††† DVI, RVI, NDVI, PLSR, SVR and NN represent difference vegetation indexes, ratio vegetation indexes, normalized differential vegetation
indexes, partial least squares regression, support vector regression and neural networks, respectively. R2 is the coefficient of determination;
RMSE is the root mean squared errors.

To test the stability of the modelling accuracy of the four machine learning methods,
20 random tests were conducted by the stratified random sampling data (Figure 3). A
larger interquartile range and the outliers means a relatively bad robustness. In general,
NN showed better stability than SVR because of the lower standard deviation in both
R2 and errors. Compared with the singular modelling methods (SVR, NN), Adaboost
initiated in SVR and NN improved the modelling accuracy and significantly reduced the
low precision times in both training and test (Figure 3). The robustness of the SVR and the
Adaboost-SVR models were not as good as NN. In this study, Adaboost iteratively selected
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several learner instances by maintaining an adaptive weight distribution, which improved
the modelling accuracy and robustness of NN over the training examples. Among the four
modelling methods, Adaboost combined with NN (Adaboost.RT-BP) outperformed the
others on robustness.
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determination of training and test, respectively; RMSE is the root mean relative error. Different
letters (a, b and c) indicated the significantly different of modelling methods by the least significant
difference (LSD) multiple range test (p < 0.05) in SPSS 18.0 software.

The sample set of five cultivars located in different planting regions was randomly
split into a training set (n = 856) and a test set (n = 429), with a split ratio of 2:1. Compared
with the other seven modelling methods, the R2 of measured leaf N concentration and the
predictive value by the AdaBoost.RT-BP model was above 0.9 both in the training and test
sets (Figure 4). Accordingly, this model’s root mean square error was less than 1.29 g kg−1.
The result indicated that the model established by the AdaBoost.RT-BP method satisfies
the non-destructive leaf N concentration determination of different cultivars and regions
in pear orchards.
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4. Discussion
4.1. Leaf Reflectance Responses to Nitrogen Concentration of Different Cultivars

In the study, we analyzed the relationship between leaf reflectance and N concentra-
tions of different cultivars from different growing regions. The leaf spectral characteristics
of different cultivars with different N concentrations were roughly the same, but the leaf
reflectance of cultivars affected by the same difference value of leaf nitrogen concentration
varied especially in the near-infrared region. In addition, the leaf weight per unit area of
different cultivars affected by the same leaf nitrogen concentration further explained that
the leaf structure characteristics (leaf thickness) affected by the leaf nitrogen concentration
may be the reason that induced the leaf reflectance difference among cultivars (Figure S2).
Our result is consistent with the study reported by Li et al. (2018) and Wang et al. (2012)
on rice and wheat, who reported that the leaf reflectance affected by different cultivars
was more sensitive than that of different growing regions [22,49]. Further analysis of the
correlation coefficient between the leaf reflectance and measured leaf N concentration
was found to consolidate this result. In addition, the future work should take the leaf
picture, determination of the chlorophyll concentration or the leaf thickness to explain the
difference induced by the cultivars.

4.2. Comparison of Modelling Methods

The wavelengths with the maximum R2 response to leaf N concentration were found to
be similar in our previous study (2170 nm and 2150 nm), covering a large range of cultivars
and nitrogen concentrations. However, the R2 is relatively low, and the wavelengths were
probably highly correlated according to the result. The modelling accuracy in this study
was much lower than that of crops’ N determination by the parametric regression models
exploiting limited bands of VIS, red edge, NIR, and SWIR [50]. The maximum R2 response
to leaf N concentration of wheat was in the region of visible near-infrared spectra [41].
Nevertheless, future work should insist on trying more possible indexes to reduce the
amount of input data. The parametric regression models using limited bands were easily
influenced by the leaf nitrogen allocation [51]. Recent researchers have demonstrated that
leaf N concentration expressed by the leaf area-based measurement was higher correlated
to the photosynthetic capacity [52,53]. Nevertheless, some studies have emphasized that
vegetation indices using the SWIR regions by the leaf N allocation to protein could improve
the modelling accuracy [54]. Coincidentally, our results revealed that leaf N concentration
in the pear tree might be allocated more as the non-photosynthetic N (such as proteins
and structural N), which were more sensitive to the short-wave infrared regions [19].
In addition, PLSR, which was found optimal in our previous study, including only one
cultivar, did not perform well in the present study’s mixed cultivar setting.
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Regular NN and SVR have been widely used in regression dealing with high-dimensional
data. The modelling performance of NN was superior to the SVR in this study. The trait
of nonlinear regression in the SVR modelling procedure is insensitive to random noise [42].
Adaboost is one of the most successful recognition algorithms in machine learning, which
is based on the idea that a combination of simple learners (obtained by a weak learner) can
perform better than any of the simple learners alone [34]. As a result, Adaboost iteratively
selects several learner instances by maintaining an adaptive weight distribution over the
training examples, improving the modelling accuracy and robustness of SVR and NN [35].
Compared with single SVR and NN modelling, Adaboost combined with NN can reducing
the RMSE in the training and test than the regular NN. However, the AdaBoost SVR algorithm
performs essentially identically to the standard SVR algorithm. The experimental results show
that Adaboost SVR did have a better effect in the test subset, but the improvement of the
modelling accuracy was not that large (Table 4). Wickramaratna et al. (2001) demonstrated
that boosting productivity would fall if the underlying learner was a strong regression
method (SVR) [55]. Among the machine learning methods, Adaboost combined with NN
outperformed the others.

4.3. Pear Leaf Nitrogen Determination by the Spectral Method

The published modelling methods listed in Table 5 were evaluated for their ability to
predict leaf N concentration of pear trees based on the R2 of training and test, mean relative
error of the test. Neto et al. (2011) and Yang et al. (2011) used the linear regression method to
fit the leaf N concentration of ‘Rocha’ pear trees and the Huanghua pear [12,56]. However,
the result of Neto et al. (2011) only demonstrated that SPAD readings ≥33 in leaves
sampled at 60–110 DAFB corresponded to optimum leaf N concentration of ≥20 g kg−1

dry weight. The linear regression models showed unstable predictive ability during the test
(Table 5). The vegetation index (DVI [40]; NDVI [57]) showed the approximate R2 value
of training and the similar sensitive wavelength of maximum R2 in both single cultivars
and mixed cultivars (This paper). PLSR can alleviate the high dimensionality of all band
spectra input but was weak when dealing with the problem caused by different cultivars
(Table 5). The RMSE of modeling by mixed cultivars were found general larger than that
of the single cultivars. The R2 of the test by the PLSR model with mixed cultivars were
0.72 [58] and 0.76 (this paper), respectively. However, the R2 of both training and test
of the PLSR model with a single cultivar were above 0.85. Interestingly, the R2 of NN
showed the opposite result compared to the PLSR. The R2 in the test sets by the NN and
AdaBoost.RT-BP models with mixed cultivars were 0.85 and 0.92 (this paper), respectively.
However, the R2 of training and test of the NN model with a single cultivar were 0.89 and
0.67 [40]. Consequently, PLSR was indicated for modelling a single cultivar, and the NN
was more suitable for modelling mixed cultivars.

Table 5. The coefficients of determination (R2) of training and test, mean relative error of test (MRE) for estimating nitrogen
concentration of pear leaves in comparative studies.

Method ††† Pear Cultivars Training Test Reference

R2 R2 RMSE (g kg−1)

Linear regression Rocha, Huanghua 0.87 0.54 to 0.99 No detail data Neto et al., 2011;
Yang et al., 2011

PLSR Cuiguan, Huangguan 0.90 0.72 2.95 Wang et al., 2014

Vegetation index Kotobuki shinsui,
Red-blush 0.46–0.67 0.41–0.51 3.0–3.35 Wang et al., 2017;

Perry et al., 2018
PLSR Kotobuki shinsui 0.86 0.85 1.50 Wang et al., 2017
NN Kotobuki shinsui 0.89 0.67 1.70 Wang et al., 2017

Vegetation index Mixed cultivars 0.45 0.42 4.55 This paper
PLSR Mixed cultivars 0.85 0.76 3.46 This paper
NN Mixed cultivars 0.95 0.85 1.66 This paper

AdaBoost.RT-BP Mixed cultivars 0.97 0.92 1.29 This paper
††† DSI, PLSR, and NN represent difference spectral index, partial least squares regression, and neural networks, respectively.
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5. Conclusions

In this study, machine learning methods were applied to modeling the determination
of leaf nitrogen concentration in pear orchards with mixed cultivars by the in-field visible-
near infrared spectroscopy. Results showed that the effect of different cultivars on leaf
reflectance of pears was greater than that of different growing regions and tree ages. In
addition, among the modelling methods analyzed, the AdaBoost.RT-BP performed the
best in accuracy and robustness in both training and test sets. The results from this study
provide a new method to assess pear trees’ N status for better N managements in pear
orchards with mixed cultivars.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21186260/s1, Figure S1: The schematic illustration of Adaboost analysis, Attached formulas:
The computational steps of the AdaBoost.RT-BP and Adaboost-SVR, Figure S2: the leaf weight per
unit area of different cultivars affected by the same leaf nitrogen concentration, Figure S3: Contour
maps of R2 for the linear relationship between the narrowband indices (DVI, RVI and NDVI) and the
leaf N concentration of different cultivars.
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