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A B S T R A C T

The understanding of the impact of prenatal exposure to metal mixtures on birth weight is limited. We aimed to
identify metal mixture components associated with birth weight and to determine additional pairwise interactions
between metals showing such associations. Concentrations of 18 metals were measured using inductively coupled
plasma mass spectrometry in urine samples collected in the 3rd trimester from a prenatal cohort (discovery;
n ¼ 1849) and the Healthy Baby Cohort (replication; n ¼ 7255) in Wuhan, China. In the discovery set, we used
two penalized regression models, i.e., elastic net regression for main effects and a lasso for hierarchical in-
teractions, to identify important mixture components associated with birth weight, which were then replicated.
We observed that 8 of the 18 measured metals were retained by elastic net regression, with five metals (vanadium,
manganese, iron, cesium, and barium) showing negative associations with Z-scores for birth weight and three
metals (cobalt, zinc, and strontium) showing positive associations. In replication set, associations remained sig-
nificant for vanadium (β ¼ �0.035; 95% confidence interval [CI], �0.059 to �0.010), cobalt (β ¼ 0.073; 95% CI,
0.049 to 0.097), and zinc (β ¼ 0.040; 95% CI, 0.016 to 0.065) after Bonferroni correction. We additionally
identified and replicated a single pairwise interaction between iron and copper exposure on birth weight
(P < 0.001). Using a two-stage analysis, we identified and replicated individual metals and additional pairwise
interactions-associated birth weight. The approach could be used in other studies estimating the effect of complex
mixtures on human health.
1. Introduction

Metals are a group of essential and toxic elements that generally occur
in the environment as mixtures [1]. Metals are released into the envi-
ronment through both natural and anthropogenic sources, and are
detected in the atmosphere, waterways, soils, and food [2,3]. In addition,
dozens of metals are detected in urine and blood samples of humans [4,
5], indicating that humans are simultaneously exposed to different
metals.

It is well acknowledged that the developing fetus is more susceptible
to environmental pollutants than adults [6,7]. Adverse birth outcomes,
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such as low birth weight, have been considered an important indicator of
intrauterine growth restriction for fetuses, which has been associated
with an increased risk of childhood diseases and long-term adverse
health outcomes [8,9]. Prenatal exposure to higher levels of metals,
especially toxic metals such as lead, cadmium, arsenic, vanadium,
chromium, and thallium, has been associated with an increased risk of
adverse birth outcomes and restricted fetal growth [10–18]. A few
studies have also investigated whether there are periods of heightened
vulnerability to the effect of some toxic metals on fetal growth [19–22].
In recent epidemiological studies, several statistical methods have been
used to examine associations between exposure to chemical mixtures
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during pregnancy and birth outcomes [23–25], such as principal
component analysis [26], sparse partial least squares [27], weighted
quantile sum regression [28], Bayesian kernel machine regression
(BKMR) [29,30], and elastic net regression [31]. These methods differ in
their assumptions and inferential goals. Principal component analysis
and sparse partial least squares assume linearity of exposure effects and
aim to reduce the dimensionality of exposures [24]. Weighted quantile
sum regression constructs a weighted sum of the sample quantiles for
each exposure of interest and estimates its overall association with the
outcome [32]. BKMR seeks to estimate pairwise and higher-order inter-
active effects of all mixture components while incorporating
exposure-response nonlinearities [33], and has recently been extended to
identifying periods of heightened vulnerability to mixtures [34]. Finally,
elastic net regression is a penalized regression approach that performs
variable selection and shrinkage in the presence of groups of correlated
exposures [35]. The Hierarchical Interaction Lasso, as implemented in
the R package hierNet [36], is a penalized regression model that can fit
sparse interactions under a hierarchy restriction. This method has never
before been utilized to examine the impact of metal mixture exposures
during pregnancy on birth weight, and may be particularly useful in
identifying novel pairwise between-metal interactions associated with
birth weight.

In this study, based on data from an ongoing prospective cohort in
China, we applied two penalized regression models to identify metal
mixture components associated with birth weight, including the linear
associations of individual metals and their pairwise interactions. Then,
we replicated these findings in an independent population using data
from the Healthy Baby Cohort (HBC) study, a birth cohort from China.

2. Materials and methods

2.1. Study participants

Participants in the discovery set were pregnant women from an
ongoing, prospective prenatal cohort study established at Wuhan Chil-
dren’s Hospital (Wuhan Maternal and Child Healthcare Hospital),
Wuhan, Hubei Province, China. Between October 2013 and October
2016, we included 1849 women when they had their first prenatal care
visits at the study hospital. All these participants did not smoke tobacco
or comsume alcohol during pregnancy, took their first prenatal care visits
with a gestational age less than 16 weeks at the study hospital, provided
one urine sample at prenatal care visits in the 3rd trimester, and deliv-
ered live singletons without congenital disorders at the study hospital
[37].

The HBC, the replication set, was established between September
2012 and October 2014 at the Wuhan Children’s Hospital. Pregnant
women were recruited at admission to the study hospital for deliveries
[15]. This study included 7255 pregnant women who did not smoke
tobacco or consume alcohol during pregnancy, provided urine samples
during their hospital stay prior to delivery, and gave birth to live sin-
gletons without congenital disorders [12].

Women in both studies agreed to participate after invitation and
provided signed informed consent at the time of enrollment. The study
protocols of both cohorts have been approved by the ethics committee of
Tongji Medical College, Huazhong University of Science and Technology,
and the study hospital.

2.2. Urine collection and assessment

Urine samples of women from the discovery set were collected at
37.9 � 1.8 weeks [37], and those of women from the HBC were obtained
before deliveries with an average of 39.0 � 1.2 weeks [12]. All urine
samples were stored at �20 �C until quantification of metal concentra-
tions. Urinary concentrations of creatinine were measured using Mindray
BS-200 CREA Kit to control for variations in urine dilution (Shenzhen
Mindray Bio-medical Electronics, Shenzhen, China).
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Urinary concentrations of 18 metals were assessed using inductively
coupled plasma mass spectrometry (ICP-MS; Agilent 7700, Agilent
Technologies, Santa Clara, CA, USA), i.e., aluminum (Al), vanadium (V),
chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni),
copper (Co), zinc (Zn), arsenic (As), selenium (Se), rubidium (Rb),
strontium (Sr), cadmium (Cd), cesium (Cs), barium (Ba), thallium (Tl),
and lead (Pb). Details on the methods of sample preparation, analysis,
ICP-MS operating condition, and quality controls were as described
previously [12,20]. Briefly, urine samples were thawed, nitrated (3%
HNO3, overnight), sonicated (40 �C for 1 h, by ultrasound), and centri-
fuged. Supernatants of the resulting samples were obtained and analyzed
by the ICP-MS in helium mode, with 27Al, 51V, 52Cr, 55Mn, 56Fe, 59Co,
60Ni, 63Cu, 66Zn, 75As, 78Se, 85Rb, 88Sr, 111Cd, 133Cs, 137Ba, 205Tl, and
208Pb monitored simultaneously. The detection limit of quantification
(LOQ) of each metal was calculated using a previously published formula
[38]. For both discovery and replication sets, the detection rates of all 18
metals were generally higher than 90% or 95%; the spike recoveries and
intra-day and inter-day precisions of all 18 metals were satisfactory
(Table S1).

2.3. Neonatal outcomes

Information on newborn sex, birth weight (in grams), and gestational
age at delivery (in days) of each newborn were retrieved from medical
records. For each participant, gestational age at delivery was calculated
as days from the first day of the last menstrual period (LMP) to the date of
delivery. The dates of the LMP were self-reported by pregnant women
and were also corrected by obstetricians based on the first-trimester ul-
trasound measures using clinical criteria. The ultrasound-corrected
gestational age was used when the difference between self-reported
and ultrasound-corrected gestational ages was larger than seven days.
We constructed the sex- and gestational age-adjusted standard deviation
scores (Z-score) for birth weight using an international standard (http://
intergrowth21.ndog.ox.ac.uk/) developed by the INTERGROWTH-21st
Project [39].

2.4. Covariates

In-person interviews were carried out by trained nurses at enrollment,
including information on maternal age, education, annual household
income, active smoking, secondhand tobacco smoke (SHS) exposure,
alcohol consumption, and folic acid supplement use during pregnancy.
SHS during pregnancy was defined as being exposed to secondhand
smoke from either family members (at home) or colleagues (at work).
Maternal height (self-reported; in meters) and pre-pregnancy weight (in
kilograms) were also collected during the interviews, and pre-pregnancy
body mass index (BMI, kg/m2) was subsequently calculated as weight
divided by the square of height. Additionally, information on parity and
pregnancy complications (anemia during pregnancy, hypertensive dis-
orders of pregnancy, and gestational diabetes mellitus) was retrieved
from medical records.

2.5. Statistical analysis

Before analyzing the data, concentrations of each metal below the
LOQ were imputed as the LOQ divided by the square root of 2 [40].
Urinary concentrations of each metal were standardized by dividing
them by urinary creatinine concentrations and were then natural
log-transformed to increase the normality and reduce the influence of
outliers for each metal. The resulting concentrations for each metal were
then centered by their first quartile and scaled by their inter-quartile
range to make regression coefficients directly comparable across
different metals in each cohort. Pearson correlation coefficients for uri-
nary metal concentrations were calculated in both discovery and repli-
cation sets. Statistical analyses were performed using R (version 3.5.1) or
SAS (version 9.4).

http://intergrowth21.ndog.ox.ac.uk/
http://intergrowth21.ndog.ox.ac.uk/


Table 1
Characteristics of the prenatal cohort and the Healthy Baby Cohort.

Prenatal Cohort
Mean � SD
or No. (%)

Healthy Baby Cohort
Mean � SD
or No. (%)

All individuals 1849 7255
Maternal characteristics
Age at recruitment, years a

<25 222 (12.0) 799 (11.0)
25–29 1123 (60.7) 3972 (54.7)
30–34 415 (22.4) 2001 (27.6)
�35 89 (4.8) 483 (6.7)

Pre-pregnancy BMI, kg/m2

<18.5 346 (18.7) 1524 (21.0)
18.5–23.9 1253 (67.8) 4824 (66.5)
�24.0 250 (13.5) 907 (12.5)

Nulliparous 1557 (84.2) 6140 (84.6)
Alcohol consumption
before pregnancy

16 (0.9) 183 (2.5)

Active smoking before
pregnancy

10 (0.5) 52 (0.7)

Secondhand tobacco smoke
during pregnancy

550 (29.7) 1665 (22.9)

Anemia during pregnancy 70 (3.8) 335 (4.6)
Gestational diabetes mellitus 172 (9.3) 864 (11.9)
Hypertensive disorders of pregnancy

Hypertension 42 (2.3) 175 (2.4)
Pre-eclampsia 18 (1.0) 108 (1.5)

Education
�9 years 117 (6.3) 987 (13.6)
10–12 years 274 (14.8) 1382 (19.0)
>12 years 1458 (78.9) 4886 (67.3)

Neonatal characteristics
Girls 871 (47.1) 3388 (46.7)
Gestational age, week 39.4 � 1.0 39.2 � 1.2
Birth weight, g 3348 � 415 3352 � 434

SD, standard deviation; No., Number; BMI, body mass index.
a Participants of the prenatal cohort were recruited at their first prenatal care
visits (less than 16 weeks of gestation) in the study hospital; participants of the
Healthy Baby Cohort were recruited at their admission to the study hospital for
deliveries.
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Identify individual metals associated with birth weight (discovery).
In ordinary least squares regression, P-values for individual regression
coefficients are conditional on the set of predictors included in the model
and, therefore, can be highly unstable when computed from strongly
correlated metal exposures. To minimize multicollinearity, we applied
elastic net regression, a penalized regression approach capable of
simultaneously performing coefficient shrinkage and variable selection,
to estimate associations between metal mixture components and Z-scores
for birth weight [31,35]. We used the R package glmnet to fit elastic net
regression models, and the optimal model was selected based on 10-fold
cross-validation, a procedure that estimates the optimal values of the
regularization parameter (λ) and mixing parameter (γ) based on mini-
mizing deviance [41]. We performed 100 iterations in order to reduce the
impact of random seeds in the cross-validation procedure of elastic net
regression.

Identify pairwise interactions of metals associated with birth weight
(discovery). We used a Hierarchical Interaction Lasso, as implemented in
the R package hierNet [36]. This method adds a set of convex constraints
to the lasso and fits sparse interaction models under a hierarchy re-
striction. We used a strong hierarchy restriction that includes a pairwise
interaction in the optimal model only if one or both exposure variables
have significant linear (main) associations [36]. As the package does not
allow for covariate adjustment, we calculated the residual of Z-scores for
the birth weight from a linear regression model including all covariates
and used it as the outcome in the hierarchical lasso model.

Replication in the HBC. To replicate the results from elastic net
regression, we applied multivariable linear regression models to estimate
the associations between each selected metal and Z-scores for birth
weight. When replicating the findings from the lasso for hierarchical
interactions, we calculated the residual of Z-scores for birth weight on all
the prespecified covariates to make the regression coefficients compa-
rable across the discovery and replication sets. Then, we fit one linear
regression model that included all selected metals and their interactions.
Additionally, we used contour plots to show the interaction effects of
metal mixtures on birth weight in the prenatal cohort and the HBC. In
both replication analyses, we used Bonferroni corrections to control the
family-wise error rate at the 5% level of significance. In addition, 16
women were participants in both the prenatal cohort and the HBC. Thus,
we did a sensitivity analysis, excluding these 16 women from the HBC
when performing the replication analyses.

Adjustment for covariates. All the statistical models in the discovery
and replication sets were adjusted for the same set of covariates,
including maternal age at recruitment (continuous), parity (nulliparous/
multiparous), pre-pregnancy BMI (categorized using the Chinese stan-
dard:<18.5, 18.5–23.9,�24.0 kg/m2), active smoking before pregnancy
(no/yes), SHS during pregnancy (no/yes), alcohol consumption before
pregnancy (no/yes), folic acid supplementation during pregnancy (no/
only in the first trimester/only in the second and third trimester/during
the entire pregnancy), and education (�9, 10–12, >12 years).

3. Results

Maternal and neonatal characteristics in the prenatal cohort are
similar to those in the HBC, but women from the prenatal cohort had a
lower prevalence of alcohol consumption before pregnancy (0.9%; vs.
2.5% in the HBC), a slightly higher prevalence of SHS during pregnancy
(29.7%; vs. 22.9% in the HBC), and higher education levels (78.9%
women with over 12 years of education; vs. 67.3% in the HBC). The
prevalence of pregnancy complications in the prenatal cohort was
slightly lower than that of the HBC (Table 1). Urinary concentrations of
the 18 measured metals in the prenatal cohort were similar to those in
the HBC (Table S2). Pearson correlation coefficients for urinary metal
concentrations in the discovery set ranged from 0.22 to 0.80, and
similar results were observed for urinary metal concentrations in the
HBC (Fig. 1).
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In the prenatal cohort, we identified eight metals associated with Z-
scores for birth weight using elastic net regression, and the findings were
replicated in the HBC (Table 2). Five of these metals (V, Mn, Fe, Cs, and
Ba) showed negative associations with birth weight, whereas the other
three metals (Co, Zn, and Sr) showed positive associations. In the HBC,
the adjusted associations between these eight identified metals with Z-
scores for birth weight were in the same directions with those observed in
the prenatal cohorts, and the associations for V (β ¼ �0.035; 95% CI,
�0.059 to �0.010), Co (β ¼ 0.073; 95% CI, 0.049 to 0.097), Zn
(β ¼ 0.040; 95% CI, 0.016 to 0.065), and Sr (β ¼ 0.028; 95% CI, 0.005 to
0.052) were statistically significant (P � 0.02). Of these metals, the as-
sociations between V, Co, and Zn with Z-scores for birth weight remained
significant after Bonferroni correction for multiple testing (P < 0.00625
for eight comparisons). In the sensitivity analysis excluding 16 women
who were participants of both cohorts from the HBC, the results for the
replication analyses did not change (data not shown).

To identify possible pairwise interactions of metals and associations
with birth weight, we performed the lasso for hierarchical interaction
analysis using urinary metal concentrations in the prenatal cohort. These
findings were also validated in the HBC (Table 3). In the prenatal cohort,
we identified 15 pairwise interactions between metals and Z-scores for
birth weight. In the HBC, most of the interaction effects were in the same
direction as those in the prenatal cohort. Only one interaction (Fe � Cu)
was significantly associated with Z-scores for birth weight (P < 0.001)
after Bonferroni correction for multiple testing (P < 0.003 for 15 com-
parisons) in the HBC. Finally, we used contour plots to interpret the
identified two-way Fe � Cu interaction effect on birth weight. Findings



Table 2
Associations between urinary metal concentrations and Z-scores for birth weight
in the prenatal cohort (discovery set) and the Healthy Baby Cohort (replication
set).

β in the optimal elastic net
model in the prenatal cohort a

Association between metals and birth
weight in the Healthy Baby Cohort b

β (95% CI) P

V �0.011 �0.035 (�0.059, �0.010) 0.006*
Mn �0.007 �0.020 (�0.045, 0.005) 0.12
Fe �0.082 �0.013 (�0.040, 0.014) 0.35
Co 0.034 0.073 (0.049, 0.097) <0.001*
Zn 0.072 0.040 (0.016, 0.065) 0.001*
Sr 0.089 0.028 (0.005, 0.052) 0.02
Cs �0.046 �0.015 (�0.034, 0.004) 0.12
Ba �0.031 �0.007 (�0.030, 0.016) 0.55

β, regression coefficient; CI, confidence interval; FDR, false discovery rate.
* P-values remained significant after Bonferroni correction (P< 0.00625; 0.05/8
metals).
a Only metals with non-zero regression coefficients in the optimal elastic net
model were shown.
b As a validation, associations between each metal and Z-scores for birth weight
were estimated using linear regression models. All pairwise interactions were
estimated jointly in the validation set using a single linear regression model.

Table 3
Associations of pairwise interactions between metals with Z-scores for birth
weight in the prenatal cohort (discovery set) and the Healthy Baby Cohort
(replication set).

Association/Metal Selection in the
prenatal cohort a

Associations between metal mixtures and
birth weight in the Healthy Baby Cohort b

β β (95% CI) P

V � Ni �0.009 �0.010 (�0.041, 0.021) 0.53
V � Pb �0.003 �0.009 (�0.045, 0.027) 0.62
Cr � Co 0.026 0.049 (0.009, 0.088) 0.02
Mn � Zn �0.005 �0.005 (�0.048, 0.037) 0.81
Fe � Co �0.006 �0.052 (�0.078, �0.025) <0.001*
Fe � Ba 0.013 0.037 (�0.006, 0.080) 0.09
Co � Sr �0.006 �0.028 (�0.066, 0.010) 0.14
Ni � Zn �0.009 0.022 (�0.007, 0.051) 0.14
Ni � Sr �0.003 0.001 (�0.027, 0.028) 0.96
Co � Sr 0.019 0.013 (�0.013, 0.039) 0.32
Co � Tl �0.0003 �0.013 (�0.042, 0.015) 0.35
Zn � Sr 0.001 0.008 (�0.029, 0.044) 0.68
Zn � Pb �0.018 �0.020 (�0.064, 0.023) 0.35
As � Sr 0.006 0.003 (�0.024, 0.031) 0.81
Cs � Ba �0.032 0.029 (0.003, 0.056) 0.03

* P-values remained significant after Bonferroni correction (P < 0.003; 0.05/15
pair-wise interactions).
a The metal mixture selection was performed using a lasso for hierarchical
testing of interactions. The hierarchical lasso does not allow for covariate
adjustment. Therefore, we calculated the residual of birth weight (used as the
outcome) from a linear regression model including all covariates described at
Statistical Analysis section.
b The selected associations between each pairwise interaction and Z-scores for
birth weight were estimated in the validation set using a single linear regression
model that estimates all the selected interactions.

Fig. 1. Pearson correlation coefficients between each metal in A) the prenatal
cohort (discovery set) and B) the Healthy Baby Cohort (replication set). Urine
samples for women from the prenatal cohort were collected during 3rd-trimester
prenatal care visits. Urine samples from the Healthy Baby Cohort were obtained
before delivery. Al, aluminum; Se, selenium; Rb, rubidium; Cd, cadmium; V,
vanadium; Mn, manganese; Fe, iron; Co, cobalt; Zn, zinc; Sr, strontium; Cs, ce-
sium; Ba, barium; Ni, nickel; Pb, lead; Cr, chromium; Co, copper; Tl, thallium;
As, arsenic.
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suggest potential antagonism at high levels of Fe and Cu, consistent
across cohorts (Fig. 2).

4. Discussion

In this study, we used penalized regression approaches to estimate the
associations between prenatal exposure to metal mixtures and birth
weight based on a two-stage analysis design. In the discovery stage, we
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applied two penalized regression models, elastic net regression and a
lasso for hierarchical interactions, in an ongoing prospective prenatal
cohort study to identify associations between mixtures of metal expo-
sures in the 3rd trimester and birth weight. The identified associations
were then replicated in the HBC, an independent birth cohort. Our
findings suggested that three metals (V, Co, and Zn) were associated with
birth weight, among which V was inversely associated with birth weight,
but Co and Zn were positively associated with birth weight. We also
observed an additional two-way interaction (Fe � Cu) associated with
birth weight as a part of the metal mixture.

4.1. Identification of individual metals associated with birth weight

In our previous studies, higher concentrations of urinary V, Cr, Mn,
As, Cd, Pb, and Tl in the 3rd trimester have been associated with lower
birth weight or increased risk of low birth weight (< 2500 g) [12,14–18,
21,37,42–44]. All these studies used a single-metal strategy for their
statistical analysis. In these studies, we observed that associations be-
tween a certain metal and birth weight did not change after mutually
adjusting for other metals. However, using such a single-metal strategy,
we were unable to conclude which metal had stronger associations with
birth weight when compared to other metals. Additionally, some of these
metals were highly correlated with each other, which could result in
multicollinearity when estimating associations using linear or logistic
regression models. Therefore, in this study, we used elastic net regres-
sion, a penalized regression model that overcomes the multicollinearity
problem when performing variable selections [31], which could identify
metals associated with birth weight, independent of other metals in a
mixture.

In a recent nested case-control study, the authors used elastic net
regression and observed that 15 of the 22 metals measured in maternal
serum samples were associated with low birth weight risk. They also
applied conditional logistic regression models for the same study par-
ticipants, and the results suggested that lower serum Co and higher serum
titanium levels were associated with an increased risk of low birth weight



Fig. 2. Associations between Fe � Cu interactions and Z-scores for birth weight in A) the prenatal cohort (discovery set) and B) the Healthy Baby Cohort (replication
set). In these two contour plots, the X-axis is the natural log-transformed creatinine-standardized urinary concentration of Fe, and the Y-axis is the natural log-
transformed creatinine-standardized urinary concentration of Cu. The color and color depth in the contour plots are the Z-scores for birth weight
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[45]. Consistently, we observed positive associations between urinary Co
concentrations and birth weight, but data on urinary titanium concen-
trations were not available in this study.

It is worth noting that coefficients estimated from elastic net regres-
sion are biased in terms of magnitude, unlike ordinary least squares
regression coefficients, and their standard errors do not account for the
variable selection aspect of the model-fitting process [35,46]. As a result,
the associations between variables selected by elastic net regression with
the outcome of interest need to be replicated using ordinary linear
regression methods in an independent replication sample. Therefore, we
applied linear regression models in the HBC, an independent
population-based birth cohort, and successfully replicated the directions
of all the identified metal-birth weight associations, and three of these
associations (V, Co, and Zn) remained significant in the replication set
after Bonferroni correction. Moreover, in both the prenatal cohort and
the HBC, urinary V concentrations showed negative associations with
birth weight, while urinary Co and Zn concentrations showed positive
associations. The magnitudes of these regression coefficients were not
directly comparable across cohorts, not only because of different esti-
mation methods, but also because the inter-quartile ranges for eachmetal
differed across cohorts and affected the exposure standardization scheme
(Table S2). Nevertheless, our findings not only demonstrate the agree-
ment between elastic net and linear regression models, but also suggest
that associations between urinary concentrations of V, Co, and Zn in the
3rd trimester and birth weight are robust to replication across indepen-
dent cohorts.

V and Co in the environment are both released through natural and
anthropogenic sources, to which humans can be exposed through the air,
drinking water, and food [47,48]. Zn is enriched in several foods, and
dietary intake is a main source of Zn for humans [49]. Additionally, V has
been associated with impaired fetal growth in our previous studies [12,
21]. Zn is the essential component of Zn-binding proteins in the human
body, and has been recognized as essential for prenatal and postnatal
growth [50]. Co is an essential trace element for humans, as it is a key
constituent of vitamin B12 [51], but the role of Co in fetal development
needs further investigation.

4.2. Identification of interaction associations of metal mixtures with birth
weight

When estimating the associations between exposure to metal mix-
tures and birth weight, it is important to take into account the in-
teractions between metals. However, the impact of two-way interactions
between metal pairs on birth weight is not fully understood. Recent
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studies on interaction associations for metals have focused predomi-
nantly on only three or four metals. For example, one of our recent
studies indicated a potential antagonistic effect between Ni and Se on
the risk of preterm low birth weight [52]. Another recent study using
BKMR suggested a potential joint effect between As and Mn on birth
weight [29].

In the present study, we used a lasso for hierarchical interactions to
estimate the combined effect of exposure to metal mixtures during
pregnancy on birth weight [36]. This approach allowed us to identify
mixture components with stronger associations (compared to other
components) with birth weight by simultaneously examining the linear
associations and pairwise interactions. In order to avoid overfitting and
obtain unbiased regression coefficients, we first performed model se-
lection in the prenatal cohort and then replicated the associations be-
tween selected mixture components and Z-scores for birth weight in the
HBC. Using this approach, we identified and replicated a two-way
interaction (Fe � Cu) significantly associated with Z-scores for birth
weight. Fe and Cu are essential trace elements for humans. Although
several studies have estimated their associations with fetal growth, the
specific roles of these elements remain unclear [53]. Our findings suggest
potential antagonism between Fe and Cu. However, further studies are
needed to replicate these results, as well as investigate the common un-
derlying biological mechanisms for these heavy metals and trace ele-
ments. Our findings also indicate the necessity of estimating the
interactive effects of environmental pollutants and essential elements on
fetal growth, especially in studies evaluating the impact of mixture ex-
posures on human health.

4.3. Strengths and limitations

In this study, we included two large, well-characterized, and inde-
pendent groups of participants that had exposure, outcome, and covariate
information collected in comparable ways. The large sample size in both
studies facilitated our ability to estimate small effect sizes. The similarity
in the model fitting approach used across the two studies reduces the
likelihood that differences in our findings might be due to study methods.
Further, we used a stringent approach (i.e., Bonferroni correction) to
account for multiple comparisons in the replication set. Additionally, the
penalized regression methods used in this study have been well estab-
lished and are robust in the presence of collinearity between variables.

Pregnant women from the discovery and the replication sets were all
from the same hospital but were recruited independently using different
strategies. Although some sociodemographic and perinatal factors
differed between discovery and replication sets, such differences were
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not strong enough to confound the direction of the associations between
metal mixture components and birth weight, which was similar in the
discovery and replication sets. Future studies on other populations would
be helpful, such as populations from other cities or rural areas in China,
or from other countries. Additionally, as in all observational cohort
studies, residual confounding from unmeasured factors is possible.
Another limitation of this study is the lack of diet information and
nutritional status during pregnancy, as certain metals included in this
study are considered important nutrients. Future studies with nutritional
and environmental data are needed to address interactions between
nutritional factors and environmental exposures on fetal growth.

5. Conclusions

In this study, we used a two-stage analysis design with penalized
regression models to identify metal mixture components associated with
birth weight. Using this approach, we identified and replicated several
components of a metal mixture associated with birth weight, including
individual metals (V, Co, Zn) and a two-way interaction between Fe and
Cu. Our findings need to be validated in other populations. Furthermore,
the approaches used in this study could be applied in studies examining
the health effects of complex mixtures of heavy metals and trace ele-
ments, endocrine-disrupting chemicals, and nutritional factors.
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