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Abstract. After registration of the imaging data of two brains, homol-
ogous anatomical structures are expected to overlap better than before
registration. Diffusion magnetic resonance imaging (dMRI) techniques
and tractography techniques provide a representation of the anatomical
connections in the white matter, as hundreds of thousands of stream-
lines, forming the tractogram. The literature on methods for aligning
tractograms is in active development and provides methods that operate
either from voxel information, e.g. fractional anisotropy, orientation dis-
tribution function, T1-weighted MRI, or directly from streamline infor-
mation. In this work, we align streamlines using the linear assignment
problem (LAP) and propose a method to reduce the high computa-
tional cost of aligning whole brain tractograms. As further contribu-
tion, we present a comparison among some of the freely-available linear
and nonlinear tractogram alignment methods, where we show that our
LAP-based method outperforms all others. In discussing the results, we
show that a main limitation of all streamline-based nonlinear registra-
tion methods is the computational cost and that addressing such problem
may lead to further improvement in the quality of registration.

1 Introduction

Image registration is a cornerstone of brain imaging applications. After registra-
tion of the data of two brains, homologous anatomical structures are expected to
overlap better than before registration. Typically, brain images are registered to
atlases, or between different subject, for different purposes, such as: conducting
group-studies, guiding segmentation, or for building new atlases [9].

Diffusion magnetic resonance imaging (dMRI) techniques measure the ori-
entation of diffusion of water molecules in biological tissues. By means of trac-
tography techniques on dMRI data from the brain, it is possible to obtain a
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representation of the anatomical connections in the white matter, as hundreds
of thousands of streamlines, forming the tractogram.

The linear or nonlinear transformation to register the tractogram of one
subjects to that of another subject can be estimated in two main ways: from
volumetric data, such as T1-weighted, fractional anisotropy (FA), or orientation
distribution functions (ODFs), see [3,4,11], or directly from streamlines. In this
last case, the literature on nonlinear methods addresses the registration of bun-
dles, which are just a portion of the tractogram, usually because of the very
high computational cost of the algorithms, see [5,17,18,20,21]. Differently, in
the case of linear methods, solutions to compute an affine transformation from
whole tractograms are available, see [7,9].

Recently, a new concept has been proposed to accurately align tractograms,
based on the idea of streamline correspondence [10] and formalized as a graph
matching (GM) problem. There, the building block of the methodology is to
compute which streamline of the first subject corresponds to which streamline
of the second subject, as in a combinatorial optimization problem. The princi-
ple of streamline correspondence has also been used for the problem of bundle
segmentation [6,8,12,13,19].

In this work, we present two contributions: first, we propose the use of the
linear assignment problem (LAP) as computational building block to align entire
brain tractograms from streamline information, extending the work of [12], which
addressed only bundles and segmentation. The alignment obtained with LAP
acts locally, as in a nonlinear transformation. Second, we quantitatively com-
pare the proposed method against some methods in the state of the art for
tractogram alignment, for which the implementation is freely-available. To the
best of our knowledge, it is pretty infrequent to find quantitative comparisons
between tractogram alignment methods, in the literature.

In order to carry out the quantitative comparison, we designed an experiment
where, given the tractograms of two subjects, we computed the transformation
of the first in order to match the second one. Similarly to [10], we quantified the
accuracy of the whole tractogram alignment by estimating the degree of overlap
between homologous bundles. The reason behind it is that, after registration, the
anatomy of the white matter of the two subjects should match more accurately
than before. On 90 pairs of subjects from the dMRI dataset of the Human
Connectom Project [14], we compared the registration obtained with 5 different
methods, using 10 main bundles as landmarks for the quantification.

The results show that the proposed method outperforms voxel-based meth-
ods and streamline-based methods in almost all cases. Moreover, as expected,
linear methods are outperformed by nonlinear methods. The Symmetric Normal-
ization (SyN) algorithm of the Advanced Normalization Tools (ANTs, see [1]),
despite being designed for volumetric images, shows excellent results against
streamline based methods, outperforming them in some cases. The main limita-
tion of streamline-based methods is the high computational cost, which requires
to resort to approximations.
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In the following, we briefly describe the proposed method. Then, in Sect. 3,
we describe the details of the experiments. In Sect.4 we discuss the claims in
the light of the results.

2 Methods

Let s = {x1,...,X,} be a streamline, i.e. a sequence of points in 3D space,
ie. x; = [v4,yi,2i] € R3 Vi. Let T = {s1,...,sy} be a tractogram and
b C T the set of streamlines corresponding to a white matter bundle of inter-
est, e.g. the cortico-spinal tract (cst). With | - | we indicate the number of
objects in a set. Typically, |T| is in the order of 105-10°. Several distances

has been defined between streamlines, see [9] In this work, we adopt the com-
A (Sa;5b)+dm (56,54)
2

monly adopted mean of closest distances, d(sq, sp) =
A (8as5p) = ﬁ inesa miNy; e, [[x; — XjH2~

, Where

2.1 Streamline Correspondence

Given two tractograms, T4 and Tz, the problem of aligning them can be framed
as finding the correspondences between each streamline in T4 the corresponding
one in Tg, see [10]. If siA € Tx corresponds to sf € Tp, the transformation
obtained from such correspondence is the one that returns sf when given s#.
The set of correspondences will provide a good alignment of tractograms if, after
the transformation, homologous anatomical structures will match. Previously,
the task of finding a good set of correspondences has been formulated as graph
matching [10].

2.2 Linear Assignment Problem

Given two sets of objects, e.g. T4 and T'g, of the same size NV, and a N x N cost
matrix C, whose element c;; € R is the cost of assigning sf‘ € T4 to sf €Tp,e.g.
cij = d(sf, s7), then the linear assignment problem (LAP) is the combinatorial
optimization problem that attempt to optimally assign each element of T4 to

each element of T, with a one-to-one assignment, minimizing the total cost:

N N

P* = argmin Z Z CijPij (1)

peP T J=1
where P is the set of all possible one-to-one assignments, each represented as
a N x N permutation matrix, i.e. P € P is a binary matrix where each row
and column sum up to 1 and the element p;; = 1 if s is assigned to sjB and 0
otherwise. Notice that LAP for streamlines, the minimization of the total cost
is the minimization of the distances of corresponding streamlines and, in many
cases, the one-to-one constraint forces the correspondences to follow the local

differences between the anatomical structures, see [13]. When |Tg| > |T4], the
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problem is called rectangular LAP (RLAP), which seeks the best assignment of
{sf',..., 54} to subset of size N of T. The most efficient algorithm to find the
optimal solution of LAP and RLAP is LAPJV, see [2], whose time complexity
is O(N?3) and space complexity is O(N?). In practice, even LAPJV is unfeasible
to be executed on problems where N > 104, both in terms of time and memory
required.

2.3 Large-Scale Approximation

The correspondence between entire tractograms cannot be computed even with
LAPJV, because of the excessive computational cost. Here, we adopt a hierarchi-
cal two-steps procedure that exploits the geometrical structure of tractograms.
In the first step, both T4 and T are clustered into k clusters, named {c;}i—1. &
for T and {3;};=1...x for Tg. Then, each tractogram is simplified with & stream-
lines, i.e. the centroids of the respective clusters. Then, LAP is computed between
the two simplified tractograms, as explained above, i.e. a k x k LAP is solved.
This first step aims at finding corresponding clusters across the two tractograms,
e.g. a; corresponds to 3;. In the second step, given two corresponding clusters,
the correspondence of streamlines is computed by solving the RLAP between the
streamlines of the two clusters'. Details are given below. In total, the two-steps
procedure requires to solve 1 LAP with a k x k cost matrix and ¥ RLAPs each
N

with, approximately, a % x 4 cost matrix. For this reason, the resulting time

complexity is reduced from O(N3) to O (k?’ + %;) and space complexity from

O(N?) to O(k2 + X2,

In the second step of the procedure, assuming cluster o; C T4 to correspond
to cluster §; C T, there are two possible scenarios: either (i) |a;| < |3;|, for
which finding the corresponding streamlines of «; in 3; is a straightforward
RLAP, or (ii) |ey| > |3;], for which there are not enough streamlines in §; to set
up a LAP or RLAP. In this last case, we propose to compute the corresponding
streamlines of a; by violating the one-to-one constraint and assigning one or
streamlines of a; to each of ;. The procedure is the following: first we solve the
reverse RLAP, i.e. we compute the optimal assignment of all the streamlines in 3;
to (some of) those in «;. In this way, a subset of the streamlines in «; will obtain
their corresponding ones in 3;. We denote such subset of assigned streamlines
as af C «a; and that of the remaining ones, i.e. the non assigned streamlines,
as a® C «;. Then, for each non assigned streamline s € af'®, we compute
its nearest neighbor in of. Finally, we define the corresponding streamline of
5 € aj® as the one corresponding to its nearest neighbor in of.

3 Experiments

We selected 30 healthy subjects at random from the publicly available Human
Connectome Project (HCP) dMRI dataset [14] (90 gradients; b = 2000; voxel

! In general, the number of streamlines of the two corresponding clusters is different,
thus leading to a RLAP.
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size =1.25 mm isotropic). For each subject, tractograms of 400-500 thousands
streamlines were obtained using the constrained spherical deconvolution (CSD)
algorithm [15] and the local deterministic tracking algorithm implemented in
DiPy? (step size = 0.625 mm, 1 seed /voxel from the white matter). We segmented
14 major bundles from each tractogram, using the TractQuerier/white matter
query language (WMQL, see [16]) and we used some of them as ground truth.
In order to reduce the impact of poor segmentations obtained in some cases, we
jointly selected 10 subjects and 10 bundles in order to minimize the differences
in number of streamlines for each bundles across the subjects. These bundles are
(both left and right): cingulum (cb), cortico-spinal tract (cst), inferior fronto-
occipital fasciculus (ifof), thalamo prefrontal (thpref) and uncinate fasciculus
(uf). We visually inspected the resulting bundles to avoid outliers. The experi-
ments were then conducted on the 90 pairs of different tractograms that can be
obtained from the selected 10 subjects.

3.1 Comparison

We quantified the quality of alignment between two tractograms as the degree
of overlap between the voxel masks of homologous bundles, after registration,
see [7,10]. The degree of overlap was quantified as dice similarity coefficient

. _ 2x(Jo(ba)nw(be)) b)Y i -
(DSC): DSC = o) [+ Tobn) where v(b4) is the voxel mask of the bun

dle by € T4 after the alignment of the entire tractogram T4 to Tg. In other
words, v(lA) 4) attempts to approximate the voxel mask of the homologous bun-
dle of the target subject, v(bp), considered as ground truth. In the comparison,
we considered the following methods to align tractograms: 1) registration based
on anterior and posterior commissures (AC-PC), directly provided within the
HCP dataset, used as baseline. 2) Streamline linear registration (SLR, from
DiPy, see [7]): in [10], SLR has shown slightly superior quality of registration
with respect to other linear methods, so we considered it as a good represen-
tative of the linear methods. 3) The voxel-based nonlinear registration method
of ANTSs3, see [1], used with default values. As reference volume, we considered
the T1w images of the two subjects and the fractional anisotropy (FA) volumes.
4) Deformetrica® [5], a diffeomorphic streamline-based registration method for
bundles. Streamlines were modeled as varifolds and we used 7mm and 15 mm
for the varifolds and diffeomorphic kernel bandwidths respectively. 5) Correspon-
dence between streamlines as graph matching (GM?, see [10]). 6) Correspondence
between streamlines as linear assignment problem (LAP) (Sect.2). Some of the
methods have too high computational cost when computed on whole tracot-
grams. For this reason, tractograms were simplified for such methods following
the simplification step described in Sect. 2.3, using the fast mini-batch k-means

2 http://nipy.org/dipy.

3 http://stnava.github.io/ANTs.

* http://www.deformetrica.org)/.

5 https://github.com/emanuele/graph_matching_tractograms.
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algorithm, as described in [10]. For each tractogram, we computed the approx-
imate k-means clustering on streamlines, with ¥ = 1000 and k¥ = 5000. The
simplified tractogram consisted of the k centroid streamlines. Note that such
values of k ensure an extensive coverage of the brain, which we can assume to
be enough to guarantee reasonable one-to-one assignments. We provide code
and datasets of all experiments under a Free/OpenSource license here: https://
github.com/FBK-NILab/WBIR2020_experiments.

3.2 Results

In Table1 we report degree of overlap (higher is better) between homologous
bundles after whole tractogram registration, with different methods. The DSC
value is averaged over 90 pairs of subjects. The standard deviation of the means
is always below 0.01. All computations were executed on a modern desktop
computer, i.e. Intel Xeon E5 8 cores, 3.50 GHz, 16 Gb RAM, always using only
CPUS. In Fig. 1, we show an example of matching between homologous bundles
(IFOF left) after whole tractogram alignment for some of the methods.

Table 1. For each of the 10 bundles considered in this study (one per column), the table
reports the degree of voxel-overlap after whole brain tractogram alignment, quantified
as DSC (higher is better) and averaged over 90 pairs of subjects, across different meth-
ods - one per row. In each cell, the standard deviation of the mean is always below
0.01. In bold face are reported the highest values for each bundle, as well as those
within 0.01 from them. The last column reports the computational time in minutes for
aligning a pair of tractograms.

cbL | cbR | cstL | cstR | ifofL | ifofR | thprefL | thprefR | ufL | ufR | Time

AC-PC 0.42 | 0.38 |0.41 |0.43 | 0.32 | 0.29 |0.38 0.38 0.21 |0.19 |-
SLR 0.47 | 0.43 |0.46 | 0.50 | 0.38 | 0.37 |0.44 0.45 0.27 | 0.25 |5
ANTs (T1lw) 0.61|0.56 | 0.56 | 0.59 | 0.54 | 0.51 |0.54 0.55 0.37 | 0.35 | 30
ANTs (FA) 0.62 | 0.57 | 0.56 | 0.61 | 0.57 | 0.53 | 0.55 0.56 0.38 | 0.36 | 30
Deform (k=1000) | 0.46 | 0.42 | 0.44 | 0.48 | 0.41 | 0.38 |0.44 0.44 0.28 | 0.27 | 170
GM (k=1000) 0.46 | 0.45 |0.57 | 0.59 | 0.62 | 0.64 |0.56 0.57 0.39 | 0.35 | 480
LAP (k=1000) 0.52 | 0.48 |0.60 | 0.63 | 0.63 | 0.64 |0.56 0.57 0.40 | 0.34 | 60
LAP (k=5000) 0.56 | 0.52 | 0.63 | 0.66 | 0.66 | 0.67 | 0.60 0.60 0.43 | 0.39 | 120

4 Discussion and Conclusions

In this work, we describe the use of the linear assignment problem (LAP) to
align entire tractograms of two different subjects, by introducing approximations
as computational shortcuts. The LAP acts locally, as a nonlinear registration
method. In Tablel, we compare the proposed method with some linear and
nonlinear methods in the literature. The results show that LAP (k = 5000)

5 To note that Deformetrica has also a GPU implementation.
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WMQL SLR ANTs Deformetrica

Fig. 1. Example of homologous bundles after tractogram registration of T4 (HCP
subject ID: 199655) to Ts (HCP subject ID: 599671). In green, on the left, the IFOF
left of the static Tz, as segmented by WMQL. In yellow, the IFOF left of the moving
T4, after tractogram registration with four different methods. Red circle indicates the
location of major differences with respect to the (green) IFOF left in Ts. (Color figure
online)

outperforms other methods on almost all bundles. The only exception is the
cingulum (cbL, cbR) for which ANTSs provides significantly better DSC, with
LAP second in the ranking.

The results also show a number of other interesting facts and confirm basic
sanity checks: despite the limited quality of the ground truth provided by the
WMQL, the values of DSC increase steadily from AC-PC registration, to linear
registration and to nonlinear methods. 90 pairs of subjects selected as described
in Sect.3 are enough to keep the standard deviation of the means low enough
(<£0.01) to clearly see differences between the methods. It is also reassuring that,
for each bundle, the results are sufficiently similar across the two hemispheres,
e.g. ifofL, and ifofR obtain almost the same score, for all methods. Nonlinear
methods outperform linear methods in all cases, with the exception of Defor-
metrica, most probably because we could not perform a large model selection
for the user-selected parameters due to the high computational time. Further-
more, the introduced approximations might interfere too much with the under-
lying method, which is tailored to register bundles. ANTs provided excellent
results, given the fact that it does not operate on streamline information. Most
probably this occurs because the grid on which ANTSs operates, i.e. the voxel
grid, is much more dense than what the simplified tractograms offer. The results
between graph matching (GM) and LAP are not very different, for the same
level of approximation (k = 1000), with LAP in advantage. This advantage can
be explained by the fact that LAPJV computes the exact solution of the RLAPs,
while in the case of GM the underlying algorithm, DSPFP (see [10]), provides
only an approximate solution. Notably, LAP is 8 times faster than GM for this
size of tractograms, see Table 1 last column, which allowed us to run LAP with
k = 5000 in a reasonable amount of time and to obtain substantially superior
scores.
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All this evidence supports the hypothesis that the results are limited also by

the level of approximation and that, by improving algorithms and implementa-
tions to reduce computational cost, some of the methods may reach even better
results.
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