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Abstract
Multikinase inhibitors (e.g. Sorafenib), phosphodiesterase-5 inhibitors (e.g. Tadalafil), and

endothelin-1 receptor blockers (e.g. Macitentan) exert influential protection in a variety of

animal models of cardiomyopathy; however, their effects on thyroxin-induced cardiomyopa-

thy have never been investigated. The goal of the present study was to assess the func-

tional impact of these drugs on thyroxin-induced hemodynamic changes, cardiac

hypertrophy and associated altered responses of the contractile myocardium both in-vivo at

the whole heart level and ex-vivo at the cardiac tissue level. Control and thyroxin (500 μg/

kg/day)-treated mice with or without 2-week treatments of sorafenib (10 mg/kg/day; I.P),

tadalafil (1 mg/kg/day; I.P or 4 mg/kg/day; oral), macitentan (30 and 100 mg/kg/day; oral),

and their vehicles were studied. Blood pressure, echocardiography and electrocardiogram

were non-invasively evaluated, followed by ex-vivo assessments of isolated multicellular

cardiac preparations. Thyroxin increased blood pressure, resulted in cardiac hypertrophy

and left ventricular dysfunction in-vivo. Also, it caused contractile abnormalities in right ven-

tricular papillary muscles ex-vivo. None of the drug treatments were able to significantly

attenuate theses hemodynamic changes or cardiac abnormalities in thyroxin-treated mice.

We show here for the first time that multikinase (raf1/b, VEGFR, PDGFR), phosphodiester-

ase-5, and endothelin-1 pathways have no major role in thyroxin-induced hemodynamic

changes and cardiac abnormalities. In particular, our data show that the involvement of

endothelin-1 pathway in thyroxine-induced cardiac hypertrophy/dysfunction seems to be

model-dependent and should be carefully interpreted.
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Introduction
Thyroid hormones [triiodothyronin (T3) and thyroxin (T4)] are known to have striking effects
on the heart, ranging from physiologic cardiac hypertrophy with enhanced function [1] to car-
diac dilation and heart failure [2]. Heart failure in both right ventricle (RV) and left ventricle
(LV) has been reported in 6–15% of hyperthyroid patients [3, 4]. Timely and efficient treat-
ment of cardiac manifestations in hyperthyroid patients is essential because cardiovascular
complications comprise most of the deaths in these patients. The improvement of thyroid dys-
function must be the initial procedure applied in hyperthyroid patients with heart failure. Ulti-
mate treatment of hyperthyroidism is frequently achieved to improve cardiac function [3, 4];
however, increased cardiac mortality has been shown as a trend in treated hyperthyroid
patients [4, 5]. Therefore, the exact way to treat hyperthyroidism-associated heart failure
remains incompletely understood and warrants further investigation.

Typically, hyperthyroidism-induced hypertrophy is more distinct in the RV than in the LV
[6, 7]. Indeed, RV hypertrophy and RV dysfunction are key prognostic determinants of pulmo-
nary artery hypertension (PAH) that is strongly linked to hyperthyroidism in both animals and
humans [7–9]. Therefore, pharmacological treatments that target PAH and associated RV
remodeling could be potential candidates for the treatment of marked RV remodeling in
hyperthyroidism. Moreover, drugs that have been proven to improve both RV and LV remod-
eling may represent a standard therapy for hyperthyroidism-associated cardiomyopathy on the
whole.

A number of growth factors that belong to transmembrane receptor tyrosine kinases such
as platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) have
been shown to be involved in the abnormal cellular responses linked to pulmonary remodeling
[10]. Experimental and clinical studies have revealed that PDGF inhibitors can decrease PAH
[11, 12]. In addition, based on their role in vascular smooth muscle and myocardial hypertro-
phy serine/threonine kinases such as the Raf signaling pathway signify an attractive target for
intervention in PAH [13, 14]. Contrasting to the majority of tyrosine kinases that are not
expressed in the heart, serine/threonine kinases have been linked to myocardial hypertrophy.
For instance, the Raf-1 has been verified as a key determinant of myocardial hypertrophy in
mice following aortic banding [10, 14]. Recent reports have shown that the multikinase (raf1/b,
VEGFR, PDGFR) inhibitor, sorafenib, can prevent pulmonary remodeling and improves car-
diac function in experimental pulmonary hypertension. It has been concluded that combined
inhibition of tyrosine and serine/threonine kinases may provide an option to treat PAH and
associated RV remodeling [8, 10]. Beneficial effects of sorafenib on RV remodeling/dysfunction
were attributed to the inhibition of Raf/MEK/ERK pathway [10], where ERK activation has
been previously shown to be involved in the development of T4-induced cardiac hypertrophy
[15].

The phosphodiesterase (PDE)-5 is a member of cyclic nucleotide PDE enzymes family that
exclusively catalyzes cyclic guanosine monophosphate (cGMP), and its inhibition increases
intracellular levels of cGMP [16]. PDE-5 inhibitors through targeting nitric oxide (NO)-regu-
lated cGMP in penile vasculature result in smooth muscle relaxation, vasodilatation and
increased blood flow [17]. Nonetheless, the functional impact of PDE-5 inhibition is not
restricted to the human penis and it exists in different parts in the body, including pulmonary
and systemic vasculature as well as hypertrophied myocardium [17]. Currently, PDE-5 inhibi-
tors such as sildenafil and tadalafil are approved for PAH management [18]. Through their
vasodilating effects on systemic and pulmonary blood vessels as well as their direct protecting
effects on cardiomyocytes, PDE-5 inhibitors could be promising treatments for cardiovascular
diseases [17]. In this regard, PDE-5 inhibitors demonstrated cardioprotective effects against
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cardiac remodeling, cardiac injury and LV failure [19–28] as well as PAH and RV failure both
in animals [29] and humans [30]. Interestingly, PDE-5 inhibitors have been revealed to exert
their protective effects through many signaling pathways, which are also common causative
factors of T4-induced cardiac hypertrophy/dysfunction, such as oxidative stress, cardiomyo-
cyte apoptosis, PI3K/Akt and ERK ½ [16, 17, 20, 31–34].

Endothelin-1 (ET-1) is a vasoactive peptide that works via activating 2 homologous G pro-
tein–coupled receptor subtypes, endothelin A (ETA) and endothelin B (ETB) [35]. ET-1 has
been involved in the progression of heart failure. Plasma ET-1 levels as well as cardiac expres-
sion of ET-1 and its receptors, ETA and ETB, are elevated in experimental animal models and
in patients of heart failure [36–41]. Additionally, the Food Drug and Administration has
approved the ET-1 receptor blockers for the treatment of PAH. Previous reports have proposed
that a blockade of both ETA and ETB receptors is required to attain optimal efficacy [42]. Inci-
dentally, dual ET-1 receptor antagonists such as bosentan and macitentan have been shown to
improve symptoms and delay time to clinical worsening in PAH patients [43, 44]. Besides, they
have been demonstrated to reverse PAH and RV remodeling in experimental animal models
[35, 42, 45]. Importantly, previous reports have demonstrated that ET-1 contributes to cardiac
hypertrophy and increased susceptibility to ischemia/reperfusion-induced ventricular fibrilla-
tion in the hyperthyroid myocardium [46–49].

Taking these findings into account, we sought to assess the functional impact of multikinase
(raf1/b, VEGFR, PDGFR) inhibitor (Sorafenib), PDE-5 inhibitor (Tadalafil), and dual ET-1
receptor blocker (Macitentan) on the T4-induced cardiac hypertrophy and associated altered
responses of the contractile myocardium both in-vivo at the whole heart level and ex-vivo at
the cardiac tissue level using isolated papillary muscles from the RV of the mouse hearts.

Methods

Animals
Male FVB/N Mice (7–9 months old) were purchased from the Jackson Laboratory (ME, USA)
and maintained at the Research Animal Facility of The Ohio State University. The experimen-
tal procedures and protocols used in this study were approved by the Animal Care and Use
Committee of the Ohio State University, conforming to the Guide for the Care and Use of Lab-
oratory Animals published by the United States National Institutes of Health (National Insti-
tutes of Health publication No. 85–23, revised 1996).

Thyroxin (T4) and Drug Treatments
Sodium-L-thyroxin, T4, from Sigma-Aldrich (MO, USA) was prepared as previously described
[50], and injected intraperitoneally at a once-daily dose of 500 μg/kg/day for two weeks [51,
52]. Sorafenib and tadalafil from Cayman Chemical (MI, USA) were dissolved in dimethyl sulf-
oxide (DMSO), freshly diluted with PBS (final DMSO concentration was 10%), and adminis-
tered by intraperitoneal (I.P) injection. Sorafenib was administered at a dose of 10 mg/kg/day
that has been shown to reverse PAH, RV remodeling and improve RV function in mice [8, 10].
Higher sorafenib doses, 30 mg/kg/day/I.P or 60 mg/kg/day/oral, have been shown to be cardio-
toxic in cardiovascular-compromised mice [53] or result in excessive weight loss and death in
nude mice [54], respectively. Thus, we did not go beyond the 10 mg/kg for this drug. On the
other hand, tadalafil was used at a dose of 1 mg/kg/day/I.P (tadalafilIP) [20, 23, 55]. Also, tada-
lafil was suspended in PBS and administered by oral gavage in another group of mice at a dose
of 4 mg/kg/day (tadalafilOr) [21, 22]. It was previously reported that both these doses/route of
administration combinations were chosen based on the interspecies dose extrapolation scaling
to result in plasma concentrations equivalent to a human dose of 20 mg/day and to be

Sorafenib, Tadalafil, Macitentan and Thyroxin-Induced Cardiomyopathy

PLOS ONE | DOI:10.1371/journal.pone.0153694 April 15, 2016 3 / 18



cardioprotective in mice [20–23, 55]. In addition, macitentan from Focus Synthesis LLC (CA,
USA) was suspended in carboxymethylcellulose (CMC) solution [0.5% (wt/vol) carboxymeth-
ylcellulose sodium, 0.9% (wt/vol) NaCl, 0.4% (vol/vol) polysorbate, 0.9% (vol/vol) benzyl alco-
hol in deionized water] and administered by oral gavage at doses of 30 mg/kg/day (low dose:
macitentanLD) and 100 mg/kg/day (high dose: macitentanHD). Although 10 mg/kg appeared to
be the first maximal effective dose on hemodynamics for macitentan, previous studies used
higher doses of 30 mg/kg and 100 mg/kg to ensure a positive effect on remodeling, and we
decided to use the same high doses as described before [35, 42, 45]. Finally, all vehicles includ-
ing the T4-vehicle (control), 10% DMSO and CMC solutions were administered by the same
route of administration of their corresponding drugs for comparison. All drugs and vehicles
were administered every day prior to T4 during the whole treatment period of the two weeks.
A total of 141 mice were divided into 9 groups based on treatment as follows: Control: n = 22,
T4: n = 34, DMSO: n = 14, Sorafenib: n = 13, TadalafilIP: n = 22, TadalafilOr: n = 8, CMC:
n = 10, MacitentanLD: n = 10, MacitentanHD: n = 8.

At the end of the treatment period, animals underwent blood pressure, echocardiography
and electrocardiogram analyses. Thereafter, animals were sacrificed; heart muscles were
excised and processed for further ex-vivo experiments.

Blood Pressure Measurements
Blood pressure was measured noninvasively in conscious untrained mice by the tail cuff
method using a 6-Channel CODA High Throughput Acquisition system (Kent Scientific Cor-
poration, Torrington, CT, USA) as previously described [51, 52]. Briefly, each experimental
session consisted of 10 acclimatization cycles followed by 10 blood pressure measurements
cycles. Only accepted cycles as identified by the blood pressure measurement software are
included. The average of accepted cycles from one session was used for systolic, diastolic, and
mean arterial blood pressure in each mouse.

Echocardiography
In-vivo LV dimension and contractile function in mice were evaluated using a high-frequency
ultrasound imaging system (VEVO 2100, Visual Sonics, Toronto, ON, Canada) as previously
described [50–52] with minor changes. Experimental mice were anesthetized with isoflurane at a
concentration of 3% and then maintained at 1.5% isoflurane using nasal prongs during the whole
procedure. The measurements were taken from the parasternal short-axis view inM-mode to
view the LVmovement during systole and diastole corresponding to the electrocardiogram. All
data and imaging were analyzed by the Visual Sonics Cardiac Measurements Package.

Electrocardiogram (ECG)
ECG parameters including heart rate (HR), PR, QRS, and QT intervals were recorded noninva-
sively in conscious unrestrained mice using the ECGenie system (Mouse Specifics, Inc, MA) as
we previously reported [51]. Mice were placed onto the recording platform for sufficient time
(about 30 minutes) to acclimate and trigger recordings when their paws are in contact with the
recording electrodes. All data were then analyzed by e-MOUSE, a Physiological Data Analysis
and Database Portal.

Heart Weight, Cardiac Muscle Preparation and Experimental Setup
First, mice were weighed, and then administered heparin by intraperitoneal injection. Five
minutes later mice were euthanized by cervical dislocation. After bilateral thoracotomy, hearts
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were rapidly excised and placed in Krebs–Henseleit buffer containing (in mmol/L): 120 NaCl,
5 KCl, 2 MgSO4, 1.2 NaH2PO4, 20 NaHCO3, 0.25 Ca

2+, and 10 glucose, equilibrated with 95%
O2- 5% CO2, resulting in a pH of 7.4. Additionally, 20 mmol/L 2,3-butanedione monoxime
(BDM) was added to the dissection buffer to prevent cutting injury [51, 52]. Non-cardiac tis-
sues, such as pieces of lung, were carefully removed. Hearts were blotted gently on Kimwipes
and then rapidly transferred to a small weigh dish. This dish contained clean oxygenated
Krebs–Henseleit/BDM buffer that was tarred to zero on an electronic analytical balance to get
the exact wet heart weight. Heart/body weight ratios were then calculated and expressed as mg/
g. Hearts were then carefully opened, repeatedly perfused with the same oxygenated Krebs–
Henseleit/BDM buffer, and blood was thoroughly washed out. Uniform linear papillary mus-
cles were carefully dissected from the RV. The dimensions of muscles were measured using a
calibration reticule in the ocular of the dissection microscope (40x, resolution ~ 10 μm). The
cross-sectional areas were calculated assuming ellipsoid cross-sectional shapes. Average
dimensions (width x thickness x length) were not significantly different compared to T4 (0.39
x 0.25 x 0.80 mm) as follows: Control (0.33 x 0.21 x 0.91 mm), DMSO (0.38 x 0.25 x 0.71 mm),
sorafenib (0.31 x 0.20 x 0.82 mm), tadalafilIP (0.38 x 0.26 x 0.79 mm), tadalafilOr (0.32 x 0.21 x
0.91 mm), CMC (0.30 x 0.19 x 0.73 mm), macitentanLD (0.30 x 0.19 x 0.58 mm) and maciten-
tanHD (0.31 x 0.20 x 0.75 mm). P values are 0.0929, 0.0829, and 0.4411, respectively.

With the use of the dissection microscope, muscles were mounted between basket-shaped
extension of a force transducer (KG7, Scientific Instruments, Heidelberg, Germany) and a
hook (valve end) connected to a micromanipulator as previously described [51, 52]. Muscles
were superfused with the same buffer at 37.5°C as above (with the exception that BDM was
omitted) and stimulated at 4 Hz. Extracellular Ca2+ concentration was raised to 2 mmol/L and
muscles were allowed to stabilize for at least 30 minutes before the experimental protocol was
initiated. As in our previous reports [51, 52], the 4 Hz baseline was selected rather than a more
physiological 12 Hz. This was done in order to minimize run-down of the preparation [56].
However, to study more physiological frequencies, 12 Hz contractions were also assessed, but
only for brief periods. Generally, muscles were stretched to an optimal length where a small
increase in length resulted in nearly equal increases in resting tension and active developed ten-
sion. This length was selected to be comparable to the maximally attained length in-vivo at the
end of diastole [57].

To obtain a broad scope of quantitative data to dissect contractile function and dysfunction,
two of the three main mechanisms utilized in-vivo to physiologically modify force of contraction,
frequency-dependent activation, and β-adrenergic stimulation were assessed in mouse papillary
muscles under near physiological conditions as previously described [51, 52]. We assessed the
effect of increasing stimulation frequencies between 4 and 14 Hz, spanning the entire in-vivo
range of the mouse. At each frequency, forces were allowed to reach steady state before data were
recorded. The effects of β-adrenergic stimulation were assessed by a concentration–response
curve with isoproterenol (10−9–10−6 mol/l) at a baseline stimulation frequency of 4 Hz.

In all experiments performed peak isometric developed force (Fdev) was determined and
normalized to the cross-sectional area of the muscle. Additionally, as a force-independent
parameter of force decay kinetics, time to peak force (TTP), and time from peak force to 50%
relaxation (RT50) were determined. Muscles of a Fdev of at least 5 mN/mm2 were only
included in the analysis.

Data Analysis and Statistics
Data are presented as mean ± SEM and were analyzed by one-way analysis of variance
(ANOVA) followed by Dunnett Multiple Comparisons post-hoc test, comparing all groups to
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T4, and/or two-way ANOVA. A two-tailed value of P� 0.05 was considered statistically
significant.

Results
At the end of the treatment period there was no significant difference in the body weights of all
groups except for the sorafenib-treated mice that exhibited a significantly lower body weights
compared to those of T4-treated mice (p< 0.01) (Table 1). Consistent with our previous find-
ings [51, 52], heart weights and heart weight/body weight ratios as isolated parameters were
significantly increased by T4 treatment compared to control (p< 0.01), confirming the devel-
opment of cardiac hypertrophy in these mice. However, none of the drug treatments were able
to attenuate these increases in the T4-treated mice (Table 1). Conversely, sorafenib resulted in
a further increase in the heart weight/body weight ratio compared to T4-treated mice
(p< 0.05), most probably due to significantly lower final body weights in these mice (Table 1).

Assessment of cardiac dimensions by echocardiography revealed significant increases in
both LV mass (148 ± 6 mg; p< 0.01) (Fig 1A) and LV mass/body weight ratio (5.10 ± 0.15 mg/
g; p< 0.01) (Fig 1B) of the hearts of T4-treated mice compared to those of control (110 ± 4
mg, and 3.89 ± 0.12 mg/g, respectively), which confirms our morphological data. Again, none
of the drug treatments were able to attenuate these increases in the LV mass (DMSO: 163 ± 8
mg, sorafenib: 148 ± 10 mg, tadalafilIP: 151 ± 5 mg, tadalafilOr: 172 ± 11 mg, CMC: 158 ± 6 mg,
macitentanLD: 150 ± 7 mg and macitentanHD: 149 ± 4 mg) (Fig 1A) or in the LV mass/body
weight ratio (DMSO: 5.57 ± 0.25 mg/g, sorafenib: 5.75 ± 0.25 mg/g, tadalafilIP: 5.33 ± 0.16 mg/
g, tadalafilOr: 5.77 ± 0.34 mg/g, CMC: 5.52 ± 0.22 mg/g, macitentanLD: 5.57 ± 0.28 mg/g and
macitentanHD: 5.19 ± 0.16 mg/g) (Fig 1B) of the hearts of T4-treated mice. In line with our pre-
vious data [51, 52], echocardiography analysis of the mouse hearts showed that LV systolic
functions were compromised in the hearts of T4-treated mice as evident by significantly
decreased ejection fraction (EF) (55.02 ± 1.41%; p< 0.01) (Fig 1C) and fractional shortening
(FS) (28.50 ± 0.93%; p< 0.01) (Fig 1D) compared to those of control (EF: 68.05 ± 0.97% and
FS: 37.53 ± 0.78%). Still, none of the drug treatments were able to improve the EF (DMSO:
56.32 ± 1.30%, sorafenib: 54.31 ± 2.37%, tadalafilIP: 60.10 ± 1.72%, tadalafilOr: 54.14 ± 2.41%,
CMC: 55.62 ± 1.84%, macitentanLD: 56.87 ± 2.54% and macitentanHD: 59.33 ± 1.76%) (Fig 1C)
or FS (DMSO: 29.24 ± 0.87%, sorafenib: 28.05 ± 1.73%, tadalafilIP: 32.04 ± 1.19%, tadalafilOr:

Table 1. Morphological Data.

Group BW (g) HW (mg) HW/BW (mg/g)

Control 28.3 ± 0.4 131.3 ± 1.7* 4.65 ± 0.05*

T4 28.9 ± 0.5 173.1 ± 2.8 6.02 ± 0.07

DMSO + T4 29.3 ± 0.7 179.4 ± 5.7 6.13 ± 0.15

Sorafenib + T4 25.6 ± 1.0* 163.7 ± 5.5 6.45 ± 0.17*

TadalafilIP + T4 28.3 ± 0.5 176.1 ± 3.5 6.22 ± 0.08

TadalafilOr + T4 29.8 ± 0.8 174.2 ± 6.0 5.84 ± 0.09

CMC + T4 28.6 ± 0.4 171.5 ± 6.5 6.01 ± 0.20

MacitentanLD + T4 27.1 ± 0.7 166.7 ± 3.4 6.16 ± 0.10

MacitentanHD + T4 28.8 ± 0.4 172.0 ± 2.2 5.98 ± 0.07

BW: body weight, HW: heart weight, Control; n = 21, Thyroxin (T4); n = 33, Dimethyl sulfoxide (DMSO); N = 14, Sorafenib; n = 13, TadalafilIP
(intraperitoneal, 1 mg/kg); n = 21, TadalafilOr (oral, 4 mg/kg); n = 8, carboxymethylcellulose (CMC); n = 10, MacitentanLD (Low dose: 30 mg/kg); n = 10,

MacitentanHD (High dose: 100 mg/kg); n = 8.

*: indicates a significant change as revealed by one-way ANOVA followed by Dunnett Multiple Comparisons post-hoc test, comparing all groups to T4.

doi:10.1371/journal.pone.0153694.t001
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28.03 ± 1.60%, CMC: 28.81 ± 1.24%, macitentanLD: 29.71 ± 1.61% and macitentanHD:
31.28 ± 1.18%) (Fig 1D) compared to those of T4-treated mice.

In close agreement with our previous reports on such treatment [51, 52], T4-treated mice
exhibited significant increases in systolic (p< 0.01), diastolic (p< 0.05) and mean arterial
pressure (MAP) (p< 0.01) compared to those in control. Yet, none of the drug treatments
were able to reverse these increases in the T4-treated mice (Table 2).

On the other hand, investigating the electrical activity of the mouse hearts using the ECG
analysis demonstrated similar values for PR, QRS, and QT intervals in both control and
T4-treated mice, and it did not reveal any sign of arrhythmia as we reported before [51].
Besides, none of the drug treatments affected these parameters or resulted in any abnormalities
in the cardiac electrical activity following T4 treatment (Table 3).

In the current study, mouse HR values have been obtained from 3 different assessments,
including the tail cuff, echocardiography and electrocardiogram. HR of the conscious

Fig 1. Echocardiography Analysis of the Mouse Hearts. (A) Representative bar graphs show left ventricular (LV) mass, (B) LV mass/body weight (BW)
ratio, (C) ejection fraction (EF), and (D) fractional shortening (FS) in mice. Control; n = 22, Thyroxin (T4); n = 34, Dimethyl sulfoxide (DMSO); N = 14,
Sorafenib; n = 13, TadalafilIP (intraperitoneal, 1 mg/kg); n = 22, TadalafilOr (oral, 4 mg/kg); n = 8, carboxymethylcellulose (CMC); n = 10, MacitentanLD (Low
dose: 30 mg/kg); n = 10, MacitentanHD (High dose: 100 mg/kg); n = 8. *: indicates a significant change as revealed by one-way ANOVA followed by Dunnett
Multiple Comparisons post-hoc test, comparing all groups to T4.

doi:10.1371/journal.pone.0153694.g001
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restrained and unrestrained mice using tail cuff and electrocardiogram, respectively, revealed
no significant difference between T4-treated mice and all other treatments (Table 4). Con-
versely, echocardiographic analysis of anaesthetized mice showed a significant increase in the
HR of T4-treated mice compared to control (p< 0.01). However, none of the drug treatments
were able to decrease such increase (Table 4).

Physiological changes in cardiac contractile strength are mainly governed via three mecha-
nisms: length-dependent activation (Frank-Starling mechanism), frequency-dependent activa-
tion (Bowditch effect), and adrenergic stimulation (fight/flight response). To characterize
potential deficiencies in cardiac contractile strength, we tested the contractile performance on
papillary muscles isolated from the RV of the mouse hearts while only varying frequency-
dependent activation and adrenergic stimulation because the length-dependent activation is
preserved in the hearts of these T4-treated mice as we have recently described [52]. Similar to
our previous results [51], Fdev of papillary muscles from the RV of T4-treated mouse hearts
was not statistically significant from those of the control mice under near physiological temper-
ature and at a preload resulting in sarcomere length around the in-vivo end-diastolic values of

Table 2. Blood Pressure of Mice.

Group SBP (mmHg) DBP (mmHg) MAP (mmHg)

Control 122 ± 7* 93 ± 7* 101 ± 7*

T4 144 ± 3 109 ± 3 120 ± 3

DMSO + T4 147 ± 4 116 ± 4 126 ± 4

Sorafenib + T4 149 ± 4 112 ± 5 124 ± 5

TadalafilIP + T4 144 ± 2 111 ± 2 122 ± 2

TadalafilOr + T4 132 ± 4 103 ± 4 112 ± 4

CMC + T4 151 ± 2 119 ± 3 130 ± 3

MacitentanLD + T4 148 ± 4 116 ± 4 126 ± 4

MacitentanHD + T4 149 ± 2 121 ± 2 130 ± 2

SBP: systolic blood pressure, DBP: diastolic blood pressure, MAP: mean arterial pressure, Control; n = 11, Thyroxin (T4); n = 22, Dimethyl sulfoxide

(DMSO); N = 6, Sorafenib; n = 13, TadalafilIP (intraperitoneal, 1 mg/kg); n = 7, TadalafilOr (oral, 4 mg/kg); n = 8, carboxymethylcellulose (CMC); n = 10,

MacitentanLD (Low dose: 30 mg/kg); n = 10, MacitentanHD (High dose: 100 mg/kg); n = 8.

*: indicates a significant change as revealed by one-way ANOVA followed by Dunnett Multiple Comparisons post-hoc test, comparing all groups to T4.

doi:10.1371/journal.pone.0153694.t002

Table 3. ElectrocardiogramAnalysis of Mice.

Group PR (ms) QRS (ms) QT (ms)

Control 24 ± 1 11 ± 0.4 44 ± 1

T4 24 ± 1 11 ± 1 42 ± 1

DMSO + T4 23 ± 2 10 ± 1 42 ± 2

Sorafenib + T4 24 ± 1 11 ± 1 42 ± 1

TadalafilIP + T4 23 ± 1 12 ± 0.4 42 ± 1

TadalafilOr + T4 21 ± 1 10 ± 1 41 ± 1

CMC + T4 24 ± 1 10 ± 1 42 ± 1

MacitentanLD + T4 23 ± 1 10 ± 1 43 ± 2

MacitentanHD + T4 21 ± 2 11 ± 1 43 ± 2

ms: millisecond, Control; n = 7, Thyroxin (T4); n = 12, Dimethyl sulfoxide (DMSO); N = 6, Sorafenib; n = 9,

TadalafilIP (intraperitoneal, 1 mg/kg); n = 7, TadalafilOr (oral, 4 mg/kg); n = 8, carboxymethylcellulose

(CMC); n = 10, MacitentanLD (Low dose: 30 mg/kg); n = 9, MacitentanHD (High dose: 100 mg/kg); n = 7.

doi:10.1371/journal.pone.0153694.t003
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2.2 μm [57]. The Fdev was also maintained in all other groups except for the tadalafilOr and the
CMC groups which unexpectedly showed significantly higher Fdev values (p< 0.05 and
p< 0.01, respectively) compared to T4 group (Table 5). In contrast, muscles from T4-treated
mice contracted and relaxed more rapidly compared to those from control mice as indicated
by significantly decreased TTP (p< 0.01) and RT50 (p< 0.01). None of the drug treatments
were able to significantly change the TTP or the RT50 following T4 treatment except for the
sorafenib, which only returned the RT50 close to control value (p< 0.05) (Table 5).

Fdev was determined not only at the baseline frequency of stimulation of 4 Hz but also
within the murine in-vivo physiological range (8–12 Hz), thereby allowing for a less ambiguous

Table 4. Heart Rate Analysis of Mice.

Heart Rate (BPM)

Group Tail Cuff Echocardiography Electrocardiogram

Control 742 ± 16 476 ± 9* 698 ± 22

T4 702 ± 13 575 ± 9 707 ± 22

DMSO + T4 706 ± 15 556 ± 14 669 ± 19

Sorafenib + T4 699 ± 13 600 ± 9 711 ± 15

TadalafilIP + T4 712 ± 14 551 ± 10 717 ± 18

TadalafilOr + T4 707 ± 17 611 ± 14 706 ± 7

CMC + T4 685 ± 12 592 ± 9 728 ± 16

MacitentanLD + T4 669 ± 20 568 ± 8 705 ± 26

MacitentanHD + T4 661 ± 14 585 ± 8 697 ± 11

BPM: beat per minute. Tail Cuff: Control; n = 10, Thyroxin (T4); n = 21, Dimethyl sulfoxide (DMSO); N = 6, Sorafenib; n = 13, TadalafilIP (intraperitoneal, 1

mg/kg); n = 7, TadalafilOr (oral, 4 mg/kg); n = 8, carboxymethylcellulose (CMC); n = 10, MacitentanLD (Low dose: 30 mg/kg); n = 10, MacitentanHD (High

dose: 100 mg/kg); n = 8. Echocardiography: Control; n = 22, T4; n = 34, DMSO; N = 14, Sorafenib; n = 13, TadalafilIP; n = 22, TadalafilOr; n = 8, CMC;

n = 10, MacitentanLD; n = 10, MacitentanHD; n = 8. Electrocardiogram Analysis: Control; n = 7, T4; n = 12, DMSO; N = 6, Sorafenib; n = 9, TadalafilIP;

n = 7, TadalafilOr; n = 8, CMC; n = 10, MacitentanLD; n = 9, MacitentanHD; n = 7.

*: indicates a significant change as revealed by one-way ANOVA followed by Dunnett Multiple Comparisons post-hoc test, comparing all groups to T4.

doi:10.1371/journal.pone.0153694.t004

Table 5. Contractile Profile of Isolated Right Ventricular Papillary Muscles.

Group Fdev (mN/mm2) TTP (ms) RT50 (ms)

Control 14 ± 2 49 ± 1* 23 ± 1*

T4 11 ± 1 41 ± 1 18 ± 1

DMSO + T4 14 ± 2 38 ± 1 18 ± 1

Sorafenib + T4 15 ± 4 44 ± 4 22 ± 2*

TadalafilIP + T4 12 ± 2 41 ± 1 17 ± 1

TadalafilOr + T4 21 ± 3* 41 ± 1 16 ± 0.4

CMC + T4 24 ± 5* 39 ± 1 17 ± 1

MacitentanLD + T4 16 ± 3 39 ± 1 16 ± 1

MacitentanHD + T4 19 ± 3 38 ± 1 16 ± 1

Fdev: isometric developed force, TTP: time to peak, RT50: 50% relaxation time, Control; n = 12, Thyroxin

(T4); n = 15, Dimethyl sulfoxide (DMSO); N = 10, Sorafenib; n = 9, TadalafilIP (intraperitoneal, 1 mg/kg);

n = 10, TadalafilOr (oral, 4 mg/kg); n = 8, carboxymethylcellulose (CMC); n = 8, MacitentanLD (Low dose: 30

mg/kg); n = 8, MacitentanHD (High dose: 100 mg/kg); n = 7.

*: indicates a significant change as revealed by one-way ANOVA followed by Dunnett Multiple

Comparisons post-hoc test, comparing all groups to T4.

doi:10.1371/journal.pone.0153694.t005
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extrapolation to in-vivo outcome. Two-way ANOVA showed that at least one of the drugs/fre-
quencies differs from the others with respect to relative tension change (p = 0.000). Repeated
one-way ANOVA at each frequency clearly showed that muscles from control mice positively
responded to increasing frequencies signifying a positive force-frequency relationship (FFR);
however, muscles from T4-treated mice showed significantly (p< 0.05 at 6 Hz, and p< 0.01 at
all other frequencies) lower changes in the Fdev at all tested frequencies in regard to its value at
the basal frequency of 4 Hz compared to those of control, as we demonstrated before [51, 52].
None of the drug treatments were able to reverse this negative FFR in the T4-treated mice (Fig
2A). The effect of β-adrenergic stimulation was assessed by a concentration–response curve
with isoproterenol (10−9–10−6 mol/l) at a baseline stimulation frequency of 4 Hz. Two-way
ANOVA revealed that at least one of the drugs/isoproterenol concentrations differs from the
others with respect to relative tension change (p = 0.000). One-way ANOVA showed that
under full β-adrenergic stimulation (1 μmol/l isoproterenol), muscles from T4-treated mice
exhibited significantly lowered responses (p< 0.05) versus those from control mice as we
showed before [51, 52]. Nevertheless, none of the drug treatments were able to recover this
blunted isoproterenol response in the T4-treated mice (Fig 2B). Blunted responses in the
T4-treated mice could be possibly due to the development of arrhythmia. The % of muscles
that exhibited arrhythmic behavior varied based on isoproterenol concentration, as shown in
Fig 2C. At full μ-adrenergic stimulation (1 μmol/l isoproterenol): 13 out of 15 muscles from T4
group (87%), 8 out of 10 muscles from DMSO group (80%), 6 out of 9 muscles from sorafenib
group (67%), 6 out of 10 muscles from tadalafilIP group (60%), 5 out of 8 muscles from tadalafi-
lOr group (63%), 5 out of 8 muscles from CMC group (63%), 6 out of 7 muscles from

Fig 2. Physiological Modification of the Contractile Force of Isolated Right Ventricular Papillary Muscles. (A) Frequency-dependent activation;
Isometric developed force values are expressed as a fraction of its corresponding value at the basal frequency of 4 Hz and presented as mean ± SEM, and
(B) β–adrenergic stimulation; Isometric developed force values are expressed as a fraction of its corresponding value at the basal frequency of 4 Hz before
isoproterenol addition and presented as mean ± SEM. Control; n = 12, Thyroxin (T4); n = 15, Dimethyl sulfoxide (DMSO); N = 10, Sorafenib; n = 9, TadalafilIP
(intraperitoneal, 1 mg/kg); n = 10, TadalafilOr (oral, 4 mg/kg); n = 8, carboxymethylcellulose (CMC); n = 8, MacitentanLD (Low dose: 30 mg/kg); n = 8,
MacitentanHD (High dose: 100 mg/kg); n = 7. Note: in the β–adrenergic stimulation curve (B), all isometric developed force values at which the muscles
exhibited an arrhythmic behavior were excluded from the analysis. For example, the MacitentanHD group has no representative point at isoproterenol
concentration of 1 μM, because all muscles became arrhythmic at this concentration [i.e. 7 out of 7 (100%)]. (C) Development of Arrhythmia: % of
arrhythmic muscles at different isoproterenol (Iso) concentrations. The absence of the representative bar of any group at any Iso concentration on the curve
means the absence of arrhythmia at this concentration. *: indicates a significant change as revealed by one-way ANOVA followed by Dunnett Multiple
Comparisons post-hoc test, comparing all groups to T4. +: indicates a significant change as revealed by two-way ANOVA.

doi:10.1371/journal.pone.0153694.g002
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macitentanLD group (86%) and 7 out of 7 muscles from macitentanHD group (100%) showed
arrhythmic behavior versus 2 of 12 muscles in control mice (17%) (Fig 2C).

Discussion
The goal of the current study was to test the hypothesis that multikinase inhibitor, sorafenib,
PDE-5 inhibitor, tadalafil, and dual endothelin-1 receptor blocker, macitentan, could be poten-
tial therapies for cardiac remodeling, RV contractile abnormalities and/or LV systolic dysfunc-
tion in experimental hyperthyroidism.

Consistent with published data [51, 52, 58], T4 increased blood pressure of mice in the cur-
rent study. However, sorafenib, tadalafil, and macitentan at different doses could not decrease
such increase following T4 treatment. Typically, VEGF is a known vasodilator and its inhibi-
tion causes elevation of blood pressure, a well-known side effect of this class of anticancer
drugs [59]. Sorafenib has been reported to increase blood pressure in both animals [60] and
humans [61]. In this study, sorafenib could not decrease T4-induced hypertension in mice;
however, it did not cause any further increase in the blood pressure of these mice. Alternatively,
PDE-5 inhibitors are known to cause a moderate transient decline in blood pressure, which
reveals the existence of PDE-5 in vascular smooth muscle cells and the NO/cGMP pathway
role in the systemic blood pressure regulation [62]. Yet, some reports showed that PDE-5
inhibitors decrease blood pressure both in animals [63] and humans [64] even as other studies
showed no effect in both species [65, 66], respectively. Dishy et al. [66] have attributed these
inconsistencies to the multifactorial causes/mechanisms of decreased NO and subsequent
endothelial dysfunction, with the possibility of being improved by PDE-5 inhibitors in some
conditions but not in the others as we demonstrated here. Similarly, inconsistent results have
been reported about the effects of endothelin-1 receptor blockers on blood pressure, where
macitentan and bosentan were shown to decrease the systemic blood pressure in some animal
models [41, 49, 59] but not in others [60–62]. In agreement with these latter reports, maciten-
tan could not significantly decrease the blood pressure of the T4-treated mice in this study.

The development of cardiac hypertrophy following T4 treatment is well documented [31–
33, 50–52, 58], and has been repeatedly linked to LV dysfunction [2, 31–33, 51, 52] as well as
marked RV contractile abnormalities, as we previously described [51, 52]. Consistent with
these data, we showed here that T4 treatment resulted in cardiac hypertrophy as indicated by
increased heart weigh, heart weight/body weight ratio, LV mass and LV mass/body weight
ratio of mice. Besides, it caused considerable in-vivo LV contractile dysfunction as evident by
significantly reduced LV ejection fraction (EF) and fractional shortening (FS). Similarly, iso-
lated RV papillary muscles from T4-treated mice demonstrated the hallmarks of hypertrophied
and dysfunctional hearts, which are negative FFR and blunted β-adrenergic response along
with decreased contraction/relaxation times. However, sorafenib, tadalafil or macitentan at all
studied doses were not able to significantly attenuate the T4-induced abnormalities, including
the cardiac hypertrophy, in-vivo LV dysfunction or ex-vivo RV contractile defects.

It has been proposed that combined inhibition of tyrosine and serine/threonine kinases by
drugs such as sorafenib (10 mg/kg/day) may offer an option to treat PAH and associated RV
remodeling in different preclinical models [8, 10]. Yet, numerous kinase inhibitors have been
linked to marked cardiovascular toxicities, including contractile dysfunction and heart failure
[53]. Incidentally, sorafenib (30–40 mg/kg/day) has been reported to induce myocyte necrosis,
even in the absence of cardiac injury, and to dramatically increase mortality when administered
in the presence of myocardial infarction [53]. Conversely, a retrospective analysis of the impact
of sorafenib on cardiac function in patients with thyroid cancer revealed that cardiac toxicities
did not raise a concern but, cardiac monitoring is still recommended [67]. In the current study,
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sorafenib could not reverse T4-induced cardiac defects, but, it also did not result in any major
deterioration of cardiac hypertrophy or cardiac dysfunction compared to T4-treated mice. The
increase in heart weight/body weight ratio in sorafenib-treated mice is clearly attributed to the
significantly reduced body weights in these mice. Reduced body weight following sorafenib
treatment was evident both in animals [53] and human patients [68]. It is worth mentioning
that beneficial effects of sorafenib on RV remodeling/dysfunction was attributed to the inhibi-
tion of Raf/MEK/ERK pathway, a downstream of Ras signaling [10]. The ineffectiveness of sor-
afenib in this study may be in close agreement with our previous report showing that Ras
signaling has no major role in the T4-induced cardiomyopathy in our model [51].

Also, PDE-5 inhibitors were found to exhibit cardioprotective effects against cardiac remod-
eling, cardiac injury and LV [19–28] as well as RV failure both in animals [29] and humans
[30]. However, they failed to attain the same efficacy in other studies [69, 70]. In harmony with
these latter studies, our current data showed that tadalafil could not attenuate cardiac hypertro-
phy or reverse cardiac contractile defects in the T4-treated mice. Of note, the most commonly
reported pathway involved in PDE-5 inhibitors-mediated cardioprotection is the NO/cGMP/
protein kinase (PK) G pathway. Nevertheless, in T4-induced hypertrophy, cGMP-PDE (PDE-
5) activity was shown to be not affected [71], and cGMP levels were either not altered [71, 72]
or decreased [73]. Similarly, PKG was found decreased [71] or unchanged in T4-induced
hypertrophy [74]. Other studies revealed that the importance of this pathway (cGMP/PKG)
was diminished [75] and that cGMP exerted negative functional effects in T4-induced hyper-
trophic myocytes independent of PKG [76]. Interestingly, nitroprusside, an activator of guany-
late cyclase that increases cGMP, when topically applied on the hearts of hyperthyroid
anesthetized open-chest rabbits increased the cGMP levels without changing the hypertrophy
or hypertension in these rabbits [72]. Again, these observations support the negative outcomes
of tadalafil in this study. In contrast, cardioprotective effects of PDE-5 inhibitors have been evi-
dent through many other signaling pathways, which are also common causative factors of
T4-induced cardiac hypertrophy/dysfunction, such as oxidative stress, cardiomyocyte apopto-
sis, PI3K/Akt and ERK ½ [16, 17, 20, 31–34]. However, the lack of cardioprotective effects in
this study excludes the possibility of these pathways from being affected by tadalafil.

Likewise, numerous studies have shown that ET-1 is a key player in the development of car-
diac remodeling, LV as well as RV failure in both animals and humans [36–45]. Still, other
studies have reported the opposite in both species [77–82]. In line with the latter studies, the
dual ET-1 receptor blocker, macitentan, was not able to inhibit the T4-cardiac hypertrophy or
to improve the cardiac dysfunction under in-vivo as well as ex-vivo settings in the current
study. This may indicate that ET-1 has no major role in the T4-induced cardiomyopathy. Con-
versely, previous reports have shown that ET-1 contributes to cardiac hypertrophy and
increased susceptibility to ischemia/reperfusion-induced ventricular fibrillation in the hyper-
thyroid myocardium [46–49]. Shohet et. al. [46] reported that mice with cardiomyocyte-spe-
cific disruption of the ET-1 gene are resistant to hyperthyroid cardiac hypertrophy. In
addition, Tang et. al. [47] have demonstrated that a dual ET-1 receptor blocker, dajisentan
(CPU0213), decreased the T4-induced cardiac hypertrophy in rats. The same group revealed
that ET-1 is a key player in the increased susceptibility to ischemia/reperfusion-induced ven-
tricular fibrillation in these rat hearts following T4 treatment [48, 49]. However, it is clear that
there are apparent differences between these latter animal models and the animal model used
in this study. For instance, in the study of Shohet et. al. [46], T3 treatment (1 mg/kg/I.P) in
wild-type littermates of the genetically modified mice (3–4 months) for 3 weeks resulted in car-
diac hypertrophy and preserved LVEF. In this study, however, T4 treatment (0.5 mg/kg/I.P) in
mice (7–9 months) for 2 weeks resulted in cardiac hypertrophy and significantly reduced
LVEF and LVFS. Very close to these discrepancies, ET-1 has been shown to be involved in the
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cardiac hypertrophy induced by angiotensin-II [83] or sympathomimetics such as norepineph-
rine mainly through ETA receptor [84]. However, data from cardiomyocyte-specific ETA recep-
tor knockout mice have shown that ETA receptors are not necessary for either baseline cardiac
function or stress-induced cardiac response to angiotensin-II or another sympathomimetic
drug, isoproterenol [79]. Also, ET-1 has been shown to have a role in the angiotensin-II-
induced cardiac hypertrophy in mice with vascular endothelial cell specific ET-1 deficiency
[85]. Nonetheless, another study showed that it has no role in the cardiac hypertrophy induced
by transaortic constriction in the same mice [80]. Thus, it has been concluded that ET-1 stimu-
lates several cellular responses which may be conflicting based on the situations [80].

In the present study, HR has been assessed by ECG, tail cuff and echocardiography. In con-
trast to ECG and tail cuff analyses, echocardiography showed a significantly higher HR in the
T4-treated mice compared to control. However, in echocardiography, one should count the
impact of anesthesia on HR, since different anesthetic agents may cause various degrees of sup-
pression in mouse autonomic and HR [86]. Additionally, tail cuff and echocardiography allow
for the indirect HR assessment once the number of cycles of either arterial pressure waves or
cardiac contractions in a specified time is calculated, respectively. Since these methods can
only detect variations in cycle length of succeeded cardiac contractions and cannot distinguish
ectopic beats from sinus beats, the ECG is considered as the “gold standard” for the detection
of heart rate [86]. Here, ECG analysis demonstrated similar values for HR of both control and
T4-treated mice, which fall into the range of normal murine HR of 500–700 BPM, as reported
before [86]. Although T4-induced tachycardia is one of the most commonly used diagnostic
parameters for detection of hyperthyroidism HR may not always be a good predictor of hyper-
thyroidism, especially when the disease has been present for prolonged time and the hearts
progressed to heart failure [2].

Conclusions
We show here for the first time that multikinase (raf1/b, VEGFR, PDGFR), PDE-5, and
endothelin-1 pathways have no major role in T4-induced hemodynamic changes and cardiac
abnormalities. In particular, our data show that the involvement of endothelin-1 pathway in
T4-induced cardiac hypertrophy/dysfunction seems to be model-dependent and should be
carefully interpreted.
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