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Abstract 

Background:  Although malaria has been traditionally regarded as less of a problem in urban areas compared to 
neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. 
Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbani-
zation relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and 
malaria transmission have used products defining urbanization at global/continental scales developed in the early 
2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at 
administrative unit level.

Methods and results:  This study sought to discriminate an urbanization definition that is most relevant for malaria 
parasite mapping using individual level malaria infection data obtained from nationally representative household-
based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria 
transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution popu-
lation distribution data was used to determine whether population density had significant effect on malaria para-
site prevalence and if so, could population density replace urban classifications in modelling malaria transmission 
patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban 
central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression 
trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) com-
pared to the models with urbanization only.

Conclusion:  Given the challenges in uniformly classifying urban areas across different countries, population density 
provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk 
models can, therefore, be improved by including both population density and urbanization which have both been 
shown to have significant impact on malaria risk in this study.
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Background
Although malaria has been traditionally regarded as less 
of a problem in urban areas compared to neighbouring 
rural areas, the risk of malaria infection continues to exist 

in densely populated, urban areas of Africa. The process 
of urbanization and accompanying demographic change 
is associated with decreased risks of infection due to 
reduction of suitable breeding grounds for malaria vec-
tors through reduction of vegetative cover, water sur-
faces and other natural surfaces with building structures 
and other paved surfaces as well as through pollution of 
available breeding sites. The reduction of breeding sites 
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reduces the number of malaria vectors as well as their 
species diversity with the dominant malaria vectors in 
Africa, Anopheles gambiae s.s. and Anopheles funestus, 
shown not to proliferate well in urban habitats [1–4]. Low 
entomological inoculation rates (EIR) have been linked to 
high human population densities in urban areas [5, 6].

Recent efforts to map the intensity of malaria transmis-
sion in Africa have used urbanization to “force down” 
infection risks [1, 7–12]. Omumbo and colleagues [13] 
used discriminant analysis to examine impact of urbani-
zation in Kenya, Tanzania and Uganda using investiga-
tor-defined urban/rural assignments supplemented by 
the urbanization definition from the Global Rural Urban 
Mapping Project (GRUMP). The inclusion of urbaniza-
tion was found to improve the consistency of predictive 
malaria prevalence maps when compared with expert 
opinion maps [12]. However, the effects of urbanization 
were difficult to define due to discrepancies in urban 
classification, the coarse spatial resolution of climate 
data and poor coverage of malaria training data in the 
study [11, 12]. Hay and colleagues using GRUMP urban 
extents refined using population density showed urbani-
zation was associated with lower entomological inocula-
tion rates (EIR) compared to peri-urban and rural areas. 
However, there were inherent uncertainties in translation 
of EIR into prevalence of malaria infection [1]. Tatem 
et  al. [14] found that GRUMP urban extents (GRUMP-
UE) produced the most accurate match to author-defined 
urbanization. GRUMP-UE were then combined with 
population density to discriminate between malaria-rel-
evant urban and ‘peri-urban’. This definition of urbaniza-
tion has been used in recent global maps of Plasmodium 
falciparum endemicity as a prior covariate in the space–
time geo-statistical model used in predicting parasite 
prevalence [8–10].

Despite the recognition that urbanization influences 
the epidemiology of malaria, there is little consensus 
in defining urbanization for malaria parasite mapping. 
Large-scale spatial datasets of urbanization developed 
in the last two decades vary in terms of spatial and tem-
poral resolution of input census data, satellite imagery 
and spatial population allocation methods which results 
in differing extents of urban areas [15]. Previous studies 
examining the relationship between urbanization and 
malaria transmission have used products defining urban-
ization at global/continental scales developed in the early 
2000s, that overestimate actual urban extents while the 
population estimates are over 15 years old and estimated 
at administrative unit level [8–10].

Defining a consistent/accurate gradient between rural 
and urban settlements is an important factor when defin-
ing malaria transmission patterns and has an influence on 
the estimated impact of urbanization on malaria parasite 

prevalence. The transition from a rural settlement to one 
best described as urban does not follow definite bound-
ary gradations but transitions gradually similar to malaria 
transmission patterns. This study therefore sought to 
discriminate an urbanization definition that is most rel-
evant for malaria parasite mapping using individual level 
malaria infection data obtained from nationally repre-
sentative household-based surveys. Boosted regression 
tree (BRT) modelling was used to determine the effect 
of urbanization on malaria transmission and if this effect 
varied with urbanization definition. In addition, the most 
recent high resolution population distribution data was 
used to determine whether population density had sig-
nificant effect on malaria parasite prevalence and if so, 
could population density replace urban classifications in 
modelling malaria transmission patterns.

Methods
Malaria prevalence data
Malaria parasite prevalence data was assembled from 
national cluster sample household surveys: Demographic 
and Health Surveys (DHS) [16]; Malaria Indicator Sur-
vey (MIS) [17]. Data was assembled from 19 household 
surveys conducted between 2007 and 2013 in 14 malaria 
endemic countries across Africa where information on 
malaria infection prevalence and household geographic 
coordinates was available (Additional file  1: Table S1). 
For each child identified from the household survey data, 
information was also assembled on factors that might 
influence malaria prevalence at child, household and clus-
ter levels from the household survey datasets. A cluster is 
a group of adjacent households that serves as the primary 
sampling unit and is often defined using enumeration 
areas (EAs) provided by the most recent national popu-
lation census. The following child related variables were 
assembled from the survey data: child’s age in months, 
child’s gender, whether the child tested positive for P. fal-
ciparum and the malaria testing method used [micros-
copy or rapid diagnostic tests (RDT)]. Information was 
also linked on whether the child slept under an ITN the 
previous night; whether children who had been febrile in 
the last 2 weeks had received an anti-malarial drug in the 
previous 2 weeks. Variables related to the mother (care-
taker) of the index child assembled included the moth-
ers’ age and education level. Variables that related to the 
household where the child lived included the application 
of IRS during the previous year; the number of nets avail-
able in a household and household size. The household 
wealth index, a composite measure of household cumu-
lative living standards by quintiles (poorest, very poor, 
middle, fourth, and highest) was also recorded.

Finally, data on extrinsic determinants of malaria 
transmission related to the cluster where the index child 
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lived was assembled from remotely sensed environmen-
tal datasets. Geographic coordinates of each cluster 
were used to ascribe to every child-record annual mean 
temperature, temperature suitability index (TSI), pre-
cipitation, enhanced vegetation index (EVI), and malaria 
seasonality index. Two indicators of temperature were 
used in this study, annual mean temperature and temper-
ature suitability index (TSI). Annual mean temperature 
was calculated from monthly mean temperature (1950–
2000) available at 1 km resolution grids from WorldClim 
global climatology dataset [18]. TSI was developed from 
a biological model that accounts for the dependency of 
the malaria transmission cycle on temperature developed 
to provide a biologically relevant suitability index [19]. 
Information on rainfall was extracted from a synoptic 
annual mean precipitation grid calculated from monthly 
total precipitation gridded datasets obtained from 
WorldClim global climatology dataset. EVI values were 
extracted from Fourier-processed AVHRR data available 
at 1 km resolution gridded surface [20]. The influence of 
seasonal variation in malaria transmission was accounted 
for using a malaria seasonality index. The malaria sea-
sonality index was derived from daily rainfall estimates 
from the African Rainfall Estimates version 2 (RFE 2.0) 
dataset developed as a collaborative programme between 
NOAA’s Climate Prediction centre (CPC) and USAID/
Famine Early Systems Network (FEWS). Daily-accumu-
lated rainfall data between 2002 and 2009 was used to 
identify areas that received 60% of annual rainfall within 
3  months which was found to best fit seasonal clinical 
malaria profiles [21]. All extractions were done using 
the spatial analyst tool in ArcGIS 10 (ESRI, USA). The 
average value within 5  km of the cluster centre in rural 
areas and 2 km in urban areas was calculated to account 
for household dispersal with a cluster and addition-
ally account for random positional error deliberately 
introduced for confidentiality purposes in DHS surveys 
reporting HIV by up to 5 km in rural areas and 2 km or 
less in urban areas [22].

Urbanization classification
The urbanization status of the household was recorded 
during the DHS and MIS surveys, based on a national 
classification of urban sample clusters defined by national 
Central Statistics Offices (CSO). The definitions are often 
not the same across countries [23]. The different criteria 
used in defining urban areas in 14 countries included in 
the study are given in additional information (Additional 
file 1: Table S2).

More standardized, routinely available urbaniza-
tion classifications were extracted from two global 
datasets: Global Rural Urban Mapping Project Urban 
extents (GRUMP UE) and Moderate Resolution Imaging 

Spectrometer (MODIS) urban extents. GRUMP UE is 
a freely available dataset from the Centre for Interna-
tional Earth Science Information Network at 1  km spa-
tial resolution [13] derived from NOAA’s night-time 
lights dataset [24, 25] combined with settlements data. 
Urban extents are defined as contiguous lit cells from the 
night-time Lights with total population greater than 5000 
persons or approximated based on buffered settlement 
points [26, 27]. MODIS urban extents on the other hand 
are derived from supervised classification of MODIS 
satellite imagery data. Contiguous cells with >50% in 
the built-up class covering an area greater than 1  km2 
are defined as urban. In a study comparing eight exist-
ing urban area maps, MODIS urban extents were found 
to be the most accurate global urban dataset [15]. The 
gridded dataset is freely available to the public at 500 m 
resolution [28]. A fourth urbanization definition derived 
from a modification of the GRUMP UE to include a peri-
urban class defined by assigning a true urban core with 
population density ≥1000 people per km2 while the sur-
rounding urban extents with population <1000 defined 
as peri-urban areas. Population densities were derived 
from Gridded Population of the World version 3 (GPW3) 
projected to 2007. In a previous study, GRUMP UE and 
the GRUMP-modified UE were shown to be the best to 
use for malaria mapping [14]. A map comparing the four 
urbanization classifications used in this study is provided 
in Additional file 1.

Population density
The principal source of human population distribution 
data used to assess the effects of population density on 
malaria parasite prevalence was the WorldPop surface 
[29]. The WorldPop dataset provides Africa-wide grid-
ded population distribution estimates at 100  m spatial 
resolution projected to 2010 [30]. The WorldPop data-
set re-sampled to 1  km spatial resolution and projected 
to each year between 2006 and 2010 was used to extract 
population density for each cluster in the household sur-
vey dataset in their respective year of survey. Population 
density extraction was done using the spatial analyst tool 
in ArcGIS 10 (ESRI, USA). To account for household dis-
persal within a cluster, binomial interpolation technique 
was used to calculate the average population density 
within 5 km of the cluster centre.

Statistical modelling: BRT model building
Boosted regression trees (BRT) modelling was used 
to assess the impact of urbanization and popula-
tion density on malaria prevalence adjusting for the 
effect of confounding factors. Boosted regression trees 
(BRT) is a relatively novel, but increasingly important, 
method of event distribution modelling in ecology and 
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epidemiology. BRT modelling is increasingly being used 
in spatial modelling and was found very efficient in pre-
dicting species’ spatial distributions based on a set of 
environmental variables [31–33]. It has been used to 
produce soil predictive maps [34], remote sensing appli-
cations in land cover classification [28] and recently 
modelling land cover change [35].

Four separate BRT models (Models I–IV) were first 
constructed using each of the four urbanization classifi-
cations described and a set of common independent vari-
ables (Table 1). The main outcome was the probability of 
a child being malaria parasite positive. Random effects 
between the fourteen countries were controlled for in 
the model as a factor with unordered levels. A detailed 
description of BRT model parameterization and opti-
mization are provided in Additional file  1. A fifth BRT 
model (Model V) was constructed with same set of com-
mon independent variables with population density 
replacing urbanization as the main explanatory variable 

to determine the impact of population density on falcipa-
rum malaria prevalence.

For comparison purposes, a sixth BRT model (Model 
VI) was constructed using only the set of common inde-
pendent variables excluding both urbanization and popu-
lation density. Finally, a seventh BRT model (Model VII) 
was constructed including population density and urban-
ization and the common set of independent variables. 
The models are summarized as follows:

i.	 Model I: Common set of covariates (Table  1)  +   
GRUMP UE

ii.	 Model II: Common set of covariates (Table 1) + CSO 
urban

iii.	 Model III: Common set of covariates (Table  1)  +   
modified GRUMP UE

iv.	 Model IV: Common set of covariates 
(Table 1) + MODIS urban

v.	 Model V: Common set of covariates (Table 1) + pop-
ulation density

vi.	 Model VI: Common set of covariates (Table 1)
vii.	 Model VII: Common set of covariates (Table  1)  +   

population density + CSO urban

Partial dependence plots were used to examine the 
effect of each predictor variable on the response (malaria 
positivity) after accounting for the average effect of all 
other variables in the model. Cross-validation techniques 
were used to evaluate model predictive performance, by 
randomly separating the dataset into a modelling dataset 
that was used to fit the model and a testing dataset that 
was excluded from model fitting and was used for testing 
the model’s predictive performance. The ratio model set 
was 50%, which defined the percentage of the data sam-
pled at every run without replacement. This was further 
improved using bootstrapping techniques with 25 itera-
tions for each of the defined BRT models (Models I–VII) 
and the predictive power of each model measured using 
the AUC. To assess which BRT model best predicted the 
outcome, AUC values were compared and the signifi-
cance of the differences examined using a Tukey’s honest 
significant difference test. All BRT models were devel-
oped using the R package ‘gbm’ version 1.6–3.2 [36] and 
the additional functions provided in [37]. All analyses 
were conducted using R (version 2.15.3).

Results
78,882 records of children aged less than 5  years tested 
for malaria in close to 6000 clusters were assembled 
for analysis from 19 household surveys across 14 Afri-
can countries undertaken between 2007 and 2012. 
1110 (0.01%) of the available child records had no geo-
graphic positions and were excluded. Of the remaining 

Table 1  Summary of  the average contributions of  predic-
tor variables using a boosted regression trees (Model VII) 
developed with cross-validation over 25 bootstraps

Between-country effects controlled for in the model accounts for 24% not 
represented in the table. The effect of country-specific factors not collected 
in DHS/MICS datasets not accounted for in the BRT models. Results shown for 
Model VII that includes population density, urbanization and a common set of 
confounding variables

Predictor Relative contribution (%)

Child specific predictors

 Age in months 5.01 (SD 0.25)

 Gender 0.38 (SD 0.05)

 Malaria testing method 1.29 (SD 0.24)

 Slept under a net 0.47 (SD 0.08)

 Slept under ITN 0.59 (SD 0.09)

 Fever in last 2 weeks 1.37 (SD 0.1)

 Fever treatment 1.82 (SD 0.17)

 Treatment with anti-malarial 0.43 (SD 0.06)

 Mothers age in years 6.33 (SD 0.23)

 Mothers education level 1.38 (SD 0.15)

Household level predictors

 HH with IRS 1.47 (SD 0.15)

 Per capita net ownership 0.64 (SD 0.11)

 Wealth index 3.43 (SD 0.31)

Cluster level predictors

 Population density 9.55 (SD 0.46)

 CSO urban 1.5 (SD 0.2)

 Enhanced vegetation index (EVI) 4.18 (SD 0.2)

 Annual mean temperature 16.68 (SD 0.64)

 Temperature suitability index (TSI) 5.15 (SD 0.43)

 Annual mean precipitation 14.19 (SD 0.37)

 Malaria seasonality (>60%) 0.15 (SD 0.03)
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77,772 child-records, 17% were positive for P. falciparum 
malaria where the majority (81%) had been tested for 
malaria using microscopy. A summary of the characteris-
tics of the child-level and household level predictors that 
were used in the analysis is given in additional informa-
tion (Additional file 1: Table S3).

The relationship between the outcome (malaria positiv-
ity) and the main predictor variables (urbanization and 
population density) is shown in Figs.  1 and 2 while the 
relative contribution of each predictor variables on the 
outcome (malaria positivity) is summarized in Table  1. 
In the four separate BRT models constructed to evalu-
ate which of four urbanization datasets best predicted 
malaria risk, urbanization was found to have an impact 
on malaria risk with individuals residing in urban areas 
shown to have decreased malaria risk compared to indi-
viduals living in rural or peri-urban areas (Fig. 1). How-
ever, no significant difference was observed between the 
four urbanization models using a Tukey’s honest signifi-
cant difference test (p value >0.05).

In a separate model (Model V), the impact of popula-
tion density on malaria infection in childhood was exam-
ined. Population density was found to be an important 
predictor of malaria risk with a relative contribution 
of 10% (Table  1). The non-linear relationship between 
population density and the response is shown in Fig.  2. 
Decreased malaria risk was observed in areas of low 
population (less than 10 persons per km2). The malaria 
risk curve rises with increase in population but a signifi-
cant decrease is observed for population densities greater 
than 1000 persons per km2. Mean AUC value of the BRT 
model with population density (Model V) was higher 
compared to the other four models with different urbani-
zation definitions (Models I, II, III and IV), a result that 
was found significant using a Tukey’s honest significant 
difference test (p value <0.001).

Figure  3 shows box plots comparing the performance 
of the BRT models including population density com-
pared to the four BRT models including urban clas-
sifications. For comparison, Model VI and Model VII 
were constructed to examine the impact of combining/
excluding urbanization and population density in malaria 
prevalence models. Model VI constructed with the com-
mon set of variables excluding urbanization and popula-
tion density resulted in the lowest mean AUC thus least 
accurate in predicting malaria positivity compared to the 
other models (Fig. 3) and this difference was found to be 
significant (Tukey test p value <0.05). On the other hand, 
Model VII which included both urbanization and popu-
lation density performed significantly better (Tukey test p 
value <0.05) than all the other models (Fig. 3). The partial 
dependence plots of the common set of covariates con-
trolled for in the models are given in Additional file 1.

Discussion
Children living in urban areas were found to have a 
decreased risk of malaria infection compared to children 
residing in rural areas in all the four urbanization data-
sets used: CSO urban, GRUMP UE, modified GRUMP 
UE, MODIS urban (Fig.  1). Malaria risk was shown to 
decline from rural areas through peri-urban settlements 
to urban central areas using the modified GRUMP UE 
dataset. These are not new findings and are consistent 
with previous studies comparing malaria risk according 
to settlement patterns [2, 3, 11, 12, 38]. In this study how-
ever, the modelling procedure used takes into account 
the average effects of other variables influencing malaria 
risk. In addition, the BRT models controlled for the inter-
action between variables and thus was able to tease out 
the true effects of urbanization on malaria risk.

In general, this study shows that urbanization is an 
important predictor of malaria risk. The inclusion of 
urbanization, regardless of definition, significantly 
improved the predictive performance of all models with 
average AUC values increasing from 0.75 for the base-
line model (Model VI) to more than 0.89 in all models 
including urbanization (Model I, II, III and IV). Although 
CSO-defined urbanization had a higher AUC, the differ-
ence in predictive performance observed amongst the 
four urbanization models definitions was not statistically 
significant.

This study also examines the relationship between 
human population density and malaria infection risk in 
children aged less than 5  years. Population density was 
found to be the third most important predictor of malaria 
infection risk with an average overall relative contribu-
tion of close to 10% to the BRT model. As seen in Fig. 2, 
malaria transmission is sustained as the density of human 
hosts increases but a decline in risk is observed in densely 
populated areas with densities greater than 1000 persons 
per km2. Previous studies describing malaria transmis-
sion have linked high human population densities in 
urban areas to low entomological inoculation rates (EIR) 
by reducing the overall chances of a host getting an infec-
tive bite when vector densities are low [5, 6].

Replacing urbanization with population density signifi-
cantly improved the predictive performance of the BRT 
model (Fig.  3). The BRT model with population den-
sity was found to perform significantly better (p values 
<0.001) in predicting malaria risk when I compared the 
model’s predictive performance to the other four models 
with urbanization classification (Fig.  3). Given the chal-
lenges in uniformly classifying urban areas across differ-
ent countries, population density may be a more accurate 
and reliable metric to adjust for the patterns of malaria 
risk in densely populated urban areas. Malaria transmis-
sion has been shown to progressively decrease from rural 
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to peri-urban areas and from peri-urban areas to urban 
centre in a review of studies on malaria transmission [3]. 
With population density, it is also possible to more real-
istically model the progressive transition in malaria risk 
from densely populated urban centres to surrounding 
less densely populated peri-urban areas and on to rural 
areas. This provides an advantage over urbanization clas-
sifications that tend to force artificial limits in malaria 
risk between urban and rural area most often missing 
the transition in risk. Previous studies describing malaria 
transmission have used a single rule to “force down” 
infection risks in all urban and peri-urban regardless of 
their location or characteristics of the urban extent [1, 8, 
10, 39–41]. However, malaria risk is not uniform between 
or within urban extents and can vary significantly within 
a city [2, 42–45]. Including population density in malaria 
modelling is important because the risk of malaria can be 

different in high-density cities and low-density cities, yet 
both would be classified as “urban”.

While previous efforts to map the intensity of malaria 
transmission in Africa have used only urban classification 
to “force down” infection risks in urban areas, this study 
has shown that including both urbanization and popu-
lation density in the BRT model had a more significant 
impact in predicting malaria prevalence. Model VI which 
excludes both urbanization and population density per-
formed poorly compared to other models that included 
either population density or urbanization. The use of 
population density contributes significantly to the mod-
els’ predictive performance compared to any of the previ-
ous models that included urbanization only. This implies 
that there are aspects of the influence of urbanization 
on malaria prevalence that cannot be solely explained 
by high population density or population distribution 

Fig. 1  Partial dependence plot showing the relationship between urbanization and the response, malaria positivity. After accounting for the 
average effect of other explanatory variables in Models I, II, III and IV. Effect after accounting for the average effect of other explanatory variables. 
Children living in urban areas were associated with a lower risk of malaria infection compared to children in rural areas. Y axis is on the logit scale 
and is centred to have zero mean over the data distribution. Dashes at inside top of plots show the data distribution of predictor variables in deciles. 
Results for each of the 25 bootstrap runs are shown in black dashed lines while the red line represents the average/mean plot
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patterns with the final model (Model VII) that includes 
both urbanization and population density resulting in the 
best performing model (Fig. 3) compared to other mod-
els that included either or both population density and 
urbanization.

There are however some limitations to this study. 
Although the WorldPop dataset used in this study pro-
vides the best continent wide estimate of population 
distribution, it is prone to some under/overestimation 
as it relies on national census data, which is conducted 
in varying years for different countries and conducted 
at wide intervals (10  years or more in some countries). 
Population estimates for any year between censuses were 
projected using population growth estimates from the 
previous census period, which may not always be precise. 
In addition, the frequency of DHS/MICS household sur-
veys was not sufficient to account for annual variation in 
malaria risk and thus constant variance was assumed for 
the period of study. There are also some limitations asso-
ciated with environmental datasets used in this study. In 
order to account for the effect of time on environmental 
determinants of malaria, the environmental covariates 
used must be matched with the observed data on malaria 
transmission. However, the environmental covariates 
are rarely available at time points that correspond with 
the date of surveys as most are derived from long-term 
processed remotely sensed satellite imagery or modelled 
climatic data generated as synoptic estimates that do not 

Fig. 2  Partial dependence plot showing the relationship between 
population density and malaria positivity. Effect after accounting for 
the average effect of other explanatory variables in Model V Increase 
in population density was associated with increasing malaria risk until 
a density of about 100 persons per km2, but a significant decrease is 
observed for population densities greater than 1000 persons per km2. 
Population density was transformed on the logarithmic scale due 
to its skewed distribution in the data. Y axis is on the logit scale and 
is centred to have zero mean over the data distribution. Dashes at 
inside top of plots show the data distribution of predictor variables in 
deciles. Results for each of the 25 bootstrap runs are shown in black 
dashed lines while the red line represents the average/mean plot

Fig. 3  Box plot comparing accuracy assessment statistic AUC after 25 bootstrap runs for seven BRT models constructed in the analysis. AUC com-
parison for each of the four main models with Urbanization classification derived from GRUMP UE (Model I), CSO urban (Model II), Modified GRUMP 
UE (Model III) and MODIS urban (Model IV). The AUC values are then compared to values obtained from models that included population density 
(Model V). Model VI only includes the common set of confounding variables used in the other models and excludes any urban classification and 
population density while Model VII includes both the population density and urbanization (CSO urban)
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represent a specific year [38, 46]. In an ideal experiment, 
individual-level malaria positivity data with geographic 
coordinates are household level would be linked to up to 
date urbanization and population density datasets that 
are comparable across countries with the effect of envi-
ronmental variables controlled for using high resolu-
tion environmental datasets that can be matched to the 
period of household survey. In extracting environmental 
variables, additional bias could be introduced by using 
a radius around a cluster radius. This is however inher-
ent when using DHS datasets where surveys with spatial 
information, geographic coordinates are provided for the 
sampling clusters, consisting of 15–30 households spread 
over up to 5 km in rural areas and 2 km or less in urban 
areas [19]. The level of bias introduced can be minimized 
by using household geographic coordinates to relate 
household members’ malaria positivity to environmental 
conditions obtained from equally high resolution envi-
ronmental datasets. The use of household coordinates 
may however be limited in surveys reporting HIV due to 
confidentiality issues.

Additionally, dichotomous classification doesn’t always 
effectively describe urbanization. The degree of urbaniza-
tion can be defined based demographic characteristics 
like population density, economic activities, infrastruc-
ture, social and cultural behaviours or a combination of 
these [23, 47, 48]. Demographic characteristics can be 
combined with satellite-derived spatial datasets to better 
describe urbanization as a continuum that incorporated 
peri-urban growth. In this study, population density was 
combined with satellite derived urban extents to define 
peri-urban areas in Model V (Table  1). The application 
of population density in replacing dichotomous urban 
classifications in modelling malaria transmission pat-
terns was also evaluated. Population density was shown 
to more realistically model the continuum transition 
from densely populated urban centres to surround-
ing less densely populated peri-urban and rural areas 
in relation to malaria risk. There is also potential to use 
other demographic indicators linked to functional defi-
nitions of urbanization, often measuring level of poverty 
and urban-ness, like household electrification, access to 
improved drinking water and toilet facilities as well as 
housing quality [49] to describe the urbanization con-
tinuum. However, there still remains a challenge in a 
universal definition to quantify urbanization with lit-
tle consensus among national governments and inter-
national agencies making comparisons and aggregation 
across countries difficult [48, 49]. There are on-going 
efforts to globally map settlement extents at higher reso-
lutions of 10–30 m [50–53]. However, these projects are 
very recent and still in developing/testing phase so could 

not be used in this study. The availability of these datasets 
that reflect the current extents of rapidly growing urban 
areas especially in Africa can potentially improve the 
estimation of the impact of urbanization on malaria risk.

Conclusion
In general, this study shows urbanization and human 
population density influence the predicted risk of 
malaria infection. This study shows that the risk of infec-
tion with malaria does exist in these densely populated 
urban areas across Africa. Despite a reduction in malaria 
risk associated with increasing population density, these 
high-density settlement areas do not have zero risks of 
infection. As such it is important to recognize that the 
public health burdens in some settings might be large 
and significant. Africa’s population is projected to double 
to close to 2 billion over the next 35 years with most of 
this growth expected to be concentrated in urban areas. 
Future malaria risk models can, therefore, be improved 
by including both population density and urbanization, 
which have both been shown to have significant impact 
on malaria risk in this study. Population density is more 
interpretable while urbanization would account for 
aspects of urban life not simply reflected by population 
density.
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