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Do the placental barrier, parasite genotype and Toll-like
receptor polymorphisms contribute to the course of primary
infection with various Toxoplasma gondii genotypes
in pregnant women?
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Abstract Toxoplasma gondii has a highly clonal genetic struc-
ture classified into three major genetic types, I, II, and III, plus
additional recombinant and atypical strains. In humans, type I and
atypical strains usually associate with severe toxoplasmosis. Type
II strains, predominantly identified in European countries and the
United States, correlatewith a differential course of toxoplasmosis.
During pregnancy, the important protective role of the placenta
against maternal–fetal T. gondii transmission has been reported. T.
gondii preferentially colonizes extravillous trophoblasts as com-
pared to syncytiotrophoblasts. The latter compartment was sug-
gested to act as the real barrier to the fetal dissemination of T.
gondii. Alterations in immune response to particular T. gondii
strains were observed. Higher transcription levels of IP-10, IL-1β,
IL-6, IL-10, IL-12 cytokines, and NF-κB translocation to the
nucleus were more often documented for type II strains than type
I strains. Since the induction of IL-12 during type II infection was
Myd88-dependent, the involvement of Toll-like receptors (TLRs)
in the immunity against these strains was suggested. Differential
expression of TLRs depends on placental cell types and gestation-
al age. The expression of TLR2 and TLR4 in the first trimester of
pregnancy was reported only for villous cytotrophoblasts and
extravillous trophoblasts, but not for syncytiotrophoblasts. The
involvement of single-nucleotide polymorphisms (SNPs) in the
TLR genes in infectious pathogenicity, including toxoplasmic
retinochoroiditis, points at a possible involvement of TLR

alterations in immunity againstT. gondii.We conclude that studies
on TLR contributions in the maternal–fetal transmission of partic-
ular parasite strains and congenital toxoplasmosis are warranted.

Toxoplasma gondii genotypes contribute differentially
to the course of toxoplasmosis

Toxoplasma gondii has a highly clonal genetic structure, with
three major genetic types, I, II, and III, plus additional recom-
binant and atypical strains [1–4]. The three archetypic lineages
were predominantly observed in North America and Europe,
whereas more divergent genotypes were identified in French
Guiana, Mexico, and Brazil [2, 5, 6].

Combined clinical and in vitro studies showed that out-
breaks of toxoplasmosis presented with asymptomatic to symp-
tomatic courses related to the genotypes involved. Differential
virulence of T. gondii strains was observed for mice infected
with parasites of particular lineages [7, 8]. Genotype I of T.
gondii is most virulent for mice, inducing extensive parasite
dissemination and sudden murine death. In contrast, genotype
II causes non-fatal infection with much less tachyzoite dissem-
ination [7]. However, strain-specific virulence varied between
hosts, as was reported for mice and rats [8, 9]. Hence, it was
suggested that T. gondii strains virulent for mice might not lead
to a similar course of toxoplasmosis in humans.

Studies of humans with T. gondii mainly included cases of
congenital toxoplasmosis and often originated in immune-
deficient patients [7, 10–12]. Less frequent reports show
symptomatic acquired toxoplasmosis in immune-competent
patients [2, 5, 7]. T. gondii type II strains, identified predom-
inantly in the populations of some European countries and the
United States, were reported to generate congenital toxoplas-
mosis, including lethal infection, severe neuro-ocular involve-
ment, isolated chorioretinitis, and/or latent toxoplasmosis [7].
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However, type II strains were also isolated from benign or
latent cases of toxoplasmosis, whereas type I and atypical
strains are usually from severe cases [7, 13].

An atypical multi-locus T. gondii genotype identified from
the amniotic fluid of a 29-year-old pregnant woman of Cauca-
sian origin who was native to France was reported to cause
severe congenital toxoplasmosis with bilateral ventricular en-
largement and calcifications [1]. For at least 5 of 11 patients
with laboratory-diagnosed toxoplasmosis living in Patam, a
village near the French Guianan border, mouse inoculation or
polymerase chain reaction (PCR) showed one atypical strain of
T. gondii causing differential disease courses [5]. Eight
immune-competent adults showed multi-visceral toxoplasmo-
sis, leading to one death. One neonate and one fetus had lethal
congenital toxoplasmosis and one child had symptomatic toxo-
plasmosis [5]. Hence, factors other than perceived strain viru-
lence were suggested to influence the clinical presentation of
toxoplasmosis in people living in an Amazonian rain forest [5].

The genotyping of 88T. gondii isolates from immune-
compromised patients in France showed a lack of significant
differences in the distribution of parasite strains between
patients diversified accordingly to cause of immunosuppres-
sion, site of infection, and outcome [14]. Hence, among
immune-compromised patients, host factors were suggested
as being co-correlated with toxoplasmosis development [14].
However, another study reported atypical T. gondii strains to
have given rise to an outbreak of congenital toxoplasmosis
and being responsible for more severe clinical courses of
ocular toxoplasmosis in Brazilian children as compared to
Europeans [15].

Toxoplasma gondii genotypes differentially transmit
through the placenta

Despite the fact that differential immune responses resulted
from infection with various T. gondii strains, only a few
studies reported that the parasite maternal–fetal transmission
through the placenta might depend on strain variations. How-
ever, the protective role against congenital infections with T.
gondii was reported for the placenta and its particular
compartments.

In a BALB/c mice model, animals were inoculated 30 days
before breeding with T. gondii ME49 (type II) orM7741 (type
III) strains. The same mice were re-infected 12 and 15 days
after pregnancy with other strains (M7741 or ME49, respec-
tively) and did not develop congenital infections [16]. Mice
which were primary infected during pregnancy had no fetal
infection as well, although their placentas were T. gondii -
positive. Hence, the placenta played an important protective
role against the maternal–fetal transmission of T. gondii [16].
No fetal infection developed despite the fact that parasites
could be detected in placentas, kidneys, spleens, livers, and

hearts of the BALB/c mice [17]. A higher frequency of
infected placentas was observed at later stages of pregnancy,
which has been correlated with the phagocytic efficiency of
the placental tissues, possibly related to the stage of pregnancy
as well [18, 19].

Studies with first-trimester human placental explants de-
scribed the role of two anatomical placental interfaces [the
villous trophoblast (fetal cells) and the extravillous trophoblast
(EVT, maternal cells)] in the maternal–fetal transmission of T.
gondii [20]. Similar to other pathogens, T. gondii preferen-
tially colonized the EVT and not the relatively resistant
syncytiotrophoblasts (ST). The multi-parasite vacuoles were
primarily identified within subsyncytial cytotrophoblasts, pos-
sibly representing transsyncytial T. gondii transmission. As
only single parasites were observed in ST, this placental
compartment was suggested to act as a barrier to the fetal
dissemination of T. gondii [20]. The comparison between
three T. gondii strains showed no significant differences in
their capacity to infect placental interfaces; only a slightly
slower replication rate of the type II strain was observed
[20]. Another study reported that BeWo choriocarcinoma cells
went into apoptosis after infection with type II rather than type
I strains. In this case, host cell death versus parasite death
might reflect differential strain abilities to infect the placenta
with varying degrees of virulence [21].

An important protective function was reported for IFN-γ,
the key regulator of anti-T. gondii immunity [19]. Pregnant
transgenic IFN-γ knock-out (GKO) B6 (susceptible) and
BALB/c (resistant) mice infected with T. gondii showed
higher parasite numbers in the uterus and placenta than wild-
type (WT) mice [19]. In addition, also, murine genetic sus-
ceptibility to parasite infection was shown to be a key factor.
For instance, fetal infection was observed only in GKO B6
and not among GKO BALB/c, WT B6, and WT BALB/c
mice [19].

Toxoplasma gondii genotypes induce differential immune
responses

In addition to the apparently differential virulence of various
T. gondii genotypes, studies also showed altered immune
responses against particular genotypes (Table 1) [22–25]. T.
gondii-infected WT murine microglial cells showed variable
kinetics of pro-inflammatory cytokine expression dependent
on the parasite strain [22]. Higher and sustainable responses
including elevated expression levels of IP-10 and IL-12b were
observed in case of T. gondii II and III strains, but not for type
I strains. The observed fluctuations in cytokine expression
were time-dependent, and strain-dependent alterations of
anti-apoptotic genes were minimal [22]. Oppositely, the infec-
tion of human neuroepithelioma cells with T. gondii type I
strains caused bigger changes in the expression levels of a
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higher number of inflammation- and apoptosis-related genes
than that observed for types II and III [25]. Macrophage
immune responses to infection with T. gondii types I and II
strains also showed a 2- to 3-fold elevated IL-12 gene expres-
sion [26]. Additionally, the induction of IL-12 expression after
infection with type I strains did not involve Myd88 signaling,
whereas this was clearly Myd88-dependent with type II
strains.

The ME49 strain activated ERK1/2 and p38 MAPK in an
Myd88-dependent manner and enhanced the expression of IL-
12, which the RH strain failed to do [26]. Various signaling
pathways involved in the immunity to T. gondii types I and II
strains might affect the differential virulence of parasites [26].
Myd88-dependent IL-12 expression occurring after macro-
phage infection by type II strains but not type I strains was
confirmed in another study [27]. Again, the involvement of
Myd88 in the production of IL-12 suggested a role of Toll-like
receptors (TLRs) in the immunity against T. gondii type II
strains [27]. Types I and II strains of T. gondii also differen-
tially influenced the activity of NF-κB, the transcription factor
reported to play a key role in the induction of pro-
inflammatory cytokine expression [28, 29]. NF-κB transloca-
tion to the nucleus was observed after the infection of mouse
splenocytes or mouse bone marrow-derived macrophages
(BMM) with the ME49 strain but not with the RH strain

[27, 30]. The high IL-12 expression level was suggested to
be specific for type II strain, as this elevated cytokine produc-
tion was not inhibited by an earlier infection with a type I
strain [27, 31]. ME49 induced also higher levels of IL-10, IL-
1β, and IL-6 cytokines [27].

TLRs expression levels differ within placental cells

So far, no study has been performed to analyze the role of
TLRs, regulators of innate immunity, in the immune response
to various T. gondii strains during pregnancy and in parasite
transmission through the placenta. However, several studies
reported the expression of TLRs in trophoblasts, decidual
cells, and amniotic epithelium [32–34]. Among them, most
studies reported variable TLR expression levels observed in
trophoblasts [35–37]. For TLR4, elevated expression was
observed in decidual cells as compared to interstitial tropho-
blasts. This suggested a possibly protective role of maternally
derived cells [34]. Within the first-trimester placenta, the
expression of TLR2 and TLR4 was observed only in villous
cytotrophoblasts and EVTs, but not in ST [35]. This suggested
that placental tissue and the fetus might be infected by mi-
crobes, which have passed through the breached TLR-
negative ST [38].

Table 1 Toxoplasma gondii strain-dependent differences in immune response against parasites

Infected cell/animal Immune response Reference

Murine microglial cells Increased expression of IP-10 after 2 h from infection with type I strain, significantly
higher than with types II or III strains (p <0.05).

Higher sustained expression of IP-10 and IL-12b after infection with types II and III
strain compared to type I strain (p <0.05).

Glaser et al. (2011) [22]

Human neuroepithelioma
cells

Altered expression level of a greater variety of genes associated with processes related
to reproduction, response to stimulus, motility, metabolism, homeostasis, the
central nervous system, inflammation, apoptosis, behavior, and transport observed
after infection with type I strain than with types II or III strains (3.3 % of transcripts
on array compared to only 0.4 % and 1.1 %, respectively).

Xiao et al. (2011) [25]

Murine bone marrow-derived
macrophages (BMM)

Increased expression level of IL-12 cytokine approximately 2- to 3-fold higher after
infection with type II strain compared to type I strain.

Higher and longer lasting MAPK phosphorylation after type II compared to type I
infection.

Activation of p38 and ERK1/2 signaling throughMyd88-dependent manner in case of
type II strain infection and Myd88-independent way after type I
infection.

Kim et al. (2006) [26]

Murine BMM Nearly 200-fold higher production of IL-12 after type II than type I strain infection
(p<0.001). Induction of IL-12 expression dependent on Myd88 molecule in case
of type II but not type I strain infection.

NF-κB activation resulting in significantly higher NF-κB p65 nuclear localization in
response to type II than type I strain infection (p <0.005).

Robben et al. (2004) [27]

CD1 outbred mice Higher expression level of IL-12p40 and IFN-γ after type II strain infection compared
to type I infection.

Mordue and Sibley (2003) [31]

Murine BMM Activation of NF-κB after infection with type II but not types I and III strains resulting
from different activities of T. gondii GRA15 molecules.

Rosowski et al. (2011) [23]

Human foreskin fibroblasts Massive production of pro-inflammatory cytokines early after infection with type II
strain, but dampening expression of IL-12, IL-1β, and IL-6 after types I and III
strains infection resulting from different activation of STAT3/6 signaling.

Saeij et al. (2007) [24]
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Taking into account the above data, which confirm the
preferential colonization of EVTs by T. gondii , an important
role of placental TLRs in the immune response against T.
gondii seems plausible. However, previous studies showed
variable expression of other TLRs in different placental cells,
which seemed to be related to the cell type as well as the
stage of pregnancy [39–41]. In vitro studies using cultured
placental cells showed that both cytotrophoblasts and ST cells
express TLR2, TLR3, TLR4, TLR5, TLR6, and TLR9 [33].
Transcription of the genes encoding TLR1, TLR2, TLR3,
and TLR4, but not TLR6 was reported for first-trimester
trophoblasts [35]. Expression of TLR6 observed in third-
trimester trophoblasts suggested its time-dependent regula-
tion [33, 35].

Based on current data, we hypothesize that the gestational
stage-dependent differences in transplacental transmission
rates of T. gondii (ranging from 0 % in case of maternal
infection acquired before gestation to 67 % when infection
was acquired between weeks 31 and 34 of pregnancy) might
be related to the stage-dependent activity of TLRs, which is
to be confirmed by further studies [42, 43]. Simultaneously,
the limited expression of TLRs on trophoblast cells at the
early stages of pregnancy shows that these early cells are less
able to deal with intrauterine infections than differentiated
trophoblasts [38]. The TLR4 expression level was elevated at
term as compared to first-trimester trophoblasts [44]. We
suggest that description of the mechanisms of TLRs action
after primary T. gondii infection of placental cells is needed.
As differential replication rates were observed after the in-
fection of trophoblasts with various parasite strains, investi-
gation of the role of TLRs in the course of intrauterine
infection with different T. gondii strains seems to be a chal-
lenge as well.

SNPs in TLRs correlate with various infectious diseases

Single-nucleotide polymorphisms (SNPs) are common genet-
ic alterations that may impact the expression levels of genes
within which they are located. Studies of the involvement of
TLR SNPs in the course of congenital toxoplasmosis seem
necessary [29]. TLR polymorphisms were broadly investigat-
ed in the immune responses against various pathogens, in-
cluding Hepatitis C virus (HCV), Legionella pneumophila ,
Plasmodium falciparum ,Mycobacterium leprae ,Mycobacte-
rium tuberculosis , as well as Human cytomegalovirus
(HCMV) [45–48]. Many studies demonstrated the involve-
ment of different TLR SNPs in the course of inflammatory
diseases and in the altered expression of TLR-dependent
immune response genes [48–52].

The TLR4 +896 allele was highly associated with post-
meningitis hearing loss, especially in case of meningococcal
meningitis (MM) [53]. SNPs located in the TLR2 , TLR4 ,

and TLR9 genes were suggested as important modifications
involved in immune response to BM and its clinical conse-
quences [53]. In another study, the TLR7 Leu11Gln poly-
morphism was associated with Human immunodeficiency
virus (HIV) disease, including higher viral load and faster
progression of advanced immunosuppression [54]. In case of
HCV infection, important risk factors were, among others,
TLR7 IVS2 -151 G and TLR8 -129 G polymorphisms [47].
The occurrence of CD14+ cells from subjects with
TLR7 IVS2 -151 A/TLR8 -129 G (AG) haplotype with the
expression of TLR7 and TLR8 was significantly lower than
from individuals with GG and AC haplotypes [47]. The
TLR8 Met1Val polymorphism was reported to associate with
both HIV and tuberculosis [55, 56]. Another study showed a
slight effect of the TLR8 Met1Val allele on TNF-α response
[57]. 2258 G > A SNP residing in the TLR2 gene was
shown to correlate with severe phenotype in a subgroup of
atopic dermatitis patients [48]. Carriers of the 2258 G > A
allele showed higher risk for the development of atopy,
increased levels of serum IgE and allergen-specific IgE
antibodies [50]. The −16934 A > T SNP of the TLR2 gene
promoter region was related to decreased risk of allergic
sensitization development, hay fever, and asthma in farmer’s
children [58].

In case of the TLR4 gene, the 1063 A > G and 1363 C > T
SNPs were the most commonly studied. So far, these poly-
morphisms have been showed to associate with susceptibility
to infectious diseases caused by Gram-negative bacteria, Bru-
cella species, Respiratory syncytial virus (RSV), and P.
falciparum [59–61]. Firstly, Arbour et al. reported 1063 A >
G and 1363 C > T to be associated with weakened response
toward inhaled lipopolysaccharide (LPS) [62]. Ducloux et al.
showed a correlation of these two SNPs with rates of acute
rejection and the occurrence of atherosclerotic events in kid-
ney recipients [63]. According to the studies of Arbour et al.
and Schwartz, it was shown that cells transfected with any of
the TLR4 haplotypes had decreased NF-κB activity compared
with normal TLR4 [62, 64–66]. A significant correlation was
shown between 1063 A > G and 1363 C > T SNPs and RSV
bronchiolitis in infants [61]. Few studies showed a correlation
of TLR9 polymorphisms with allergy or asthma [51, 67, 68].
Peixoto-Rangel et al. reported a correlation of the 1635 A > G
SNP residing in the TLR9 gene with toxoplasmic
retinochoroiditis in Brazil [69]. In this population, ocular
toxoplasmosis was associated with allele C at 1635 A > G
(odds ratio=7; 95% confidence interval 1.6–30.8), which was
at a frequency of 0.424, similar to that observed in European
populations. The observed correlations suggested that direct
interaction between T. gondii and TLR9 might trigger pro-
inflammatory responses and, hence, lead to severe pathologies
such as ocular disease associated with this infection in Brazil
[69]. It seems important to describe the possible contribution
of TLR SNPs to congenital toxoplasmosis [29].
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Concluding remarks

There is a clear need for a detailed description of mechanisms
of congenital toxoplasmosis development. During the mater-
nal–fetal transmission of Toxoplasma gondii , preferential col-
onization of extravillous trophoblasts (EVTs) by the parasite
was observed. Several studies showed different expression
levels of Toll-like receptors (TLRs), dependent on placental
cell type and stage of pregnancy. In case of TLR2 and TLR4,
the expression was identified in first-trimester villous
cytotrophoblasts and EVTs, but not in syncytiotrophoblasts
(STs). Hence, an important role of TLRs against the develop-
ment of fetal T. gondii infection seems plausible. SNPs locat-
ed in various TLR genes associate with differential infectious
diseases, including toxoplasmic retinochoroiditis. As a differ-
ential immune response has been reported in correlation with
particular T. gondii genotypes, the contribution of TLRs in the
course of congenital infection with various T. gondii strains
seems to be likely as well. We suggest further studies of TLRs
in the maternal–fetal transmission of particular parasite strains
and congenital toxoplasmosis as being extremely important.
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