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Abstract Intracortical inhibition plays a critical role in shaping activity patterns in the mature 
cortex. However, little is known about the structure of inhibition in early development prior to the 
onset of sensory experience, a time when spontaneous activity exhibits long- range correlations 
predictive of mature functional networks. Here, using calcium imaging of GABAergic neurons in the 
ferret visual cortex, we show that spontaneous activity in inhibitory neurons is already highly orga-
nized into distributed modular networks before visual experience. Inhibitory neurons exhibit spatially 
modular activity with long- range correlations and precise local organization that is in quantitative 
agreement with excitatory networks. Furthermore, excitatory and inhibitory networks are strongly 
co- aligned at both millimeter and cellular scales. These results demonstrate a remarkable degree of 
organization in inhibitory networks early in the developing cortex, providing support for computa-
tional models of self- organizing networks and suggesting a mechanism for the emergence of distrib-
uted functional networks during development.

Introduction
Inhibition is crucial for shaping neural activity and response properties in the mature cortex. GABAergic 
interneurons have been implicated in a range of computations, including response gain, stimulus 
discrimination, and network stabilization (for reviews, see Isaacson and Scanziani, 2011; Denève 
and Machens, 2016; Ferguson and Cardin, 2020). In the columnar visual cortex, inhibitory neurons 
actively shape response selectivity (Wilson et al., 2018) and are organized into functionally- specific 
networks with excitatory neurons (Wilson et al., 2017). However, relatively little is known about inhibi-
tion in the developing cortex prior to the onset of sensory experience. GABAergic inhibition is initially 
absent in early development before progressively strengthening as the cortex matures (reviewed in 
Ben- Ari, 2002; Huang et al., 2007), raising the possibility that inhibition plays only a minor role in 
shaping early patterns of cortical activity.

Recent work in the ferret visual cortex demonstrated that prior to the onset of visual experience, 
excitatory activity is already highly structured, showing modular and distributed activity with long- 
range correlations (Smith et al., 2018), reminiscent of the columnar stimulus- evoked activity found 
in the mature cortex (Hubel and Wiesel, 1968; Blasdel and Salama, 1986; Weliky et al., 1996; Issa 
et al., 2000; Kara and Boyd, 2009; Smith et al., 2015). These correlated networks are not abol-
ished when silencing feedforward activity and predict future visually- evoked responses (Smith et al., 
2018), suggesting a key role for early spontaneous activity in the development of mature cortical 

RESEARCH ARTICLE

*For correspondence: 
 gbsmith@ umn. edu

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 14

Received: 23 July 2021
Preprinted: 28 August 2021
Accepted: 11 November 2021
Published: 08 December 2021

Reviewing Editor: Marla B Feller, 
University of California, Berkeley, 
United States

   Copyright Mulholland et al. 
This article is distributed under 
the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/
https://doi.org/10.7554/eLife.72456
mailto:gbsmith@umn.edu
https://doi.org/10.1101/2021.08.27.457908
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article      Neuroscience

Mulholland et al. eLife 2021;10:e72456. DOI: https:// doi. org/ 10. 7554/ eLife. 72456  2 of 17

networks. However, the structure of inhibitory 
activity at this early stage of development remains 
unknown, and several distinct possibilities exist 
for the state of inhibition in the developing cortex 
(Figure 1): (1) Inhibition could be weak or absent; 
(2) inhibition may be present but spatially broad 
and unstructured, operating over a much larger 
spatial scale than excitation; (3) inhibition might 
be organized and modular, but poorly aligned 
with excitation; or (4) the highly organized and 
co- aligned patterns of excitation and inhibition 
found in mature animals (Wilson et  al., 2017) 
might already be present early in the developing 
visual cortex. Resolving this question is critical to 
both constrain models of early network develop-
ment—many of which rely on structured intracor-
tical inhibition—and to understand the degree 
to which inhibition contributes to distributed 
patterns of cortical activity in early development.

Here, we address this by using widefield and 
two- photon calcium imaging of spontaneous 
activity to examine the structure of inhibitory 
networks in the developing ferret primary visual 

cortex. We first demonstrate in vivo that at early developmental ages where the visual cortex shows 
modular activity, GABAergic signaling already exerts a strong inhibitory effect. Next, by employing 
the inhibitory neuron- specific enhancer mDlx (Dimidschstein et al., 2016) paired with the genetically 
encoded calcium indicator GCaMP6s, we find that inhibitory neurons exhibit modular patterns of 
activity that extend over several millimeters in the developing visual cortex. These patterns reveal 
long- range correlated networks with precise local organization, highly similar in structure to those 
of excitatory networks. Furthermore, we find that inhibitory and excitatory networks show a remark-
able degree of spatial consistency and co- alignment on both global and cellular scales. These find-
ings clearly demonstrate the long- range and fine- scale organization of intracortical inhibition in the 

Figure 1. Possible modes of inhibition in the 
developing visual cortex. Schematic showing potential 
arrangements of inhibitory and excitatory activity 
patterns in developing cortex. Top row: Excitation is 
known to be highly modular and spatially structured. 
Middle row: Inhibition could be absent (a), broadly 
unstructured (b), or modular (c, d); if modular, the 
spatial arrangement of those modules could be shifted 
with respect to excitatory activity (c), or already well 
aligned as found in the mature cortex (d). Scale bar: 
1 mm.

Figure 2. GABAergic signaling has net inhibitory effect on cortical activity by P21. (a) Experimental schematic; Ferret kits were injected with syn.
GCaMP6s at approximately P10, and spontaneous activity was imaged at P21–23 (n=4 animals) both before and after bath application of the GABA 
antagonist bicuculine (BMI). (Right) Field- of- view for widefield epifluorescent calcium imaging. (b) Average trace across region of interest (ROI) for 
baseline spontaneous activity (top) and activity after BMI application (bottom) shows clear disinhibition of cortical activity. (c) Event frequency after BMI 
application is significantly higher than baseline (p<0.001; baseline=0.030 [0.016–0.050 ] Hz; BMI=0.200 [0.129–0.271 ] Hz; median, interquartile range 
[IQR], Wilcoxon rank- sum test). (d). Average event amplitude of BMI events are significantly higher than baseline (p<0.001; baseline=0.374 [0.190–0.535] 
∆F/F, n (across four animals)=274 events; BMI=0.974 [0.470–1.220] ∆F/F, n=732 events; median, IQR, Wilcoxon rank- sum test).

The online version of this article includes the following source data for figure 2:

Source data 1. GABAergic signaling has net inhibitory effect on cortical activity by P21.

https://doi.org/10.7554/eLife.72456
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developing cortex, and support the ability of large- scale cortical networks to self- organize through 
precisely correlated local excitatory and inhibitory activity.

Results
Spontaneous activity in inhibitory populations is modular and forms 
large-scale correlated networks prior to eye-opening
Over the course of development, GABAergic signaling switches from exerting depolarizing effects to 
hyperpolarizing due to the maturation of intracellular chloride concentrations (Ben- Ari, 2002). In the 
ferret, functional GABAergic synapses have been shown to be present as early as postnatal day 20 (P20) 
(Dalva, 2010), but because these experiments utilized whole- cell recordings in cortical slices, it remains 
unclear whether these synapses exert an inhibitory effect at this age. To address this, we expressed 
GCaMP6s in excitatory neurons at P21–23 via AAV1.hSyn.GCaMP6s (Chen et al., 2013 Wilson et al., 
2017) and performed widefield epifluorescent imaging of spontaneous activity in the primary visual 
cortex (Smith et al., 2018) prior to and following direct application of the GABA(A) antagonist bicu-
culline methiodide (BMI) to the cortex (Figure 2a–b). BMI resulted in a pronounced increase in the 
frequency (Figure 2c; p<0.001; baseline=0.030 [0.016–0.050] Hz; BMI=0.200 [0.129–0.271] Hz, n=4 
animals; median, interquartile range [IQR], Wilcoxon rank- sum test) and amplitude of spontaneous 
events (Figure 2d; p<0.001; baseline=0.374 [0.190–0.535] ∆F/F, n [across four animals]=274 events; 
BMI=0.974 [0.470–1.220] ∆F/F, n=732 events; median, IQR, Wilcoxon rank- sum test), demonstrating 
that in vivo GABA exerts a strong net inhibitory action at this point of development.

To examine the structure of inhibitory networks in early development, we performed a series of 
experiments in which GABAergic neurons were specifically labeled via virally mediated expression 
of GCaMP6s under control of the mDlx enhancer, which was previously shown to drive expression 
specifically in GABAergic cells (Dimidschstein et al., 2016; Wilson et al., 2017). Widefield imaging 
of spontaneous activity in the primary visual cortex was performed at postnatal days 23–29 (P23–29, 
n=7 animals), approximately 7 days before eye- opening (typically between P31 and P34), at a time 
when modular activity and millimeter- scale networks have been previously shown in excitatory cells 
(Smith et al., 2018; Figure 3a).
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Figure 3. Spontaneous inhibitory activity is modular and participates in precisely organized large- scale correlated networks. (a) Experimental schematic; 
ferret kits were injected with inhibitory specific mDlx.GCaMP6s at around P10, and spontaneous activity was imaged prior to eye- opening. (b) Example 
mean trace of inhibitory spontaneous activity across field of view for one representative animal. Numbers correspond to events in (c). (c) Example single- 
frame bandpass filtered events. (d) Spontaneous correlation patterns for three different seed points. (e) Correlation values at maxima as a function of 
distance from the seed point, as compared to surrogate shuffled correlations for the experiment shown in (b–d, f). (f) Fractures in correlation patterns 
reveal regions of rapid transition in global correlation structure.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Spatial extent and variation of spontaneous inhibitory events.

Figure supplement 2. Correlation patterns of inhibitory spontaneous activity exhibit pronounced fractures.

https://doi.org/10.7554/eLife.72456
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Under light anesthesia, inhibitory neuron populations showed frequent spontaneous activity that 
exhibited a highly modular structure, with spontaneous events containing multiple distinct domains 
of activity distributed across the imaging field- of- view (FOV) and spanning several millimeters 
(Figure 3b–c, Figure 3—figure supplement 1). To determine if these modular patterns of activity 
reflect large- scale correlated inhibitory networks, we calculated the pixelwise Pearson’s correlation 
coefficient across all detected spontaneous events. We found that inhibitory neurons indeed exhibit a 
spatially extended correlation structure, with both strong positively and negatively correlated domains 
extending several millimeters from the reference seed point (Figure 3d). Peak values of positively 
correlated domains were statistically significant up to 2 mm away from the seed point (Figure 3e; 
p<0.01 vs. surrogate data, 6 of 7 individual animals, bootstrap test), demonstrating the large- scale 
nature of inhibitory networks in the developing visual cortex.

In the mature cortex, orientation preference maps exhibit smooth variation, punctuated by abrupt 
discontinuities at orientation pinwheels and fractures (Bonhoeffer and Grinvald, 1991; Ohki et al., 
2005), an organization shared by inhibitory neurons in the mature ferret (Wilson et al., 2017). Notably, 
prior work identified similar discontinuities in the patterns of distributed correlated activity (termed 
correlation fractures) in excitatory neurons early in development prior to the emergence of orientation 
maps (Smith et al., 2018). To determine if developing inhibitory networks exhibit similar fine- scale 
organization, we calculated the rate of change in correlation patterns for all pixels within our FOV 
(Figure 3—figure supplement 2). This analysis revealed the presence of spatially discrete fractures 
over which inhibitory correlation patterns exhibit abrupt changes in structure, demonstrating a precise 
local organization in the coupling to large- scale inhibitory networks in the developing primary visual 
cortex (Figure 3f).

Quantitative agreement between inhibitory and excitatory network 
structure in developing visual cortex
The presence of modular activity patterns, together with long- range correlations exhibiting precise 
local structure, suggests that inhibitory neurons may already be tightly integrated into functional 
networks with excitatory cells in the developing cortex. To begin to address this, we undertook 
a quantitative comparison of excitatory and inhibitory networks assessed through spontaneous 
activity. We performed widefield imaging in animals expressing either hSyn.GCaMP6s, which is 
excitatory- specific in ferret (Wilson et al., 2017), or the inhibitory- specific mDlx.GCaMP6s. Imaging 
inhibitory and excitatory activity in separate animals allowed us to compare the statistical proper-
ties of spontaneous activity using the same highly sensitive calcium indicator. We first quantified 
the size of modular active domains in spontaneous events by fitting a two- dimensional Gaussian 
ellipse to each active region within an event and calculating the full- width at tenth of maximum 
(FWTM). Domain size was similar between inhibitory and excitatory events (Figure 4a; minor axis: I: 
412.06 μm [386.73–439.94], n=7 animals; E: 392.68 μm [371.46–397.49], n=7 animals; median [IQR]; 
p = 0.142, Wilcoxon rank- sum test), and scales together regardless of threshold (full- width half max: 
I: 226.08 μm [212.19–241.38], E: 215.45 [203.81–218.09], data not shown). Together this supports 
the idea that the modular domains of local inhibitory activity operate on the same scale as excitatory 
activity.

Next, we quantitatively examined the correlation patterns for excitatory and inhibitory networks 
revealed by spontaneous activity. We find that correlations were similarly long- range, with equivalent 
strength 2  mm away from the seed point (Figure  4c; I: r=0.29 (0.25–0.31), E: r=0.24 [0.27–0.31]; 
p=0.848, Wilcoxon rank- sum test). Likewise, the wavelength estimated from the full angle- averaged 
correlation function was similar between inhibitory and excitatory networks (Figure 4d,e; I: 0.84 mm 
[0.70–0.96], E: 0.81 mm [0.77–0.901]; p=0.848, Wilcoxon rank- sum test), and approximately similar 
to the wavelength of orientation columns in the mature cortex (Bonhoeffer and Grinvald, 1993; 
White et al., 2001b; Kaschube et al., 2010). Additionally, correlations in inhibitory networks exhib-
ited a strong local anisotropy, with local correlations around the seed point showing a high degree 
of eccentricity that was consistent with excitatory correlations (Figure  4f,g; I: 0.70 [0.66–0.73], E: 
0.69 [0.67–0.71]; p=0.949, Wilcoxon rank- sum test). Finally, we found that the strength of correlation 
fractures was highly similar between excitatory and inhibitory networks, reflecting a similar degree of 
precision in fine- scale network organization (Figure 4h; I: 1.86*10–3 (per μm) [1.49*10–3 –2.13*10–3], 
E: 1.62*10–3 (per μm)[1.35*10–3–2.22*10–3]; p=0.655, Wilcoxon rank- sum test). Taken together, these 

https://doi.org/10.7554/eLife.72456
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results demonstrate a strong degree of quantitative similarity in the spatial structure of inhibitory and 
excitatory networks in the developing visual cortex.

Prior work has shown that in locally heterogeneous network models that recapitulate the struc-
ture of developing excitatory networks, long- range correlations exhibiting both local anisotropy 
and pronounced fractures strongly coincide with spontaneous activity patterns that reside in a low- 
dimensional subspace (Smith et al., 2018). Given the similarities in both local and long- range correla-
tion structure, as well as fracture strength between excitatory and inhibitory networks, we computed 
the dimensionality of inhibitory spontaneous events and compared them to the dimensionality of 
event- number- matched events in excitatory neurons. Here, dimensionality is a quantification of the 
effective number of principal components describing the data (Abbott et al., 2011), which can be 
used to estimate the amount of variation in the observed events. We found that across animals, 

400 μm

200 μm

Event domain

Fit domains

I E

a b c

f h

C
um

ul
at

iv
e 

va
ria

nc
e 

ex
pl

ai
ne

d

Inhibitory

1.00

0.75

0.50

0.25

0 10 20 30

1.0

0.5

0.0

0.0 0.5 1.0 1.5

Excitatory

Principal components

D
im

en
si

on
al

ity

400 μm

i

Fr
ac

tu
re

 m
ag

ni
tu

de
 (p

er
 µ

m
)

1e-3

EI
0

1

2

3

4

5

C
or

re
la

tio
n 

am
p.

 a
t m

ax
im

a 
(>

2 
m

m
)

I E
0.0

0.1

0.2

0.3

0.4

0.5

D
om

ai
n 

w
id

th
 (m

m
)

EI
0.2

0.3

0.4

0.5

0.6

0.76 E
cc

en
tri

ci
ty

EI
0.5

0.6

0.7

0.8

C
or

re
la

tio
n

-1

1

0.52

Distance (mm)

C
or

re
la

tio
n W

av
el

en
gt

h 
(m

m
)

C
or

re
la

tio
n

-0.5

0.5

1 mm

EI
0.5

0.7

0.9

1.1

1.3

EI

6

8

10

12

14

-3

3

z-
sc

or
e

1.00

0.75

0.50

0.25

n.s n.s n.s

n.s n.s n.s

d e

g j

Figure 4. Quantitative agreement in structure of developing excitatory and inhibitory networks. (a, b) Similar domain size for excitatory and inhibitory 
events. (a) Example event showing FWTM of Gaussian fit of active inhibitory domain (top) and fits of FWTM for 200 randomly selected domains from 
individual inhibitory (I, purple) and excitatory (E, green) animals, rotated to align major axis (bottom). (b) Median domain size for each I and E animal. 
Circles: individual animals, lines: group median and IQR. (c) Correlation strength at 1.8–2.2 mm from seed point. Filled circles individually significant 
versus surrogate (p<0.01). (d, e) Correlation wavelength is similar between I and E networks. (d) (top) Correlation pattern averaged over all seed points 
in single animal with inhibitory GCaMP. (bottom) Correlation as function of distance. (e). Wavelength of the correlation pattern for I and E. Circles: 
individual animals, lines: group median and IQR. (f–g) Similar eccentricity of local correlation structure. (f) Examples for two seed points from the same 
inhibitory animal, numbers indicate measured eccentricity. (g) Median eccentricity for all seed points. Circles: individual animals, lines: group median 
and IQR. (h) Fracture strength is similar for I and E networks. (i, j) Spontaneous activity is moderately low- dimensional in both E and I networks. (i) 
Cumulative explained variance for principal components of spontaneous events (lines indicate individual animals). (j). Median dimensionality, calculated 
from event- matched (n=30 events, n=100 simulations) random subsampling of events. Circles: individual animals, lines: group median and IQR. IQR, 
interquartile range.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Spatial structure of inhibitory and excitatory correlation patterns from large events are highly similar to those computed from all 
events.

https://doi.org/10.7554/eLife.72456
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inhibitory and excitatory events tended to reside in similarly low- dimensional subspaces (Figure 4i,j; 
I: 10.55 [9.60–11.78], E: 9.44 [8.44–10.01]; median [IQR]; p=0.142, Wilcoxon rank- sum test), further 
supporting the contribution of inhibition to local heterogeneous networks in the developing visual 
cortex.

Precise spatial alignment of inhibitory and excitatory networks across 
millimeters
These results strongly suggest that excitatory and inhibitory neurons are tightly coupled into the same 
functional networks early in development. To address this directly, we performed widefield imaging of 
spontaneous activity of both excitatory and inhibitory neurons within the same animals (P25–26, n=3 
animals; Figure 5—figure supplement 1a). Animals were injected with AAVs expressing GCaMP6s in 
inhibitory cells under control of the mDlx enhancer (Dimidschstein et al., 2016) and jRCaMP1a (Dana 
et al., 2016) in excitatory cells with hSyn (Wilson et al., 2017). Spontaneous activity was imaged 
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Figure 5. Inhibitory and excitatory networks show high degree of similarity within animal. (a) Example spontaneous 
inhibitory (mDlx.GCaMP6s, top) and excitatory (syn.jRCaMP1a, bottom) events recorded from same animal (I 
color axis: –2 to –2 z- score, E color axis: –1 to 1 z- score). Example events were chosen based on pattern similarity. 
(b) Highly similar correlation patterns in inhibitory and excitatory networks for corresponding seed points. (c) 
Quantification of I versus E correlation similarity for all seed points. Circles indicate seed points illustrated in (b). 
(d). Similarity for all seed points in (c) falls within 95% confidence intervals (CIs) of bootstrapped I versus I similarity. 
(e) Within animal comparison of correlation strength for E and I (median and IQR within animal). Filled circles 
individually significant versus surrogate (p<0.01). (f) Similarity of I versus E correlations is significantly greater than 
shuffle (median and IQR within animal). Brackets indicate IQR of bootstrapped I versus I similarity. (g) Long- range 
correlations show significant network similarity. I versus E correlation similarity remains significant versus surrogate 
(red, 95% CI of surrogate, averaged across animals) for increasingly distant regions (excluding correlations within 
0.4–1.4 mm from the seed point).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Similar patterns of spontaneous activity in inhibitory and excitatory events.

https://doi.org/10.7554/eLife.72456
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using appropriate excitation and emission filters in interleaved blocks of 20 min. We observed similar 
patterns of modular spontaneous events in inhibitory and excitatory neurons, and individual events 
with corresponding patterns of activity could frequently be found in both excitatory and inhibitory 
data sets (Figure 5a, Figure 5—figure supplement 1).

To compare the structure of excitatory and inhibitory networks, we computed pixelwise correla-
tions separately for all excitatory and inhibitory events for each animal. When selecting the same seed 
point, the spatial patterns of correlated activity were highly similar across networks (Figure 5b), and 
exhibited equivalent strength extending across several millimeters (Figure 5e). To quantify this simi-
larity, we computed second- order correlations between excitatory and inhibitory correlation matrices 
(see Materials and methods), which revealed high levels of correlation similarity across nearly all seed- 
points within the imaging window (Figure 5c), indicating highly similar large- scale networks. To deter-
mine if the level of similarity between networks was statistically significant, we compared it to both 
the distribution obtained from subsampling inhibitory events (I vs. I, thereby establishing an upper 
bound given measurement noise and finite event numbers), as well as to surrogate data. We find 
that excitatory and inhibitory correlation similarity is significantly greater than surrogate (p<0.01 for 
3 of 3 individual animals, bootstrap test) and near the level of within inhibitory similarity (Figure 5d 
and f; colors correspond to data from three individual animals). Notably, excitatory and inhibitory 
networks exhibit strong similarity even in their long- range correlations, as similarity remained signifi-
cantly greater than surrogate even when considering only correlations over 1.4 mm from the seed 
point (Figure 5g; p<0.01, I vs. E networks vs surrogate, bootstrap test). Taken together, these results 
demonstrate the presence of overlapping and co- aligned excitatory and inhibitory networks in the 
developing primary visual cortex.

Figure 6. Cellular alignment of excitatory and inhibitory networks in developing visual cortex. (a) (Left): Example FOV showing GCaMP signal from 
excitatory and inhibitory neurons. (Middle/Right): Expanded images showing nuclear tdTomato signal specifically in inhibitory neurons (middle) and 
merged with GCaMP signal (right). (b) Traces of spontaneous activity for excitatory (E, green) and inhibitory (I, purple) neurons as indicated in (a). (c). 
Event amplitude for local (<75 µm) excitatory and inhibitory responses. For clarity when plotting, 5% of responses are shown for 2186 cells and 1231 
events from 21 FOV in five animals, and responses are clipped at 12 z- units. (d). Example pairwise correlations between an inhibitory neuron (green) and 
all cells (left), excitatory cells (middle), and inhibitory cells (right). (e). Pairwise correlations as function of distance for an example FOV shown in (a–d) for 
E- E, I- I, and E- I pairs. (f) same as (e) averaged over 21 FOV from five animals. Scale bars: (a, d): 100 µm; (b): 30 s, 3 ∆F/F. FOV, field- of- view.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. tdTomato expressed from AAV1.mDlx.GCaMP6s.P2A.NLS- tdTomato specifically labels GABAergic neurons.

Figure supplement 2. Spontaneous activity patterns are spatially modular and aligned across excitatory and inhibitory neurons.

Figure supplement 3. Examples of co- aligned correlation structure between excitatory and inhibitory cells.

https://doi.org/10.7554/eLife.72456
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Excitatory and inhibitory networks are tightly integrated at cellular 
scale
To assess whether the large- scale alignment of excitatory and inhibitory networks observed above 
extends to the cellular level, we performed simultaneous two- photon imaging of excitatory and 
inhibitory neurons (P23–26). We co- injected AAVs expressing hSyn.GCaMP6s (excitatory) and mDlx.
GCaMP6s.P2A.NLS- tdTomato (inhibitory), allowing us to distinguish inhibitory neurons in vivo through 
tdTomato expression (Figure  6a, Figure  6—figure supplement 1). We observed highly modular 
spontaneous activity in both excitatory and inhibitory cells, with local populations showing tightly 
coordinated patterns of activity across cell types (Figure 6b, Figure 6—figure supplement 2).

To quantify the relative balance of excitatory and inhibitory activity within local populations, we 
computed the average response of all cells of a given cell type within a 75-µm region around each 
neuron for all spontaneous events. We found the amplitude of events within these local populations 
was highly correlated between excitatory and inhibitory cells (r=0.86, 2186 cells and 1231 events from 
21 FOV in five animals; Figure 6c), suggesting locally balanced activity. Both inhibitory and excitatory 
neurons exhibited spatially organized pairwise correlations across spontaneous events, with distrib-
uted patches of positively correlated cells located hundreds of microns away. Notably, the spatial 
structure of pairwise correlations for a given neuron (whether inhibitory or excitatory) with either 
inhibitory or excitatory cells was well aligned (p<0.001 vs. shuffle), irrespective of cell type (Figure 6d, 
Figure 6—figure supplement 3). Finally, examining correlation strength as a function of distance and 
cell type demonstrates that correlated excitatory and inhibitory networks exhibit a similar spatial scale 
at the cellular level (Figure 6e and f). Taken together, these results show that excitatory and inhibitory 
neurons are precisely organized in the developing visual cortex into the same spatially structured and 
locally correlated functional networks.

Discussion
By applying the inhibitory interneuron- specific expression of fluorescent calcium sensors to the devel-
oping visual cortex, we were able to directly assess the structure of inhibitory cortical networks and 
their integration with excitatory networks. We show that prior to eye- opening and the onset of reliable 
stimulus- evoked responses (Chapman et al., 1996), intracortical inhibition is both present and highly 
organized, with inhibitory networks already displaying patterns of modular and correlated sponta-
neous activity that span several millimeters. Inhibitory networks exhibit quantitatively similar struc-
tures to excitatory networks, which together show precise alignment at both local and global scales 
in the patterns of correlated spontaneous activity. Taken together, these findings demonstrate that 
the presence of tightly coupled excitatory and inhibitory functional networks in the developing visual 
cortex.

In the mature ferret, both inhibitory and excitatory neurons are organized into a columnar map of 
orientation preference, with orientation- specific subnetworks of functionally coupled excitatory and 
inhibitory neurons present not only within iso- orientation domains but also near orientation pinwheels 
(Wilson et al., 2017). This organization stands in contrast to the non- specific local pooling of nearby 
excitatory activity by inhibitory neurons found in the ‘salt- and- pepper’ rodent cortex (Kerlin et al., 
2010; Bock et al., 2011; Hofer et al., 2011; Packer and Yuste, 2011; Runyan and Sur, 2013; Scholl 
et al., 2015), raising the possibility that the functionally specific organization of inhibitory cells in the 
mature ferret emerges from an initially non- specific state over the course of development. However, 
our finding of sharp correlation fractures in inhibitory networks (Figure 3f, Figure 3—figure supple-
ment 2) is inconsistent with non- specific local pooling and argues strongly against this possibility. 
Rather, our results indicate that in the developing visual cortex, inhibitory neurons are already tightly 
integrated into functionally specific networks. Furthermore, given that the patterns of correlated 
activity undergo extensive refinement in the week prior to eye- opening (Smith et al., 2018), these 
results also suggest that excitatory and inhibitory networks likely refine in parallel over development 
to produce the tightly coupled organization found in the mature cortex (Wilson et al., 2017).

One potential caveat to these results is that genetically encoded calcium sensors can exhibit non- 
linearities in their response to neural activity that may vary by cell type, baseline firing rate, and 
sensor, possibly obscuring subtle differences in the structure of excitatory or inhibitory networks. 
Although such differences could potentially impact the measured size or magnitude of domains or 
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underestimate the spatial extent of some of the activity patterns, differences in sensor function cannot 
account for the presence of modular inhibitory activity or the spacing of excitatory and inhibitory 
domains. Our data clearly show modular patterns of inhibitory activity that extend throughout the full 
imaging area (Figure 3—figure supplement 1c- d), which show clearly detectable troughs between 
active regions (Figure 3c, Figure 3—figure supplement 1a), results which also argue against a satu-
ration of the calcium signal. In addition, excitatory events imaged with jRCaMP1a (Figure 5) have 
spatially similar features to those imaged with GCaMP6s (Figure 5, Smith et al., 2018), indicating 
that variations in sensitivity or non- linearities across sensors are unlikely to obscure differences in the 
precise alignment of excitatory and inhibitory correlation patterns.

The mDlx enhancer used in this study has been shown to drive expression across several subtypes 
of inhibitory cells (Dimidschstein et al., 2016), which have been ascribed distinct roles within cortical 
circuits (see (Hattori et al., 2017; Wood et al., 2017) for reviews). However, in the mature ferret, 
parvalbumin (PV), somatostatin (SOM) and non- PV, non- SOM GABAergic neurons were all found to 
be equivalently integrated into specific and spatially organized functional networks (Wilson et al., 
2017). Although the low expression of PV in the weeks prior to eye- opening (Gao et al., 2000) makes 
it difficult to separate inhibitory neurons by subtype at these ages, our results suggest that a similarly 
organized and integrated structure to that in the mature ferret may already exist in the developing 
cortex. Future work, potentially leveraging inhibitory subtype- specific viral approaches (Mehta et al., 
2019; Vormstein- Schneider et  al., 2020), will be required to directly test the functional roles of 
specific GABAergic subtypes in developing cortical networks.

Large- scale distributed functional networks are a hallmark of mature cortical organization and are 
exemplified by the columnar arrangement of orientation preference in the visual cortex of primates 
and carnivores (Blasdel and Salama, 1986; Bonhoeffer and Grinvald, 1991; Ohki et  al., 2005). 
Here, co- tuned columns preferentially interconnected by specific long- range horizontal projections 
(Gilbert and Wiesel, 1989; Malach et  al., 1993; Bosking et  al., 1997) which emerge over the 
course of development (Ruthazer and Stryker, 1996; Borrell and Callaway, 2002). The presence 
of modular activity and long range- correlations in the developing cortex prior to the emergence of 
these horizontal connections, coupled with the finding that correlations persist in the absence of 
feedforward input (Smith et al., 2018), has been taken to indicate that local intracortical circuits are 
sufficient to generate these patterns of activity. Models of developing cortical networks can rely on 
local connectivity to self- organize, thereby producing modular patterns of activity (von der Malsburg, 
1973; Swindale, 1997; Miller, 1994; Barrow et al., 1996). If these local connections are sufficiently 
heterogeneous, the resulting patterns of activity reside in a low- dimensional subspace and produce 
long- range correlations without requiring long- range horizontal connections (Smith et al., 2018). A 
strong prediction of such models is the presence of tightly integrated and co- aligned excitatory and 
inhibitory networks (Ermentrout and Cowan, 1979; Wilson and Cowan, 1973), in agreement with 
our experimental observations in the developing cortex. Thus, our results suggest that short- range 
intracortical interactions between tightly coupled excitatory and inhibitory circuits give rise to large- 
scale distributed networks during early development, which may serve as a seed for future functional 
organization in the cortex.

Materials and methods
Animals
All experimental procedures were approved by the University of Minnesota Institutional Animal Care 
and Use Committee and were performed in accordance with guidelines from the US National Insti-
tutes of Health. We obtained 20 male and female ferret kits from Marshall Farms and housed them 
with jills on a 16 h light/8 h dark cycle. No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in previous publications.

Viral injection
Viral injections were performed as previously described (Smith and Fitzpatrick, 2016) and were 
consistent with prior work (Smith et al., 2018). Injections targeted the primary visual cortex, defined 
as thalamo- recepient visual cortex. In the ferret, primary visual cortex includes both areas 17 and 18, 
which both receive direct thalamic innervation and exhibit columnar mapping of orientation (White 
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et al., 1999; White et al., 2001a). Briefly, we expressed GCaMP6s (Chen et al., 2013) in inhibitory 
interneurons by microinjecting AAV1.mDLx.GCaMP6s.P2A.NLS.tdTomato (University of Minnesota 
Viral Vector and Cloning Core), based on the mDlx inhibitory specific enhancer (Dimidschstein et al., 
2016), into layer 2/3 of the primary visual cortex at P10–15 approximately 10–15 days before imaging 
experiments. To image excitatory and inhibitory activity, animals used for widefield experiments were 
injected with a 1:1 ratio of AAV1.mDlx.GCaMP6s.P2A.NLS.tdTomato and AAV1.Syn.NES.jRCaMP1a.
WPRE.SV40, and animals used for two- photon experiments were injected with a 1:1 ratio of AAV1.
mDLx.GCaMP6s.P2A.NLS.tdTomato and AAV1.Syn.GCaMP6s.WPRE.SV40.

Anesthesia was induced with isoflurane (3.5–4%) and maintained with isoflurane (1–1.5%). 
Buprenorphine (0.01  mg/kg) and either atropine (0.2  mg/kg) or glycopyrrolate (0.01  mg/kg) were 
administered, as well as 1:1 lidocaine/bupivacaine at the site of incision. Animal temperature was 
maintained at approximately 37°C with a water pump heat therapy pad (Adroit Medical HTP- 1500, 
Parkland Scientific). Animals were also mechanically ventilated and both heart rate and end- tidal CO2 
were monitored throughout the surgery. Using aseptic surgical technique, skin and muscle overlying 
visual cortex were retracted, and a small burr hole was made with a handheld drill (Fordom Electric 
Co.). Approximately 1 µl of virus contained in a pulled- glass pipette was pressure injected into the 
cortex at two depths (~200 µm and 400 µm below the surface) over 20 min using a Nanoject- II (World 
Precision Instruments). The craniotomy was filled with 2% agarose and sealed with a thin sterile plastic 
film to prevent dural adhesion.

Cranial window surgery
On the day of experimental imaging, ferrets were anesthetized with 3–4% isoflurane. Atropine was 
administered as in virus injection procedure. Animals were placed on a feedback- controlled heating 
pad to maintain an internal temperature of 37–38°C. Animals were intubated and ventilated, and 
isoflurane was delivered between 1% and 2% throughout the surgical procedure to maintain a surgical 
plane of anesthesia. An intraparietal catheter was placed to deliver fluids. EKG, end- tidal CO2, and 
internal temperature were continuously monitored during the procedure and subsequent imaging 
session. The scalp was retracted and a custom titanium headplate adhered to the skull using C&B 
Metabond (Parkell). A 6–7  mm craniotomy was performed at the viral injection site and the dura 
retracted to reveal the cortex. One 4 mm cover glass (round, #1.5 thickness, Electron Microscopy 
Sciences) was adhered to the bottom of a custom titanium insert and placed onto the brain to gently 
compress the underlying cortex and dampen biological motion during imaging. The cranial window 
was hermetically sealed using a stainless- steel retaining ring (5/16- in. internal retaining ring, McMaster- 
Carr). Upon completion of the surgical procedure, isoflurane was gradually reduced (0.6–0.9%) and 
then vecuronium bromide (0.4 mg/kg/hr) mixed in an LRS 5% Dextrose solution was delivered IP to 
reduce motion and prevent spontaneous respiration.

Widefield epifluorescence and two-photon imaging
Widefield epifluorescence imaging was performed with an sCMOS camera (Zyla 5.5, Andor; Prime BSI 
express, Teledyne) controlled by μManager (Edelstein et al., 2010). Images were acquired at 15 Hz 
with 4×4 binning to yield 640×540 pixels (Zyla) or 2×2 binning and additional offline 2×2 binning to 
yield 512×512 pixels (Prime BSI). Two- photon imaging was performed with a commercial microscope 
(Neurolabware) driven by an Insight X3 laser (Spectra Physics). Imaging was performed at 920 nm 
(GCaMP) and 1040 nm (tdTomato), and fluorescence was collected on separate PMTs using a 562- nm 
dichroic mirror and 510/84 nm (GCaMP) and 607/70 nm (tdTomato) emission filters (Semrock). Images 
were collected at 796×512 pixels at 30 Hz.

Spontaneous activity was captured in 10- min imaging sessions, with the animal sitting in a dark-
ened room facing an LCD monitor displaying a black screen. All imaging of spontaneous activity was 
done in young animals (P23–29) prior to eye- opening (~P31 to P35).

Immunostaining and imaging
To confirm that tdTomato expression from AAV1.mDLx.GCaMP6s.P2A.NLS.tdTomato was specific to 
inhibitory neurons as expected from previous work (Wilson et al., 2017), we performed immunos-
taining in a subset of animals. Following imaging, animals were euthanized and transcardially perfused 
with 0.9% heparinized saline and 4% paraformaldehyde. The brains were extracted, post- fixed 
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overnight in 4% paraformaldehyde, and stored in 0.1 M phosphate buffer solution. Using a vibratome, 
brains were tangentially sectioned along the surface of the imaging window (50 μm steps). Slices 
were stained for GAD67 using Mouse anti- GAD67 (1:1000, Sigma- Aldrich, MAB5406) and Alexa 
405 donkey anti- mouse (1:500, Abcam, AB175659) as described (Wilson et al., 2017). Imaging was 
performed on a confocal microscope (Nikon C2).

Bicuculline application
To test whether GABAergic signaling exerted net inhibitory effects at the ages examined in this study, 
we bath applied the GABA(A) antagonist BMI directly to the cortex at P21–23 in animals expressing 
AAV1.Syn.GCaMP6s.WPRE.SV40. To apply BMI, the cannula covering the cranial window was removed 
and the exposed cortex was gently flushed with ACSF. After collecting 10 min of baseline spontaneous 
activity, 10 μM BMI in ACSF was bath applied to the cortex, and spontaneous activity was imaged for 
an additional 10 min.

Data analysis
Signal extraction for widefield epifluorescence imaging
Image series were motion corrected using rigid alignment and a region of interest (ROI) was manually 
drawn around the cortical region of GCaMP expression. Additionally, a ROI mask was manually drawn 
around blood vessels to remove vessel artifacts. The baseline fluorescence (F0) for each pixel was 
obtained by applying a rank- order filter to the raw fluorescence trace with a rank 70 samples (for excit-
atory data) or 190 samples (for inhibitory data) and a time window of 30 s (451 samples). The rank and 
time window were chosen such that the baseline faithfully followed the slow trend of the fluorescence 
activity. The baseline- corrected spontaneous activity was calculated as (F–F0)/F0=∆ F/F0.

Event detection
Detection of spontaneously active events was performed essentially as described (Smith et al., 2018). 
Briefly, we first determined active pixels on each frame using a pixelwise threshold set to 3 s.d. above 
each pixel’s mean value across time. Active pixels not part of a contiguous active region of at least 
0.01 mm2 were considered ‘inactive’ for the purpose of event detection. Active frames were taken 
as frames with a spatially extended pattern of activity (>50% of pixels were active). Our results were 
not sensitive to area threshold, as removing the area threshold requirement and including all frames 
with activity greater than 3 s.d resulted in correlation patterns with highly similar spatial structure for 
both inhibitory and excitatory networks. Furthermore, the strength of correlations 2 mm from the seed 
point for inhibitory and excitatory networks were equivalent for networks calculated from large events 
and all events (Figure 4—figure supplement 1). Consecutive active frames were combined into a 
single event starting with the first high- activity frame and then either ending with the last high- activity 
frame or, if present, an activity frame defining a local minimum in the fluorescence activity. To assess 
the spatial pattern of an event, we extracted the maximally active frame for each event, defined as the 
frame with the highest activity averaged across the ROI. While correlation patterns have been shown 
to be stable with as low as 10 events (Smith et al., 2018), datasets with fewer than 30 detected events 
were excluded from this study.

Due to differences in signal- to- noise ratio in experiments using jRCaMP1a, we used a pixelwise 
threshold of 2 s.d to determine active pixels, and frames were >30% of the pixels were active were 
considered active frames.

Spontaneous correlation patterns
Spontaneous correlation patters were calculated as previously described (Smith et al., 2018). Briefly, 
we applied a Gaussian spatial band- pass filter (sigmalow=26 µm and sigmahigh=195 µm) to the maxi-
mally active frame in each event and downsampled it to 160×135 (128×128, Prime BSI) pixels. The 
resulting patterns, named spontaneous patterns A in the following, were used to compute the spon-
taneous correlation patterns as the pairwise Pearson’s correlation between all locations x within the 
ROI and the seed point s:
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Here the brackets ⟨ ⟩ denote the average over all events and σx denotes the standard deviation of 
A over all N events i at location x.

Spontaneous fractures
Spontaneous fractures were computed as previously described (Smith et al., 2018). Fracture strength 
was defined as the rate by which the correlation pattern changes when moving the seed point loca-
tion over adjacent pixels. We defined fracture magnitude as the difference in fracture strength aver-
aged over the fracture lines, and its average in regions >130 µm apart from the nearest fracture line. 
Fracture lines were identified by first applying a spatial median filter with a window size of 78 µm 
to remove outliers. We then applied histogram normalization contrast enhancement using contrast- 
limited adaptive histogram equalization (CLAHE, clip limit=20, size of neighborhood 260×260 µm2 
using ‘createCLAHE’ in Python OpenCV), and a spatial high- pass filter (Gaussian filter, s.d. sigma-

high=390 µm). The resulting values were binarized (threshold=0), and the resulting two- dimensional 
binary array eroded and then dilated (twice) to remove single noncontiguous pixels (Python, Multidi-
menisonal image processing library [scipy.ndimage]). We skeletonized this binary array to obtain the 
fracture lines (Python, Scikit- Image).

Event domain size
To estimate the size of active domains in spontaneous events, we first identified domains by taking the 
local maxima of each event after bandpass filtering. The local neighborhood of each domain (600 μm 
radius from maxima) was then fit with a two- dimensional Gaussian using nonlinear least squares:
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where H is the amplitude of the Gaussian, x1 (y1) is the x (y) center, σx (σy) is the standard deviation 
of the x (y) component,  θ  is the angular rotation of the Gaussian, and y0 is the offset. Domain size was 
calculated as the FWTM of the minor axis of fitted Gaussian:

 FWTMminor = σminor2
√

2ln(10)  

Strength of long-distance correlations
To determine the strength of correlations, we first identified local maxima (minimum separation 
between maxima: 800 µm) in the correlation pattern for each seed point. To assess the statistical 
significance of long- range correlations ~2 mm from the seed point, we compared the median correla-
tion strength for maxima located 1.8–2.2 mm away against a distribution obtained from 100 surro-
gate correlation patterns. Surrogate correlation patterns control for correlations that arise from finite 
sampling by eliminating most of the spatial relationship between patterns (Smith et al., 2018). Surro-
gate correlation patterns were generated from spontaneous events that were randomly rotated (rota-
tion angle drawn from a uniform distribution between 0° and 360° with a step size of 10°), translated 
(shifts drawn from a uniform distribution between ±450 µm in increments of 26 µm, independently for 
x and y directions) and reflected (with probability 0.5, independently at the x and y axes at the center 
of the ROI).

Correlation pattern wavelength
To find the wavelength of the correlation patterns, we first centered and averaged the local neighbor-
hood (1500 μm radius) across all seed points. We then averaged over the angle to obtain the average 
correlation as a function of distance from the seed point and used spline interpolation to fit the data. 
The wavelength of the resulting spline interpolation was estimated as the distance to the first local 
maxima after 0.
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Eccentricity of local correlation structure
To describe the shape of the local correlation pattern around a seed point, we fit an ellipse (least- 
square fit) with orientation Φ, major axis ς1 and minor axis ς2 to the contour line at correlation = 0.7 
around the seed point. The eccentricity ε of the ellipse is defined as:

 ε =
√

ς2
1−ς2

2
ς1   

Where ε=0 is a circle, and increasing values indicating greater elongation along the ellipse.

Dimensionality of spontaneous activity
We estimated the dimensionality deff of the subspace spanned by spontaneous activity patterns by 
Abbott et al., 2011:
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(∑N
i=1 λi

)2
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where λi are the eigenvalues of the covariance matrix for the N pixels within the ROI. As the value of 
the dimensionality is sensitive to differences in detected event number, to estimate the distribution of 
the dimensionality for each animal we calculated the dimensionality of randomly sub- sampled events 
(n=30 events, matched across animals, 100 simulations) and took the median of the distribution.

Comparison of inhibitory and excitatory correlation similarity
To compare the similarity between inhibitory and excitatory correlation patterns within the same 
animal, we computed the second- order correlation between patterns. For each seed point, we calcu-
lated the second order Pearson’s correlation between corresponding correlation patterns, while 
excluding pixels within a 400-μm exclusion radius around the seed point to prevent local correlations 
from inflating the similarity between the two networks. To get an estimate the upper bound of simi-
larity within inhibitory networks, given a finite sampling size, we randomly split the detected inhibi-
tory events into two groups and separately computed correlations and the second- order correlations 
between the halves (n simulations=100.) To determine if the observed networks are more similar 
than chance, we calculated the similarity between the excitatory network and a surrogate inhibitory 
network (surrogate events calculated as above, with 100 simulations and surrogate similarity calcu-
lated as median and IQR across simulations). To determine if spontaneous correlations far from the 
seed point also maintain high degrees of similarity, we systematically increased the size of the exclu-
sion radii, calculating similarity only using data far from the seed points. Exclusion radius size ranged 
from 400 to 1400 μm, in 200 μm steps.

Two-photon event detection and cellular correlations
Two- photon images were corrected for rigid in plane motion via a 2D cross- correlation. Cellular ROIs 
were drawn using custom software (Cell Magic Wand; Wilson et al., 2017) in ImageJ and imported 
into Matlab via MIJ (Sage and Prodanov, 2012, http:// bigwww. epfl. ch/ sage/ soft/ mij/). Cellular ROIs 
were then manually categorized as either being inhibitory or excitatory based on tdTomato expres-
sion. Fluorescence was averaged over all pixels in the ROI and traces were neuropil subtracted, where 
Fneuropil was taken as the average fluorescence within 30 µm excluding all cellular ROIs and α=0.6:

 Fcell = Fraw − αFneuropil  

Activity was taken as ∆F/F0, where F0 was the baseline fluorescence obtained by applying a 
60- s median filter, followed by a first- order Butterworth high- pass filter with a cutoff time of 60 s. To 
compute spontaneous correlations, we first identified frames containing spontaneous events, which 
were defined as frames in which >10% of imaged neurons exhibited activity >2 s.d. above their mean. 
Cellular activity on all event frames was then z- scored using the mean and s.d. of each frame, and 
pairwise Pearson’s correlations were computed across all neurons over all active frames.

The similarity of cellular correlation patterns for inhibitory and excitatory cells was computed by first 
creating a spatially matched set of excitatory and inhibitory neurons. For each inhibitory cell in the FOV, 
a spatially matched excitatory cell was identified by finding the closest excitatory cell (within 50 µm). 
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Then, for every cell in the FOV (excitatory and inhibitory) pairwise correlations were calculated with either 
inhibitory cells or the spatially matched excitatory cells. The similarity of these correlation patterns was 
taken as the second- order Pearson’s correlation as above, while excluding cells <200 µm from the seed 
neuron. Statistical significance was computed by comparing measured similarity values against a shuffled 
distribution obtained by shuffling the pairwise correlations before computing similarity (100 shuffles).

To compare the amplitude of events within a local area, activity traces for each cell were smoothed 
with a three- sample median filter and z- scored across all frames. We then computed the average 
amplitude of all inhibitory (or excitatory) cells within a 75-µm radius for the maximally active frame of 
each event.

Quantification and statistical analysis
Nonparametric tests were used for statistical testing throughout the study. Bootstrapping was used 
to determine null distributions when indicated. Center and spread values are reported as median and 
IQR, unless otherwise noted. Statistical analyses were performed in MATLAB and Python, and signifi-
cance was defined as p<0.05.
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