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The tooth arrangements of human beings are challenging to accurately observe

when relying on dentists’ naked eyes, especially for dental caries in children,

which is difficult to detect. Cone-beam computer tomography (CBCT) is used

as an auxiliary method to measure patients’ teeth, including children. However,

subjective and irreproducible manual measurements are required during this

process, which wastes much time and energy for the dentists. Therefore, a fast

and accurate tooth segmentation algorithm that can replace repeated

calculations and annotations in manual segmentation has tremendous

clinical significance. This study proposes a local contextual enhancement

model for clinical dental CBCT images. The local enhancement model,

which is more suitable for dental CBCT images, is proposed based on the

analysis of the existing contextual models. Then, the local enhancement model

is fused into an encoder–decoder framework for dental CBCT images. At last,

extensive experiments are conducted to validate our method.
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1 Introduction

In recent years, application of computer tomography (CT) Gao et al. (2021) has

become increasingly perfect, which can provide three-dimensional images for partial

magnification observation, and its clinical penetration rate is getting higher and higher.

However, due to further breakthroughs in image reconstruction technology, metal and

bone artifacts have always been restricted to their full use. The emergence of CBCT

Schulze et al. (2011) has partially solved the aforementioned problems. Dental CBCT uses

3D cone beam X-ray scanning instead of the 2D fan beam scanning of traditional CT. The

significant difference is that the projection data of tomographic CT are one-dimensional,

and the reconstructed image data are two-dimensional. Due to the accumulation of

successive two-dimensional slice forms, the reconstructed three-dimensional image and

the image metal artifacts are relatively heavy, while the projection data of CBCT are two-

dimensional, and the three-dimensional image is directly obtained after reconstruction,

which greatly solves the problem of artifacts. In addition, the thickness of CBCT layers can
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be as low as 0.1 mm, which provides better imaging quality for

complicated tissue structures such as teeth or jaws.

Digital dental care provides assisted patient care and has

become a reality based on computer vision science. As a newly

developed medical imaging technology, CBCT reconstructs the

patient’s anatomical structure through X-rays, enabling

stomatologists to observe the arrangement of tooth roots. On

this basis, the stomatologist can measure the patient’s teeth,

including the shape, position, and main axis direction of the

teeth Wexler et al. (2020). For children, the tooth arrangement is

particularly difficult to observe. Children undergo growth and

tooth replacement, with a high incidence age for dental caries,

enamel hypoplasia, early eruption, dental trauma, and occlusal

disorders. Therefore, dental imaging examinations are

unavoidable and more frequent in children than in adults,

resulting in more significant long-term harm. At the same

time, children are more sensitive to radiation, their age and

body size are smaller, and the exposure per unit of the body

surface area is more significant under the same radiation dose. In

addition, children are less likely to cooperate and cannot tolerate

prolonged examinations. CBCT under semantic segmentation

does not require children to pose particular poses, leading to a

shorter examination time than that of traditional methods, which

can complete the analysis better.

The tooth CBCT image segmentation can establish a three-

dimensional model of the tooth, and then the dentist can quickly

and accurately measure the patient’s teeth in all directions (Park

and Kwak, 2019). If dentists are required to manually segment

teeth in CBCT images, it is expensive and impossible to be

clinically acceptable. CBCT images are three-dimensional

images with a sub-millimeter resolution, and a CBCT image

usually contains 28–32 teeth (Gao and Chae, 2010). It usually

takes a professional dentist several days to perform high-

precision segmentation of each tooth in a CBCT image.

Therefore, automatic or semi-automatic tooth segmentation

algorithms can replace many repeated calculations and

annotations in the manual segmentation process by doctors

and quickly achieve high-precision tooth segmentation in

CBCT images, which is of great clinical significance.

Researchers have applied many methods to segment teeth in

the past few decades, including threshold-based (Ramesh et al.,

1995), edge-based (Lin et al., 2012), region-based (Akhoondali

et al., 2009), and cluster-based (Alsmadi, 2018) segmentation

methods. However, those classical algorithms exhibit limitations

when dealing with the aforementioned challenging conditions,

e.g., varying intensities, unclear boundaries, and the presence of

metal artifacts. Moreover, classical algorithms often require

manual seed points to perform tooth segmentation, making

these methods incapable of achieving fully automated

segmentation. More recently, some literature based on the

deep convolutional neural network (DCNN) (Krizhevsky

et al., 2012) was proposed, resolving individual tooth

segmentation. With the continuous deepening of the DCNN,

tooth segmentation has rapidly developed. In particular, the fully

convolutional network (FCN) (Long et al., 2015) provides a new

research idea for tooth segmentation. In particular, FCN replaces

the fully connected layer with a fully convolutional layer to realize

the conversion of the input image to the output image.

Meanwhile, DCNN-based methods (Ronneberger et al., 2015);

Yu et al., 2020); Ma et al., 2021) can train the segmentation model

using pixel-level annotation information as labels, including

category, spatial information, and location information. Owing

to richer object prior information, DCNN-based methods can

adapt to semantic parsing of complex scenes. DCNN-based

methods mainly have the following advantages: 1) depth

features have strong characterization ability. A deep learning

dense connection network can realize automatic extraction of

convolutional features in CBCT images. 2) The image has local

invariance. Deep learning technology is developed from natural

image analysis, and local invariant features of realistic images are

also applicable to dental CBCT images. 3) The network has

flexibility. The framework can flexibly apply to tooth CBCT

image segmentation according to different task requirements.

Based on the robust feature extraction of deep learning

networks, many researchers (Im et al., 2022); Hao et al., 2022)

focused on how to improve tooth segmentation. Xu et al. (2018)

proposed a boundary-aware method to improve the efficiency of

feature extraction. Nguyen et al. (2020) segmented the alveolar

bone and located the alveolar crest via a convolutional neural

network. Cui et al. (2019) extracted the edge map from the

feature layers to enhance image contrast along shape boundaries.

Zhao et al. (2020) used the global and local attention modules to

locate the tooth region. Cui et al. (2021a) exploited

comprehensive semantic information of tooth segmentation

by a generative adversarial network. Cui et al. (2021b)

designed a tooth centroid voting scheme for the detected

tooth and then used a confidence-aware cascade segmentation

module to segment each tooth. Although researchers have made

considerable efforts to enhance the accuracy of tooth

segmentation, automatically and robustly extracting a tooth

from dental models remains a challenging task. First, some

patients have complex dental conditions, e.g., crowded,

missing, and misplaced teeth. Meanwhile, adjacent teeth are

often irregular and difficult to separate. Second, the teeth and

gums are short of noticeable shape changes at the boundary and

the distinction of geometric features, making it difficult for the

boundary-based segmentation method to distinguish these two

parts.

Last, some patients with metal braces or implanted dentures

of other materials have artificial materials in their teeth. As

shown in Figure 1, we visualized tooth CBCT data by setting

different window widths and window levels and then used red

and blue boxes to display local image information. In the top row,

the window width and window level are set to 3,010 and 2006,

respectively. In the bottom row, the window width and window

level are set to 3,074 and 4,202, respectively. In the left column,
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the details of the teeth can be seen in both the red and blue boxes.

The red frame image cannot distinguish metal materials in the

middle image, while the blue print can better judge the boundary.

On the right, the picture in the red box can better represent the

teeth, while the tooth in the blue box is partially missing. These

interferences may increase the error of tooth segmentation and

reduce the effect of tooth segmentation.

To address these challenges, we tried to optimize the local

spatial information of dental CBCT images. This study focused

on local feature enhancement, given that teeth have significantly

different arrangements and indistinguishable boundaries. First,

we study some classical local enhancement algorithms. On this

basis, a more suitable local enhancement module for tooth

segmentation is proposed. Then, the local enhancement

module is further integrated into the encoding–decoding

framework. At the same time, the metal material between the

teeth was considered. By separating metal materials, the

convolutional network can automatically learn whether the

patient’s tooth section contains metal materials to further

improve tooth segmentation.

We summarize the contribution as given below; 1) this study

proposes a local contextual enhancement module for clinical

tooth CBCT images. We analyzed the distribution of tooth

images and further suggested a local enhancement module

that is more suitable for dental CBCT images. 2) We verified

the existed works and integrated the local enhancement module

into the encoding–decoding framework for tooth CBCT images.

3) We validated the superiorities of our method over the state-of-

the-art methods through extensive experiments on the built

CBCT database.

2 Related works

As the foundation of tooth CBCT image analysis, tooth

segmentation plays an essential role for dentists in

determining orthodontic treatment plans. Traditional tooth

image segmentation methods can achieve effective tooth

segmentation. However, with the continuous rise of deep

learning, its excellent modeling ability and generalization have

also received extensive attention. The following subsections will

highlight the classical methods and CNN architectures for tooth

segmentation.

2.1 Literature on classical methods

As early as the 1960s, image segmentation attracted extensive

attention in the academic community. Early segmentation

methods segmented images between regions according to the

features of the image, such as grayscale, color, texture, and shape.

Classical methods are differentiated into several categories.

FIGURE 1
Tooth CT images of three slices. The top and bottom lines represent the CBCT images of teeth obtained by setting different windowwidths and
window positions. Teeth or metal may not be separated when the window width is not set correctly. The top line set the window width and window
level to 3,010 and 2,006. In the bottom line, the windowwidth and window level are set to 3,074 and 4,202, respectively, as confirmed by the expert.
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1) The threshold-based segmentation method. The threshold-

based method sets the threshold by extracting the grayscale

features of the image. The gray value of each image pixel is

compared with the threshold and assigned to the

corresponding category. Tikhe et al. (2016) selected a

single threshold by the pixel gray level of the histogram to

identify enamel caries and proximal caries. Mao et al. (2018)

designed an iterative segmentation method based on a global

threshold. By synthesizing and median-filtering the

segmented complete tooth contour image and crown

image, the problem of adjacent tooth crown adhesion is

solved to a certain extent. However, the aforementioned

two methods are limited by a single threshold and cannot

effectively separate the tooth and background regions.

In the dental panoramic X-ray image, the contrast between the

tooth and background areas is significantly different at the root and

crown positions. Therefore, it is necessary to adaptively select

different thresholds for different image positions to obtain more

accurate segmentation results. From a multi-threshold perspective,

Mohamed razali et al. (2014) and Indraswari et al. (2015) used a

locally adaptive threshold segmentation method to segment dental

panoramic X-ray images, which are used in different segmentation

objects and scenes. The final segmentation result error is lower than

that of single threshold segmentation.

The threshold segmentation method has a simple model, fast

running speed, and without annotation requirements. However,

due to the method’s limitations, only simple scenes with a few

categories can be segmented, and the processing of more complex

scenes with foreground and background is weak.

2) The edge-based segmentation method. This method first

detects the apparent differences in grayscale, color, and

texture of different types of objects. On this basis, the

discontinuous region in the image is detected by pixel

gradient differentiation and other methods to find the

image’s edge to achieve the target region’s segmentation.

Ali et al. (2015) made full use of the active contour model

to solve the problem of weak and insignificant gradients

between teeth and their backgrounds. Lin et al. (2012)

proposed a fully automatic tooth segmentation model with

three coupled level set functions. Subsequently, Rad et al.

(2013) offered to extract the features of teeth using the

grayscale co-occurrence matrix. The aforementioned

methods easily fall into local minima and slowly converge.

In addition, the most typical edge-based segmentation

method is based on the level set method, (Li et al., 2007)

which combines the level set and the support vector machine

(SVM) to solve the problem subtly. It provides the initial

contours for the two coupled level sets, improving tooth

segmentation accuracy and time. Such methods also use

the underlying features to calculate the edge, which is

challenging when dealing with complex scenes.

3) The area-based method. According to the similarity criterion

of gray image features, this method looks for the maximum

consistency region and then divides the image into different

regions. The main methods include region split and merge

(Chen and Pavlidis, 1979), seeded region growing (Adams

and Bischof, 1994), and watershed algorithm (Meyer and

Beucher, 1990). Li et al. (2012) proposed the top-hat–bottom-

hat transform to amplify the contrast between the foreground

and background, improving the segmentation by removing

the noise before a watershed algorithm. Subsequently,

Radhiyah et al. (2016) used Gaussian filtering and

histogram equalization filtering to preprocess dental

panoramic X-ray images. However, the aforementioned

methods cannot effectively eliminate the sensitive noise of

the watershed algorithm.

4) The clustering-based method. The clustering method

transforms the image to be segmented from the image

space to the feature space and clustering features in the

feature space through similarity, e.g., Euclidean distance

and correlation coefficient. Finally, the clustering results

are mapped back to the image space to segment the image.

Based on the aforementioned principle, segmentation

depends on the clustering and similarity measurement

methods used. In addition, the construction of the feature

space can be one-dimensional or multi-dimensional, and the

grayscale, texture, color, depth, and combination of the image

can be used as the basis for the construction of the multi-

dimensional feature space. Son and Tuan, (2016) used semi-

supervised entropy-regularized fuzzy clustering to segment

teeth, but this method still requires manual intervention and

has certain limitations. Subsequently, Alsmadi (2018) used

the fuzzy c-means clustering method to segment the injured

jaw in the panoramic X-ray image automatically. Their

approach can perform well without blurring the edge of

the segmentation target.

2.2 Literature on CNN-based methods

Many researchers have recently contributed to tooth

segmentation with deep learning methods. Compared with

classical tooth segmentation methods that need to set complex

rules for modeling, data-driven CNN-based methods have more

vital modeling ability and generalization ability. Wirtz et al.

(2018) combined a coupled shape model with a neural

network, and they combined the features of gradient images

with prior statistical knowledge to build a segmentation model.

However, this segmentation model cannot segment wisdom

teeth. Lee et al. (2020) established a novel method to estimate

the average gray density level in the bone and tooth regions.

Zhang et al. (2020) developed CNN’s intuitive 3D tooth

segmentation approach in harmonic parameter space. They

built a 3D tooth model with 2D harmonic parameter space in
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tooth images and constructed the CNN to study how to perform

high-quality and robust tooth segmentation automatically and

precisely. Chen et al. (2020) achieved automatic segmentation for

the individual tooth in CBCT images by a multi-task 3D fully

convolutional network. Rao et al. (2020) proposed a novel

symmetric full convolutional network with residual block and

dense conditional random field. This method can achieve

automatic tooth segmentation because of particular deep

bottleneck architectures and summation-based skip

connections. Gu et al. (2021) proposed a tooth segmentation

method on the dental mesh model. They used an improved

region growing algorithm and parameter adaptive method to

expand the resemble regions and remove unnecessary

parameters to enhance their segmentation performance. To

cost-effectively improve the results of tooth segmentation, Li

et al. (2021) proposed a group transformer to achieve advanced

performance on tooth root segmentation. Koch et al. (2019)

input the original image into the network in blocks and achieved

pretty performance through U-Net. Although the segmentation

result of the tooth is essential for determining the root resorption

rate and the localization of the root position, the aforementioned

methods still failed to solve the accuracy problem of the fuzzy

root. Zhao et al. (2020) used long short-term memory (LSTM) to

build an attention mechanism segmentation network that solves

the overall low contrast problem in dental panoramic X-ray

images. Although this method utilizes short-range feature points

to obtain more contextual information, the correlation between

distant feature neighborhoods cannot be considered. Cui et al.

(2019) first extracted edge maps from input CBCT images to

enhance image contrast along shape boundaries. Then, they

extracted features from the edge map and input the image

separately to learn a new similarity matrix to reduce the

number of redundant proposals in the RPN network, speeding

up training, and saving GPU memory. Subsequently, Cui et al.

(2021b) proposed a two-stage framework including a distance-

aware centroid prediction module and a confidence-aware

cascade segmentation module to extract all teeth from tooth

models with significant variations. The first stage detects all teeth

using a distance-aware tooth centroid voting scheme, capable of

locating teeth at irregular locations on the abnormal tooth model.

Moreover, a confidence-aware cascade segmentation module is

designed in the second stage to segment each tooth. Recently, Cui

et al. (2022) proposed a multi-level morphology to guide the

tooth segmentation model, which characterized the tooth shape

from different angles of “point, line, and surface” and accurately

extracted the patient’s dental crown and tooth root information.

3 The proposed method

The proposed method is a 2D CNN-based framework to

segment the tooth and artificial materials from CBCT images.

First, the framework is introduced in Section 3.1. Second, the

local contextual module is presented in Section 3.2, which

enhances the local context information for tooth images

through different convolutions. Finally, the loss function of

our network is described in Section 3.3, which exploits the

pixel potential between various teeth.

3.1 Model overview

The critical insight of this study is that local information

benefits tooth segmentation, as teeth’ local structure and surface

area are closely related. To this end, we design a local context

enhancement module to explore the effectiveness of local

information on tooth CBCT images. An overview of the

proposed method is shown in Figure 2. We assume X as the

input to the network and S as a segmented result for the tooth

CBCT slice image. We aim to train a CNN network to segment

tooth and artificial metal materials from X. We design the LE

module to enhance the convolutional local context information

on the encoding module. At the same time, the LE module is

further embedded into the encoder–decoder network. Finally, we

use the cross-entropy loss function in each decoding module to

optimize the convolutional features at different resolutions.

This study aimed to optimize several existing models,

including U-Net (Ronneberger et al., 2015), DeepLabV3

(Chen et al., 2017), and DeepLabV3+ (Chen et al., 2018). As

shown in Figure 3A,U-Net uses an encoder–decoder model,

which uses feature calculation in the encoder part and then

passes through a U-shaped network to gradually restore the clear

object boundaries in the decoder part. Figure 3B, i.e.,

DeepLabV3 proposed the atrous spatial pyramid pooling

(ASPP) method, which uses several atrous convolutions on

low-resolution features to capture contextual information at

multiple scales, considering the constraints of existing GPU

memory. Then, the image’s resolution is restored by 8x

upsampling, which effectively reduces the computational

complexity of the model. However, directly performing 8x

upsampling will also lead to poor boundaries of the predicted

image, and the model accuracy will also be affected. Based on the

work of DeepLabV3, DeepLabV3+ adds a simple, yet effective

decoder module to recover object boundaries shown in

Figure 3C. While improving the model’s accuracy, it also

considers the model parameters of the network. In this study,

a feature local enhancement module is designed based on fully

considering the structural information of tooth CBCT.

Compared with ASPP, the proposed method pays more

attention to enhancing the local information of features

shown in Figure 3D. First, suppose a dilated convolution with

a significant dilation rate is used for low-resolution features, then

the spatial correlation between each local pixel and local pixels

cannot be fully considered. Second, compared with the farther

pixels, the closer pixels can better-correlate the boundary

information of the teeth. At the same time, tooth
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segmentation tasks pay more attention to the model’s accuracy.

To this end, we refer to U-Net, which gradually recovers the

spatial resolution of the tooth segmentation network in the

decoder part. Particularly, we modify the ASPP module based

on DeepLabV3+. The improved module focuses more on the

enhancement of local features. Meanwhile, the local

enhancement module is embedded in the decoder network,

and the boundary information of the teeth is gradually recovered.

3.2 Local enhancement module

The component of our method is the local enhancement (LE)

module to enhance the contextual information of the intermediate

feature Xt and output the next module’s feature Xt+1.

LE enhances the local contextual information from each

encoder feature Xt. More specifically, LE consists of a 1 × 1

convolution, four 3 × 3 depthwise separable convolutions with

dilated rates 1, 6, 12, and 18, and a global pooling. As shown in

Figure 4, 1 × 1 convolution changes the channel’s number. 3 × 3

depthwise separable convolution with the dilated rate 1 performs

convolution with eight adjacent points. In contrast, other 3 × 3

depthwise separable convolutions conduct convolution

operation with the adjoining point of larger intervals, i.e., 6,

12, and 18, which enhances the local relation of tooth features in

various resolutions. Compared to 3 × 3 depthwise separable

convolution with the dilated rate 1, other 3 × 3 depthwise

separable convolution costs similar computations with the

same input and output channels. Moreover, we extract the

larger receptive field of intermediate features by global pooling.

Among them, Xt is the input in the tth block, andXt1,Xt2, and

Xt3 are the output features of 1 × 1 convolution, four 3 × 3

depthwise separable convolutions, and global pooling,

respectively. To further reduce the computation cost, we

FIGURE 2
Overview of the proposed tooth segmentation pipeline. LE denotes the local enhancement module. We first designed a local context
enhancement module for tooth CBCT images and then integrated the proposed module into the encoder–decoder network. In addition, various
decoding modules are optimized through cross-entropy loss.

FIGURE 3
(A) We first introduce U-Net, which uses an encoder–decoder framework. (B) Used spatial pyramid convolution. (C) Coding and decoding
structure is further increased based on the spatial pyramid. (D) On the proposed local enhancement module, an encoder–decoder design is used.
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decrease the output channel of Xt1, Xt2, and Xt3. In detail, these

features with the same channel can be concatenated to feature

Xt4. Then, we adopt a 3 × 3 depthwise separable convolution to

output the feature Xt5, which reduces the channel to one-sixth of

Xt4. This operation also enhances the local information of the LE

module. Next, we integrated the LE module into the

encoder–decoder network to gradually restore the tooth

feature’s resolution. We first upsampled the feature Xt5 by a

factor of 2 and then cascaded it with the middle feature Ct of the

encoder module to obtain the feature Xt6, while the Ct’s

resolution is twice that of Xt5. To further optimize the local

features, we used a 3 × 3 convolution to output feature Xt7.

Finally, the next modules’ feature Xt+1 is obtained through a 1 × 1

convolution. In the last three convolutions of the decoder

module, the BN layer and the RelU activation function are used.

3.3 Loss function

We treat the tooth segmentation problem as a process to

distinguish pixel categories. We apply Softmax cross-entropy loss

to learn robust features to transfer the semantic knowledge from

the ground truth to the network at the pixel level. The pixel-wise

loss is defined as

Lpi � − 1
HW

∑
H

i�1
∑
W

j�1
∑
K

k�1

eq
k
i,j

∑eq
k
i,j

log
ep

k
i,j

∑ep
k
i,j

, (1)

whereH andW denote the ground truth’s height and weight and

the predicted map, respectively, and K is the number of the

predicted categories. i and j denote the matrix’s ith row and jth

column, respectively. p denotes the predicted map, and q denotes

the ground truth. pk
i,j and q

k
i,j are the probability values in the kth

channel of p and q, respectively.

Following the previous work, auxiliary losses in shallow

layers could optimize the learning process, while the main

branch loss takes the most responsibility. Therefore, except for

the main branch, we apply softmax cross-entropy loss to train the

final classifier. We also add weight to balance another auxiliary

loss after 3 × 3 convolutions. We set pt and qt as the predicted

map and ground truth in the tth classifier, respectively. The pixel-

wise loss in the tth classifier is defined as

Lt
pi � − 1
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where Ht andWt denote the height and weight of pt and qt in the

tth classifier, respectively. pt,k
i,j and qt,ki,j are the probability values

in the kth channel and tth classifier of pt and qt, respectively. It

should be noted that qt is directly downsampled by bilinear

interpolation from the original ground truth q, and qt is the same

resolution with the current prediction pt. The total pixel-wise loss

is defined as

LT
pi � ∑

τ

t�1
μtLt

pi, (3)

where LT
pi is the total loss function in the pixel-wise level. μt is the

weight of Lt
pi, 1 ≤ t ≤ τ − 1, which gradually increases as t

becomes larger. We set μt to 0.2 and 0.3 during training. We

abandoned those auxiliary branches in the testing stage and only

used the last branch as the final prediction.

FIGURE 4
Local enhancement module contains three part convolutions, including 1 × 1, four 3 × 3 depthwise separable convolutions with dilated rates 1,
6, 12, and 18, and global pooling. Among them, DS-Conv denotes depth-separable convolution.
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4 Experiments

We conducted experiments on a clinical dental CBCT dataset

collected in a hospital, and at the same time, we benchmarked the

segmentation results with several state-of-the-art methods. We

also evaluated the impact of the proposed method on our model.

Finally, we discussed the following works and future research

directions in the discussion.

4.1 Data description

Currently, there are few publicly available tooth

segmentation datasets with pixel-level markings. To this end,

we constructed a new tooth CBCT segmentation dataset. In this

section, we introduced data collection and professional marking.

A. Data collection: to protect patients’ privacy, we ignored their

personal information in the dataset. We collected CBCT

images of 100 patients. All data were acquired at a

Chinese hospital between January and November 2021. A

medium sharp reconstruction algorithm reconstructed the

CBCT slices with a thickness of 0.3 mm.

B. Data annotation: although we have captured enough tooth

CBCT data, accurately annotated labels are essential for deep

learning. To this end, we formed a team of two annotators

with deep radiological backgrounds and proficient

annotation skills to annotate the areas and boundaries of

the tooth CBCT image. A senior radiologist checked the final

annotation with first-line clinical experience. For the

segmentation task, we performed pixel-level labeling as

strategies: 1. to save labeling time, the radiologist

randomly selected CBCT scan images of 11 patients. In

this step, our goal is to label the infected areas with pixel-

level annotations. 2. To generate high-quality annotations, we

invited a senior radiologist to refine the labeling marks for

cross-validation. Some inaccurately labeled images have been

removed in this stage.

After the aforementioned annotation procedures, we finally

obtained 3, 024 pixel-level labeled CBCT slices from 11 patients

with a resolution of 410 × 410. Among them, only 1, 660 slices

contain a tooth. We only selected images with tooth labeling for

training and testing to reduce the labeling process’s errors. We

randomly split the dataset into nine patients for training and two

patients for testing. Among them are 1, 360 training images and

300 images for the test.

4.2 Evaluation metrics

1) Intersection and union ratio: it is one of the most commonly

used indicators for semantic segmentation. It calculates the

ratio of the intersection and union of pixel sets between the

prediction space and the labeled space. The IoU of the i

category is defined as follows:

IoUi � pi,i

∑k
j�0pj,i + ∑k

j�0pi,j − pi,i

. (4)

2) Average cross-union ratio: the average cross-union ratio is

calculated from the cross-union ratio. First, the IoU value of

each category is calculated and then the IoU value of each

category is averaged to calculate mIoU. The formula is

calculated as follows:

mIoU � 1
k
∑
k−1

i�0

pi,i

∑k
i�0pj,i +∑k

j�0pi,j − pi,i

. (5)

4.3 Training detail

Our model is implemented with TensorFlow-GPU 2.4.0. All

training and testing are carried out on a single TITAN RTX GPU

using CUDA 11.0 and CUDNN 8.0. In detail, we train the

network parameters over 500 epochs using the training set

with a descending learning rate. The initial value of the

learning rate is equal to 0.001. We utilized the stochastic

gradient descent (SGD) with a momentum of 0.99 and a

weight decay of 0.0005 in training for all experiments. The

batch size is set to 8.

4.4 Comparison to state-of-the-art
methods

We carried out experiments on the tooth dataset with other

state-of-the-art methods to show the proposed approach’s

effectiveness. As shown in Table 1, we compared our result

with other state-of-the-art methods, i.e., U-Net (Ronneberger

et al., 2015), DenseASPP (Yang et al., 2018), BiSeNet (Yu et al.,

2018), PSPNet (Zhao et al., 2017), PAN (Li et al., 2018),

DeepLabV3 (Chen et al., 2017), DeepLabV3+ (Chen et al.,

2018), and UNeXt (Valanarasu and Patel, 2022). These codes

are available online, and we follow the authors’ instructions to

train the models on the tooth CBCT dataset. It should be noted

that we evaluate tooth segmentation accuracy with three famous

metrics in medical imaging analysis, including IoU and mIoU.

Among those compared methods, U-Net, UNeXt, and

DeepLabv3+ gain a more competitive result than others.

U-Net and UNeXt gradually recover the boundary

information of the image through the encoder–decoder

architecture. DeepLabv3+ uses ASPP to enhance the

contextual information and adopts the decoder module to

optimize the network. Moreover, DeepLabv3 also uses ASPP

but does not use the decoding module, significantly affecting
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accuracy. Similarly, DenseASPP, PSPNet, and PAN also use the

spatial pyramid module but do not fully consider the design of

the decoding module, resulting in poor performance of tooth

segmentation. However, BiSeNet has designed lightweight

network architecture, resulting in poor feature extraction

capabilities of the network. For tooth segmentation, more

attention is paid to accuracy, which can provide reasonable

assistance for clinicians in diagnosis and treatment. To this

TABLE 1 Segmentation comparison among our method and other state-of-the-art methods on the COVID-19 dataset.

Method IoUback IoUtooth IoUmetal mIoU

U-Net Ronneberger et al. (2015) 99.35 80.89 58.91 79.68

DenseASPP Yang et al. (2018) 98.76 64.88 45.48 69.71

BiSeNet Yu et al. (2018) 98.63 62.43 24.44 61.83

PSPNet Zhao et al. (2017) 98.95 69.37 42.44 70.26

PAN Li et al. (2018) 99.26 77.24 52.32 77.27

DeepLabV3 Chen et al. (2017) 98.20 45.25 21.18 54.88

DeepLabV3 + Chen et al. (2018) 99.38 82.12 63.87 81.79

UNeXt Valanarasu and Patel (2022) 99.27 81.56 61.34 80.72

Ours 99.51 86.37 68.34 84.74

Bold values indicates the best performing parameter.

FIGURE 5
Examples of tooth segmentation are predicted by our method with other state-of-the-art approaches.
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end, this study further designs a local enhancement module

based on ASPP. At the same time, referring to the structure

of U-Net, the boundary information of the image is restored step

by step.

In terms of IoU and mIoU, our network achieves the best

performance, demonstrating the superiority of the method in

tooth segmentation. Moreover, some visual comparisons among

U-Net Ronneberger et al. (2015), BiSeNet Yu et al. (2018),

DeepLabV3+ Chen et al. (2018), and our method are

displayed in Figure 5. The first column is used for reference

by setting different window widths and window levels. The

second column serves as the input to the network. It can be

seen that the accuracy of our method and DeepLabv3+ is

significantly better than that of BiSeNet.

4.5 Ablation study

In this section, we first analyze the effects of different

components in the proposed method. To examine the local

enhancement (LE), we report the experimental results in

Table 2. For the base network, the U-Net-based framework is

adopted for our network, and the Softmax cross-entropy loss is

merely used for training. We use ResNet151 as the encoder

network and one decoder module on the decoder network. The

decoder module has two convolutional layers, i.e., a 3 × 3

deconvolution with stride two and a 3 × 3 convolution with

stride 1. It should be noted that a 3 × 3 deconvolution is used to

restore the resolution of the feature. LE modules with an

encoder–decoder network significantly contribute to the

excellent performance. Among them, Base + LE only

computes in the low-resolution feature, while “Base + LE

(decoder)” applies an LE module in different decoder stages,

which proves the various local enhancement of the whole

network. From Table 2, LE obtains 0.17%, 3.85%, and 5.62%

improvement in IoUback, IoUtooth, and IoUmetal, respectively,

when LE is applied in decoder modules and further gets

0.12%, 3.65%, and 4.41%, respectively, improvement when LE

is adopted in both decoder modules.

Then, we explored the loss function’s influence on the

experimental results, including IoU loss and cross-entropy

loss. As shown in Table 3, IoU loss improves by 82.45% and

86.15% in IoUtooth and IoUmetal, respectively, while the cross-

entropy loss makes a 3.7% and 6.99% improvement, respectively.

Moreover, the tooth segmentation network achieves the best

result when the auxiliary loss is applied. IoU loss cannot fully

explore the supervision information of labeled data, and its

accuracy is lower than that of cross-entropy loss. At the same

time, the auxiliary loss can optimize features at multiple

resolutions, improving the network’s accuracy to a certain extent.

Finally, we tried to test the trained model on two different

ground-truth data. Ground-truth 1 represents the data marked with

the first column image in Figure 5, and ground-truth 2 uses the

second column data for marking. The experimental results are

shown in Table 4. After testing with ground-truth 2 data, tooth

segmentation accuracy significantly improved because the data in

the first column can better show the outline of the teeth but cannot

exhibit the information on metal fillings. On the contrary, the

second column data can better-highlight the metal fillings after

adjusting the window width and window level, but missing in the

tooth contour. Therefore, we used ground-truth 1 annotations in the

previous experiments for training and testing.

5 Discussion

Automatic segmentation of medical images has attracted

numerous researchers in recent decades, assisting doctors or

patients in understanding the medical data. We presented an

encoder–decoder framework based on local feature enhancement

in this work. This network aimed to fully devote the accurate

semantic and location contexture information over the input

image.

TABLE 2 Ablation study of our method. “Base” is trained with only the
Softmax cross-entropy loss, and “Base + LE” denotes the base
network using a local enhancement module. “Base + LE (decoder)”
represents that the LE is embedded into the encoder–encoder
network.

Method IoUback IoUtooth IoUmetal mIoU

Base 99.21 78.87 58.31 78.79

Base + LE 99.39 82.72 63.93 82.01

Base + LE (decoder) 99.51 86.37 68.34 84.74

Bold values indicates the best performing parameter.

TABLE 3 Ablation study of various losses. Cross-entropy loss
(auxiliary) denotes our network using cross-entropy loss with two
auxiliary losses.

Method IoUback IoUtooth IoUmetal mIoU

IoU loss 99.35 82.45 61.25 81.02

Cross-entropy loss 99.42 86.15 68.24 84.60

Cross-entropy loss (auxiliary) 99.51 86.37 68.34 84.74

Bold values indicates the best performing parameter.

TABLE 4 Our method was tested on different ground-truth.

Method IoUback IoUtooth IoUmetal mIoU

Ours (ground-truth 1) 99.51 86.37 68.34 84.74

Ours (ground-truth 2) 99.58 92.34 69.12 87.01

Bold values indicates the best performing parameter.
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Then, we used the auxiliary loss function to optimize the

semantic spatial information in different resolutions. In this way,

we obtained few improvements in tooth segmentation.We used a

local enhancement module to refine the tooth contexture

information and the edge step by step. From the quantitative

comparison between the proposed method and the other three

latest methods, we can conclude that the proposed method is

superior to other methods. The main reason is that our network

can optimize the receptive field to various resolutions.

However, limited by the scale of the tooth segmentation data,

the proposed algorithm still has room for improvement. In

addition, the annotation of tooth segmentation data can be

improved. As shown in Figure 5, we apply the data in the

first column to label the tooth image, and the second column

images are used to mark the filling metal material, which leads to

boundary errors when predicting the tooth segmentation from

the second column images. Moreover, the proposed method is

based on the two-dimensional tooth segmentation network,

which fails to consider the information changes of the tooth

segmentation in the three-dimensional space. In the future, we

will continue to study the instance segmentation of oral CBCT

images based on the research of this study. At the same time, we

will explore how to construct 2D convolutional networks to learn

the spatial variation between different slices.

6 Conclusion

We have proposed a practical local enhancement module for

tooth segmentation, which explores the local relationship of the

different teeth. Based on ASPP, LE further considers the local

correlation between different teeth. At the same time, the

proposed network uses an encoder–decoder module to recover

the boundary information of the tooth image level by level. The

experimental results have demonstrated the superior

performance of our method.
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