Protein Cell 2017, 8(3):165—-168
DOI 10.1007/s13238-016-0334-x

Mini=REVIEW

@ oMk Protein & Cell

RIG-I-like receptor-induced IRF3 mediated
pathway of apoptosis (RIPA): a new antiviral

pathway

Saurabh Chattopadhyay'™, Ganes C. Sen**

' Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, 3000

Arlington Avenue, Mailstop 1021, Toledo, OH 43614, USA

2 Cleveland Clinic, Department of Immunology, 9500 Euclid Avenue, NE20, Cleveland, OH 44195, USA
< Correspondence: saurabh.chattopadhyay@utoledo.edu (S. Chattopadhyay), seng@ccf.org (G. C. Sen)

Received August 24, 2016 Accepted September 27, 2016

ABSTRACT

The innate immune response is the first line of host
defense to eliminate viral infection. Pattern recognition
receptors in the cytosol, such as RIG-I-like receptors
(RLR) and Nod-like receptors (NLR), and membrane
bound Toll like receptors (TLR) detect viral infection and
initiate transcription of a cohort of antiviral genes,
including interferon (IFN) and interferon stimulated
genes (ISGs), which ultimately block viral replication.
Another mechanism to reduce viral spread is through
RIPA, the RLR-induced IRF3-mediated pathway of
apoptosis, which causes infected cells to undergo pre-
mature death. The transcription factor IRF3 can mediate
cellular antiviral responses by both inducing antiviral
genes and triggering apoptosis through the activation of
RIPA. The mechanism of IRF3 activation in RIPA is dis-
tinct from that of transcriptional activation; it requires
linear polyubiquitination of specific lysine residues of
IRF3. Using RIPA-active, but transcriptionally inactive,
IRF3 mutants, it was shown that RIPA can prevent viral
replication and pathogenesis in mice.
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INTRODUCTION

We live in a world full of viruses and our immune system
fights against them to keep us healthy and disease-free
(Fensterl et al., 2015). The immune system is divided into
two broad categories — the innate and the adaptive, both of
which are required to protect against virus infection. The
innate immune system, which is kicked off very early during

virus infection, is the first line of antiviral defense; whereas
the adaptive immune system, activated later, is dependent
on the innate immune system. Therefore, an appropriate
activation of the innate immune system is critical for the
elimination of viruses, from an organism, by both branches of
the immune system.

Type | interferon (IFN) mediates the key innate immune
response against a wide range of viruses. The IFN system is
triggered at the onset of virus infection via cellular recogni-
tion of viral components. Mammalian cells are equipped with
protein sensors, e.g. TLRs, RLRs, NLRs or cGAS/STING,
which detect the incoming virus particles in the cytoplasm or
inside specific cellular compartments and trigger intracellular
signaling pathways. These signaling pathways lead to the
induction of IFN through the action of the transcription factor,
Interferon Regulatory Factor 3 (IRF3). IFN is secreted from
infected cells, so that it can inhibit virus replication in the
infected, as well as neighboring uninfected, cells through the
action of many antiviral proteins, the products of IFN-stimu-
lated genes (ISG). ISGs can be directly induced by activated
IRF3 as well, without any involvement of IFN. IRF3, a
cytosolic protein, is inactive in uninfected cells; virus infec-
tion activates it by causing phosphorylation of its specific
serine residues and its translocation to the nucleus, where it
binds to the promoters of the target genes (Lin et al., 1998
and Sato et al., 1998). Specific cellular proteins, e.g.
HDACS, p-catenin and PKC-B, are required for full tran-
scriptional activity of IRF3 (Chattopadhyay et al., 2013a).

In addition to directly impairing virus replication, another
effective protection mechanism used by multi-cellular
organisms is to trigger suicide of the infected cell. Because
only a few cells are initially infected, their premature death
ensures that progeny viruses are too few to spread the
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infection efficiently. A critical discovery was made showing
dual functions of IRF3 in virus infected cells: it not only
induces antiviral genes but also triggers apoptotic cell death
by the RLR-induced IRF3 mediated Pathway of Apoptosis
(RIPA) (Fig. 1). Here, we discuss IRF3’s role in RIPA, the
antiviral apoptotic pathway.

DISCOVERY OF RIPA

It was observed that Sendai virus infected cells die by
apoptosis and curiously, IRF3, but not IFN, is required for this
response (Peters et al., 2008). The original thought was that
IRF3, being a transcription factor, induces one or more pro-
apoptotic proteins in the infected cell; but this idea was
proved to be wrong when it was discovered that the tran-
scriptional activity of IRF3 is not required for triggering
apoptosis (Chattopadhyay and Sen, 2010b). However, like
activation as a transcription factor, the apoptotic activity of
IRF3 requires its activation by the RLR-signaling pathway;
hence the name RIPA (Chattopadhyay et al., 2011). In RIPA,
activated IRF3 binds, through the BH3 domain near its
C-terminus, to the pro-apoptotic protein Bax. The IRF3-Bax
complex translocates to mitochondria and triggers the

release of cytochrome C to the cytoplasm; consequent acti-
vation of the caspases causes apoptosis. In virus-infected
cells, the action of RIPA is temporally regulated (White et al.,
2011). Although RIPA is activated early after infection, the
anti-apoptotic protein XIAP blocks apoptosis by preventing
caspase activation; later in infection, XIAP is degraded and
the block to apoptosis is removed. Moreover, the stability of
XIAP is regulated by PI3 kinase, which is activated by virus
infection. The temporal regulation of RIPA indicates that
viruses counteract it to prevent early death of the infected cell
causing abortive virus replication. In the absence of RIPA,
cells are persistently infected and they produce infectious
progeny viruses, even in the presence of IFN and transcrip-
tionally active IRF3 (Chattopadhyay et al., 2013b), thus
demonstrating the physiological importance of RIPA.

RIPA, A NEW PATHWAY OF IRF3 ACTIVATION

The discovery of RIPA prompted the investigation of its need
for the transcriptional activity of IRF3. It was observed that
many transcriptionally inactive mutants of IRF3 could still
trigger RIPA, indicating the existence of an apoptotic signaling
pathway, in which a new activity of IRF3 was required

Virus
Cytosol l Viral dsRNA E Transcriptional pathway
RIG-1 ’\ SPop
. TRAF3 TBK1 @ Nucleus
IFN-B, ISGs
RIPA B\

Cyt C release Specific stages

l of viral life cycle

V0 A0
o O o OP Activation of
\ N caspases
Apoptosis » Antiviral

Virus-infected cell

Figure 1. Dual functions of IRF3 in antiviral defense. Virus infection is recognized by the cytoplasmic sensor RIG-I, which binds to viral
double-stranded RNA and triggers two signaling branches via mitochondrial adaptor IPS1. In the transcriptional pathway, IRF3 is
translocated to the nucleus to induce antiviral genes, such as the interferon-beta (IFN-) and interferon stimulated genes (ISGs). In contrast,
in the RIPA branch, IRF3 is activated by LUBAC-mediated linear ubiquitination, which triggers its interaction with BAX to cause
mitochondrial activation and apoptotic cell death. Both pathways contribute to the overall antiviral responses of the host.
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(Chattopadhyay and Sen 2010a, Chattopadhyay etal., 2010b
and Chattopadhyay et al., 2011). To characterize the new
pathway, genetically modified human and mouse cells, which
are defective in specific signaling proteins, were used. These
experiments revealed that RIPA requires, in addition to several
common proteins shared by IRF3'’s transcriptional activation,
a few RIPA-specific components, such as TRAF2 and TRAF6.
The obvious next question was how IRF3 is activated in
RIPA. To address this, a series of IRF3 mutants was
screened for transcriptional and apoptotic activities. Many
mutants were active in one pathway, but not the other,
demonstrating that the two activities of IRF3 are not inter-
dependent. The screen led to the identification of specific
lysine residues of IRF3 that are required for RIPA, but not the
transcriptional pathway. Among 14 lysine residues, lysine
193 and lysine 313 or 315 of human IRF3 and lysine 188 and
lysine 306 or 308 of mouse IRF3 are not only necessary, but
sufficient for RIPA. The requirements of the specific lysines
and additional TRAF proteins, some of which are ubiquitin
E3 ligases, prompted an investigation of the need for ubig-
uitination of IRF3 in RIPA. Ubiquitination is a posttransla-
tional modification by which specific lysine residues of the
target protein are conjugated to polyubiquitin chains, using
specific cellular ubiquitin conjugation systems. The fate of
ubiquitinated proteins are dictated by the type of ubiquitin
chains, which can be destructive and non-destructive.
Detailed biochemical analyses revealed that a non-destruc-
tive linear polyubiquitination of two specific lysine residues
(193, 313/315) of human IRF3 is sufficient to confer its RIPA
activity; a minimal IRF3 mutant, harboring only those two
specific lysine residues can activate RIPA. The required
modification is catalyzed by the ubiquitinating complex,
LUBAC; the RLR-activated IRF3 is recruited to LUBAC via
TRAF2- and TRAF6-dependent mechanism. As expected,
this newly identified modification of IRF3 is not needed for its
transcriptional activity (Chattopadhyay et al., 2016).

RIPA AND VIRAL PATHOGENESIS

The discovery of a new function of IRF3 raised the question
of whether RIPA can protect against viral replication and
pathogenesis. To evaluate the antiviral activity of RIPA, the
properties of those mutants of IRF3, which are active only in
RIPA but not the transcriptional, pathway, were examined.
Two such mutants of IRF3 exhibited antiviral activities
against Sendai Virus (SeV) infection in vitro. These
encouraging in vitro results prompted the engineering of a
genetically modified (knock-in) mice, in which only RIPA, but
not the transcriptional, branch of IRF3 is active. In these
mice, antiviral genes are not induced, but the RIPA branch is
functional. These mice were protected from respiratory
dysfunction and resultant death caused by SeV infection
(Chattopadhyay et al., 2016). We speculate that RIPA would
protect against a variety of other viruses by triggering IRF3-
dependent apoptotic cell death.

PERSPECTIVE

Our results indicate that both the transcriptional and the
apoptotic activities of IRF3 contribute to its overall antiviral
action, although the proportion of their contributions will vary
among viruses and the infected cell types. It is difficult to
assess the relative importance of the two antiviral branches
in viral pathogenesis, in vivo; in genetically modified mice,
the absence on one causes the other to compensate and
appear to be more dominant than it really is in wild type
mice. The new mouse model will be useful to specifically
examine the impact of RIPA against other viral, bacterial,
parasitic, and non-microbial, diseases. RIPA-like pathways
of IRF3 have been reported in other disease models. A
human retrovirus, HTLV1, triggers rapid apoptosis of pri-
mary monocytes using a RIPA-like pathway, which protects
the cells from productive virus replication (Sze et al., 2013).
Surprisingly, RIPA-like activity of IRF3 triggers apoptotic cell
death of hepatocytes subjected to ethanol exposure, linking
this activity to progression of alcoholic liver diseases (Pe-
trasek et al., 2013). Future studies will reveal whether RIPA
regulates other diseases, such as cancer, in which cellular
apoptosis is a desired protective mechanism. It appears
that, RIPA, which we discovered in the context of virus
infection, is a potential regulator of non-viral pathogenesis
as well.
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