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Biological agents are context-dependent systems that exhibit behavioral flexibility. The

internal and external information agents process, their actions, and emotions are all

grounded in the context within which they are situated. However, in the field of cognitive

robotics, the concept of context is far from being clear with most studies making little

to no reference to it. The aim of this paper is to provide an interpretation of the notion

of context and its core elements based on different studies in natural agents, and how

these core contextual elements have been modeled in cognitive robotics, to introduce

a new hypothesis about the interactions between these contextual elements. Here,

global context is categorized as agent-related, environmental, and task-related context.

The interaction of their core elements, allows agents to first select self-relevant tasks

depending on their current needs, or for learning andmastering their environment through

exploration. Second, to perform a task and continuously monitor its performance.

Third, to abandon a task in case its execution is not going as expected. Here, the

monitoring of prediction error, the difference between sensorimotor predictions and

incoming sensory information, is at the core of behavioral flexibility during situated action

cycles. Additionally, monitoring prediction error dynamics and its comparison with the

expected reduction rate should indicate the agent its overall performance on executing

the task. Sensitivity to performance evokes emotions that function as the driving element

for autonomous behavior which, at the same time, depends on the processing of

the interacting core elements. Taking all these into account, an interactionist model

of contexts and their core elements is proposed. The model is embodied, affective,

and situated, by means of the processing of the agent-related and environmental core

contextual elements. Additionally, it is grounded in the processing of the task-related

context and the associated situated action cycles during task execution. Finally, the

model proposed here aims to guide how artificial agents should process the core

contextual elements of the agent-related and environmental context to give rise to

the task-related context, allowing agents to autonomously select a task, its planning,

execution, and monitoring for behavioral flexibility.
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1. INTRODUCTION

Cognitive robotics (CR) aims to understand cognition by
recreating it in artificial agents (Asada et al., 2001; Krichmar,
2012; Cangelosi and Schlesinger, 2015; Lara et al., 2018). In
doing so, the interaction with the environment is assumed to
be crucial for the emergence of cognitive abilities (Pezzulo et al.,
2011, 2013; Cangelosi et al., 2015). Artificial agents are considered
as useful tools to explore embodied, embedded, and grounded
models of cognition (Pfeifer and Scheier, 2001; Lungarella et al.,
2003; Pfeifer, 2004). Here, grounded cognition is understood
as a general approach that incorporates embodied, embedded,
enactive, and extended cognition into a broader perspective:
“cognition, affect, and behavior emerge from the body being
embedded in environments that extend cognition, as agents enact
situated action reflecting their current cognitive and affective
states" (Barsalou, 2020b, p.2).

Artificial agents are able to explore and manipulate objects in
their environments (Min et al., 2016; AdnanMohsin Abdulazeez,
2021). However, these tasks are usually learned under controlled
conditions, which restricts their ability to efficiently adapt to
the demands of dynamic environments (Min et al., 2016). One
of the great challenges in Cognitive Robotics (CR) is to design
autonomous artificial agents that generate appropriate behaviors
according to the environment in which they are situated (Mohan
et al., 2013; Asada, 2020). A promising approach is the attempt to
understand the underlying mechanisms of behavioral flexibility
that biological agents naturally exhibit. Behavioral flexibility
refers to the ability to switch from one behavior to another so as to
efficiently adapt to dynamic environments (Ragozzino, 2007; Lea
et al., 2020). In this regard, context processing plays an essential
role in behavioral flexibility.

The processing of the current context is fundamental for
biological agents to select the appropriate task at a givenmoment.
It is widely accepted that context acts as a set of constraints
that influence behavior (Bazire and Brézillon, 2005). Actually,
it makes no sense to talk about appropriate behaviors without
the notion of context (Turner, 1998). Furthermore, contextual
information is also essential for planning the sensorimotor
sequences to execute a selected task (Rosenbaum et al., 2014). It
has been suggested that the brain is a context-dependent system
since all inputs it processes concern the context in which they
occur (Nikolić, 2010). Following this line, processing context
would allow artificial agents to autonomously and appropriately
prioritize goals, select appropriate tasks, plan and execute them,
and even change tasks according to the current situation,
ultimately showing greater behavioral flexibility.

This paper aims to analyze the role of context in behavioral
flexibility and how this concept has been used in CR. Although
context is a widely used concept, not only in CR but also
within cognitive sciences in general, it remains an ill-defined
concept (for an attempt to analyze different definitions of the
concept of context see Bazire and Brézillon, 2005). Inspired
by the pioneering work of Turner (1998) in context-mediated
behavior for artificial agents, here, context is defined as any
identifiable configuration of environmental, task-related, and
agent-related elements that are perceived and experienced as

relevant in a specific moment and in a particular situation. To
respond to changing conditions, biological agents must monitor
internal demands and environmental factors, those that are of
self-relevance and full of affect, to guide and initiate behavior
(Barsalou, 2020b). Together, all those internal and external
elements of a situation that have predictive power and impacts
behavior constitute the global context (Turner, 1998, p.308). In
order to unravel the diffuse notion of context and considering
the key constituents of the definition proposed by Turner
(1998), three components of the global context are considered
in our analysis: agent-related, environmental, and task-related
context (Figure 1). Pfeifer and Bongard (2006) considered the
same components within their set of design principles for
artificial agents, stating that an intelligent agent should have a
defined ecological niche, a defined task, and an agent design
(Krichmar, 2012).

Each type of context is constituted by a set of diverse and
complex elements, and the processing of all of them in artificial
agents is not computationally trivial (Brooks and Mataric, 1993;
Connell and Mahadevan, 1993). In this sense, this work does not
pretend to be an exhaustive study of context as such. Rather, it
pretends to identify and analyzed the core elements of the agent-
related, environmental and task-related context to explore how
they have been taken into account in CR, and then highlight
the importance of the core elements interaction for behavioral
flexibility under a proposed model. Here, it is suggested that,
although there are innumerable elements related to the agent,
the environment, and the task, the particularity of a context
is constituted by means of the specific physiological needs,
motivations and associated emotions that are experienced, the

FIGURE 1 | Agent-related context, environmental context, and task-related

context are intertwined together to influence behavior. Figure adapted from

Cohen (1995).
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perceived possibilities of action that a specific environment offers
the agent, and the task configuration in a concrete environment.

An essential aspect of the proposed model is that it considers
themonitoring of prediction error dynamics, which seems crucial
for switching strategies under changing circumstances. One
challenge for grounded cognition is to understand cognition
in depth within the context of situated action cycles (Barsalou,
2020b). We suggest that through the monitoring of the core
contextual elements, together with the monitoring of prediction
error dynamics, artificial agents would autonomously select self-
relevant situated tasks. We are aware that the sociocultural
context plays an essential role in behavioral flexibility of social
agents. However, we believe that it is essential to establish some
core elements of the context associated with auto-regulation and
object interaction before tackling more complex components of
situated action cycles. In this way, artificial agents would enact
situated action reflecting their current core context.

The structure of the paper is as follows: in Section 2, the
role of the agent-related, environmental, and task-related context
for behavioral flexibility is briefly explored and an overview of
the processing of each one in biological agents is presented.
In Sections 3–5, each type of context is addressed in more
detail through their core elements and how these have been
described in biological agents and then, some representative
cognitive robotics implementations addressing similar elements
are reviewed. In Section 6, the interaction of the three types of
context in behavioral flexibility is explored through a schematic
model that intertwines the core elements from each of them.
Finally, Section 7 concludes the paper. For the remainder of
the paper, when it reads “biological agents” it refers to living
organisms, “artificial agents” refers to situated artificial robots
and implementations and, when it reads “agents” it refers to both.

2. BEHAVIORAL FLEXIBILITY THROUGH
THE LENS OF DIFFERENT TYPES OF
CONTEXT

Global context includes all internal and external elements that
impact and restrict the behavior of biological agents at a given
moment, enticing these agents toward the performance of certain
tasks or avoiding others at any given moment. Although there
are countless contextual elements, they all come from three main
sources: the state of the agent, the environmental conditions,
and the characteristics of the task agents are engaged with in
the current moment (Cohen, 1995). This allows to identify
three particular types of context: agent-related, environmental,
and task-related context. This section explores the role of each
type of context for behavioral flexibility in biological agents.
Furthermore, how each type of context is processed by the
available sensory systems of these agents will be addressed. This
makes it possible to establish a basis to study the notion of context
within cognitive robotics in the following sections.

Flexible behavior, the ability to select the appropriate task
or change strategies to adapt to the environment, is modulated
by elements associated with the biological agent and the
environment (Palmer et al., 2014). The elements associated

with the agent that impact behavior constitute the agent-related
context, which is characterized by elements such as physiological
needs, emotions, as well as postural and morphological aspects.
On the other hand, the environmental context relates to the
characteristics of the specific environment in which the biological
agent is situated, such as the spatial configuration of the objects
in the environment, as well as their relational properties. Each
internal or external contextual element restricts behavior to
some type of task appropriate to achieve specific goals useful to
the well-being of the biological agent. In this sense, behavioral
flexibility is modulated by the interaction of the agent-related and
environmental context. Considering both contexts, agent-related
and environmental context, biological agents autonomously set
goals and select appropriate tasks to achieve them according to
the situation, monitoring both their needs and motivations at
the current moment as well as the possibilities of action that
an specific environment offers them. Task selection would be,
therefore, a function of these contexts.

Once a specific task has been selected, certain elements
of the biological agent and the environment become relevant
to achieve the task goal, these elements constitute the task-
related context (Martin et al., 2012). This type of context
overlaps with agent-related and environmental context only
in those elements that allow biological agents to select the
appropriate sensorimotor sequence to achieve the current
selected task (Figure 1). These elements are essential to plan
and execute goal-directed movements that dynamically change
during task execution, such as the situated spatial body and object
configuration (perceived via exteroception), the body posture of
the biological agent (perceived via proprioception), and even
the area around the biological agent in which objects can be
grasped and manipulated, known as peripersonal space. Every
time the biological agent moves its body or an object within the
task space, the task-related context is constantly “updated" to
consider these changes for the planning and execution of goal-
directed actions. Since its nature is a function of the selected task,
this context would be redefined every time the biological agent
changes tasks. Thus, the dynamics of task-related context differ
from agent-related and environmental context.

From a perspective that emphasizes embodiment for the
development of cognition, behavioral flexibility is achieved
when it is grounded in the constant monitoring of these three
contexts (Figure 1). This monitoring occurs through signal
processing of the interoceptive, proprioceptive, and exteroceptive
sensory systems. Agent-related context processing is strongly
linked to interoception and proprioception. Interoception
allows the perception of physiological states of the body
(Schulz, 2015), which play an essential role in determining
appropriate tasks for survival. Proprioception informs about
body posture, the changing body position during movement,
velocity, and applied force (Tuthill and Azim, 2018). Since
proprioception is essential for the planning of a task, it is
also closely linked to the task-related context. On the other
hand, exteroception allows the processing of environmental
context. Through the visual, auditory, tactile, olfactory, and
gustatory sensorymodalities, exteroception captures information
about the changes occurring in the environmental context
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(Wade, 2019). Processing environmental context helps to
determine the task that better satisfies the biological agent’s
internal requirements according to the available external
resources and the environmental configuration. Exteroception
also provides information about the biological agent situated
in the environment. Biological agents can obtain indirect
information about their bodies with different exteroceptive
sensory modalities, such as vision. This is essential to integrate
information about the biological agent and the task being
executed to guide action through perception (Kozak and Corneil,
2021). Therefore, exteroception is also associated with the task-
related context.

In brief, the processing of the agent-related and environmental
context provides flexibility in task selection and switching.
Meanwhile, the task-related context processing provides
flexibility in the planning of the sensorimotor sequence to
perform a task and achieve the current goal under specific
circumstances. Each contextual element constrains behavior
driving the biological agent toward certain tasks and avoiding
others. By endowing an artificial agent with the ability to process
the current context, this agent would be able to select the task
that is appropriate at a given time according to the specific
circumstances at that moment. Most current artificial agents
implementations, focus only on some contextual elements, those
related to the task at hand, where mostly behavioral flexibility
is not the object of study. The proposal here, is that, in order
to achieve greater behavioral flexibility, contextual processing
should be an important issue. That is why, here, some core
contextual elements of each type of context have been identified
that would allow artificial agents to modulate their behavior
autonomously in a continuous cycle of context-sensitive actions.
In Sections 3–5, we suggest core elements for the agent-related,
environmental, and task-related context, respectively. At the
same time, it will be addressed why these elements are considered
core contextual elements for behavioral flexibility of biological
agents and how they have been modeled in artificial agents.

3. AGENT-RELATED CONTEXT

The agent-related context refers to elements associated with
the physical and physiological structure of a biological agent
that modulates behavior at different hierarchical levels of
organization. At a higher level, this type of context plays a
fundamental role for task selection. The agent-related context
allows setting specific goals, which are a priority for the biological
agent to stay alive during its coupling with the environment,
restricting the set of appropriate tasks possibilities to satisfy
an internal need or motivation. Physiological needs, intrinsic
motivation, and emotions are elements of the agent-related
context that have a strong impact on this level of behavioral
organization. At a lower hierarchical level, the agent-related
context plays a fundamental role in the planning and execution of
goal-directed and reflexive actions. Once the agent has selected a
task, aspects of the agent, such as body posture and peripersonal
space become relevant contextual elements for the planning and
execution of the specific task. Given their role in planning and

executing tasks, these contextual elements fall within the overlap
of agent-related and task-related context and will be addressed as
elements of task-related context. In the following, physiological
needs, intrinsic motivation, and emotions will be addressed. In
the first part of each subsection, the reason why said element
is considered a core element of the agent-related context in
biological agents will be explained. Subsequently, the second part
of each subsection will provide an overview of how the addressed
contextual element has been modeled in artificial agents.

3.1. Physiological Needs
Physiological needs, such as hunger or sleep, are sensations
evoked by internal states of the biological agent that indicate
a lack of nutrients, energy, or any other of the many internal
conditions necessary for survival (Taormina and Gao, 2013).
When physiological needs are detected by the interoceptive
modality, these must be regulated to maintain the homeostasis of
the biological agent (Strigo and Craig, 2016). Physiological needs
are associated with motivational states that constitute action
drives related to survival (Maslow, 1958). For instance, when an
animal is hungry, several types of hypothalamic neurons signal
this need and drive a specific task, such as foraging (Schulkin
and Sterling, 2019). Thus, physiological needs are core contextual
elements that have a strong impact on behavior when they
are detected (Ramirez-Pedraza and Ramos, 2021). Furthermore,
they modulate task activation causing an effect on the relative
desirability of different tasks. In the case of hunger, this averse
sensation increases the desirability of foraging and decreases the
attractiveness of other tasks not associated with getting food, such
as playing (Loewenstein, 2011).

Like biological agents, artificial agents must have a baseline of
certain states to function properly. For example, they must have a
certain level of energy, integrity in their sensors, and maintain an
optimum temperature for the proper operation of their motors.
In artificial agents, to keep these internal states in optimal values,
some studies have focused on modeling homeostatic systems
(Stradner et al., 2009; Vargas et al., 2009; Yoshida, 2017; Man and
Damasio, 2019; Kelkar, 2021). Generally, artificial agents must
remain in a viability zone, the set of possible states in which
the operation of the system is not compromised, allowing the
activation of tasks that help to regulate those internal states when
they exceed a predetermined limit.

Vargas et al. (2005) proposed a model based on an artificial
neural network (ANN), and on a hormone production controller.
Variations in external or internal states trigger the production
of a specific hormone. The level of hormones alters internal
states by driving neural networks’ actions through stimulation
of target neurons, affecting the input weights in the ANN to
perform a certain task. Once the task has been accomplished,
the hormone production controller receives a negative feedback
signal that ceases the production of the hormone. In another
study, Moioli et al. (2009) addressed the coordination of three
coupled tasks in a mobile robot: exploring the environment
while avoiding obstacles, searching for a light source when
fatigue is high, and searching for a black stripe in the arena
when the battery is low. They use three discrete-time artificial
recurrent neural networks derived from a model inspired by
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gaseous modulators (Husbands et al., 1998). Each network is
previously and separately evolved to accomplish a specific task.
Subsequently, the output of the network is modulated by the
levels of two simulated hormones associated with the levels of
fatigue and hunger. The levels of hormones, together with an
external stimulus, are responsible for determining the coherent
coordination of behavior.

The homeostatic value of drives, together with the allostatic
control for selecting appropriate behaviors to satisfy the
intrinsic needs, have been modeled considering the relevance
of the environmental context in Vouloutsi et al. (2013).
Using a humanoid artificial agent, the designed Distributive
Adaptive Control (DAC) architecture coordinated task selection
depending on intrinsic drives during human-robot interaction.
The DAC was based on reactive layers and adaptive layers.
The reactive layers monitored the levels of the drives, sociality,
exploration, survival, security, and play. The adaptive layers
were responsible for the assignation of the drives’ priorities, and
behavior selection, depending on the current state of the world.
The satisfaction of the drive and its associated homeostatic value
controlled the expressed emotion of the system through facial
expressions. In general, the DAC was capable of monitoring
and satisfying artificial intrinsic drives, prioritizing them
when several drives were competing, and organizing behavior
depending on the perceived stimuli in a given environment.
The DAC is a representative example of how modeling artificial
internal drives and their homeostatic regulation allows an
artificial agent to organize behavior autonomously responding to
internal and environmental constraints.

In Kirtay et al. (2019), the authors implemented a model-
free reinforcement learning (RL) framework to argue that
emotion can be considered as an emergent phenomenon of a
neurocomputational energy regulation mechanism in a decision-
making task. This mechanism generates an internal reward signal
to minimize the neural energy consumption of a sequence of
actions. Each action triggers a process of visual memory recovery
in which the actions to explore the environment are movements
of the neck and the eyes to direct the gaze. According to the
authors, the computational shortcut mechanisms on cognitive
processes to facilitate energy economy give rise to emotions.
In another work, Lewis and Cañamero (2016) study the role
that pleasure plays in the selection of actions whether related
or unrelated to the satisfaction of physiological needs. They
evaluate the effects of different types of pleasures and show that
pleasure, including pleasure not related to the satisfaction of
physiological needs, has value for homeostatic management in
terms of improved viability and greater flexibility in adaptive
behavior.

A fundamental element for autonomy in artificial agents
relates to energy. Most current artificial agents operate with
batteries that must be replaced or recharged by the user
(McFarland, 2009), so, self-charging robots would have a higher
level of autonomy. In this regard, EcoBot-II is an interesting
example designed to autonomously regulate its energy by
converting unrefined insect biomass into useful energy using
onboard microbial fuel cells with oxygen cathodes (Ieropoulos
et al., 2005). The work described by Lowe et al. (2010) addresses
energy-motivation autonomy where physiological information

is generated by a simulated artificial metabolism as a microbial
fuel cell batch. The grounding of behavior according to
artificial metabolic constraints permitted the evolution of sensory
anticipatory behavior in the form of simple pan/tilt active vision.

These studies show how physiological constraints impact not
only sensorimotor activity but also emotional and motivational
mechanisms. They allow the emergence of adaptive anticipatory
behavior, prioritize tasks, and organize behavior according to
the needs of artificial agents situated in a context. However, few
studies address other physiological needs in artificial agents, such
as engine integrity, or optimal operating temperature.

3.2. Emotions
There is no clear consensus about the definition of emotion, in
part, because it can be defined based on its affective domain, as
well as on its behavioral aspects that guide how biological agents
act and respond to the environment (Soudry et al., 2011). It has
been hypothesized that emotions evolved to drive behaviors that
promote homeostatic processes, explaining why an emotional
experience depends on the processing of interoceptive signals
(Pace-Schott et al., 2019). For instance, physiological needs are
strongly related to emotional experiences. Some basic emotions,
such as fear, anger, disgust, sadness, happiness, and surprise could
have been developed during the course of evolution and subserve
adaptational strategies (Ekman, 1992, 2016).

Emotions can be generally defined as multifaceted, whole-
body responses that involve coordinated changes in subjective
experience, behavior, and peripheral physiology (Mauss et al.,
2007). Emotions trigger responses from different biological
systems, including facial expression, somatic muscle tone, tone
of voice, and endocrine activity, to produce an optimal body
milieu for an effective task response (Rolls, 2000). The role
of these short-lived psychophysiological states encompasses
coordinating behavioral response systems, shifting behavioral
hierarchies, communication and social bonding, short-cut
cognitive processing, facilitating storage, and recall of memories
(Dolan, 2002; Phelps, 2006; Mulligan and Scherer, 2012; Tyng
et al., 2017).

Emotions represent efficient modes of adaptation to changing
internal and environmental demands, allowing behavioral
flexibility or even triggering a task interruption when a sudden
change occurs (Adolphs, 2016). They regulate behavior by
associating the situationwith states of positive or negative valence
that express an appraisal involving a particular type of harm or
benefit (Griffiths and Scarantino, 2001; Coifman and Bonanno,
2010). Thus, emotions are core contextual elements, providing
direct agent-related information, regulating the selection of
beneficial tasks, as well as the interruption of an ongoing task
when necessary. Together, with physiological needs and intrinsic
motivation, emotions drive biological agents toward behaviors
that ensure their survival (Smith and Lazarus, 1990).

The computational modeling of emotions constitutes an area
of growing interest in CR (Breazeal and Brooks, 2005; Ziemke
and Lowe, 2009). The studies on emotions can be broadly
divided into those that focus on their role in modulating
behavior and those related to human-robot interaction (Arbib
and Fellous, 2004). Here, we address models that highlight the
role of emotions in the control of multi-task artificial agents
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(Kowalczuk and Czubenko, 2010; Ghayoumi and Bansal, 2016).
In these approaches, artificial agents generally learn some
predefined tasks and then find their high-level coordination.
Some studies associate emotions with the expected utility of each
behavior. From this perspective, emotions can be considered as
triggers of behavioral action sequences according to some value.
The higher the value, the higher the probability of a task to be
selected.

Emotions have been modeled to drive RL algorithms
(Moerland et al., 2017). Gadanho and Hallam (2001) proposed
a model in which emotions provided a reward value and helped a
mobile robot in determining the situations in which to reevaluate
decisions. The robot must maintain its energy, avoid collisions
andmove around a closedmaze-like environment. The addressed
emotions were happiness, sadness, fear, and anger. The model
was implemented using a recurrent neural network in which
emotions influence the perception of the state of the world. In
turn, this model was integrated into an RL architecture. The
intensity of emotions is associated with the internal state of the
artificial agent, determined by an energy deficiency and proximity
to obstacles.

Marinier and Laird (2008) implemented a cognitive
architecture called state, operator, and result (SOAR) (Newell
et al., 1987; Laird et al., 2012) as a basis for the integration of an
emotion module. Emotions allow the robot to assess what stimuli
attend to (sudden, relevant, pleasant), and to decide what to do
with the stimulus attended. Feelings serve as a reward signal for
a four-wheel-driven mobile robot. Completing a task provides
the robot with a positive reward. Daglarli et al. (2009) proposed
a model in which emotions and a motivational system constitute
the highest control level of the architecture. The motivation
module assigns behavior gain coefficients which provide an
increase or decrease of the impact of the behavior. In turn,
emotions determine sequences of behaviors for the planning of
long-term actions according to the probabilities of transition of
the emotional and behavioral states. A hidden Markov model is
implemented for behavioral and emotional transition processes.

Jitviriya et al. (2015) proposed a behavioral-emotional
selection model based on a self-organizing map (SOM) and a
discrete stochastic state-space Markov model. The artificial agent
determines the most suitable behavior and emotional expression
according to internal and external situations. Firstly, the artificial
agent recognizes the external situation and determines its
motivation. In turn, a cognition module is used for clustering
the input stimuli (the intrinsic motivation and external situation)
in a SOM. Then, the robot calculates the affective and
behavioral factors. The behavioral-emotional selection system
is implemented with a Markov model. The basic emotions
simulated in this work are normal, hope, happiness, sadness, fear,
and disgust.

Emotions have also been modeled using artificial evolution.
Parisi and Petrosino (2010) suggested that adding an emotional
circuit to the ANN that controls behavior leads to better
motivational decisions and thus greater fitness. Artificial agents
must eat and drink, eat and fly away from a predator, eat
and find a mating partner, eat and care for their offspring, or
eat and rest to recover from physical damage. Their results

show that robots with ANN that include an emotional circuit
behave more effectively than robots with ANN that do not.
Other approaches that use ANNs for emotional modulation of
tasks focus on increasing or decreasing the synaptic efficiency
of specific populations of neurons associated with tasks (Belkaid
et al., 2019). In general, artificial emotions have offered an elegant
approach for behavioral flexibility in artificial agents, providing a
unifying way to tackle different control issues.

3.3. Intrinsic Motivation
Intrinsic motivation (IM) could be defined as a natural desire or
interest in carrying out specific behaviors just for the pleasure
and satisfaction derived while performing them, rather than for
external rewards or pressures (Ryan and Deci, 2000; Sansone
and Harackiewicz, 2000; Oudeyer and Kaplan, 2008; Daddaoua
et al., 2016). Exploration, manipulation, curiosity, and play are
considered intrinsically motivated behaviors (Ryan and Deci,
2000; Reiss, 2004; Stagnitti, 2004). White (1959) called this
psychophysiological need effectance motivation or mastery. The
amount of effective interaction or degree of control biological
agents can have on objects, tasks, themselves, and other agents
naturally motivate behavior (Deci, 1975). IM allows biological
agents to acquire knowledge about themselves and their world to
effectively interact with the environment, being crucial for open-
ended cognitive development and for autonomy (Deci, 1975;
Perry et al., 2000).

It has been observed that the most motivating situations are
those with an intermediate level of novelty, this is, situations
between already familiar and completely new (Berlyne, 1960).
When a biological agent performs a task, an emotion with a
positive or negative valence is experienced as a result of how well
or bad it is performing the task. Recently, it has been suggested
that the monitoring of prediction error dynamics over time is
a self-regulation mechanism behind IM (Schillaci et al., 2020b).
Thus, a positive emotional experience is linked to a continuous
decrease in prediction error, conversely, a negative emotional
experience to a continuous increase in prediction error over time
(O’Reilly, 2020; Schillaci et al., 2020b). This mechanism can help
to explain how biological agents select their goals, as well as why
behaviors such as being curious and playful should feel good
(Kiverstein et al., 2019). IM involves an ongoing cycle of finding
optimal goals and interesting tasks that evoke emotions with
positive valence and it is, therefore, essential for learning and
encouraging interaction with the environment (Gordon, 2020;
Schillaci et al., 2020b).

The tendency to be intrinsically attracted to novelty has
often been used as an example of IM for guiding exploration
in artificial agents (Huang and Weng, 2002; Oudeyer et al.,
2007). This approach is useful to acquire optimal information
gain from the novel or interesting objects to create a more
accurate model of the world through curious exploration based
on an intrinsic reward inversely proportional to the predictability
of the environment (Schmidhuber, 1991). In knowledge-based
models, the interestingness of an action or event derives from the
comparison between the predicted sensorimotor values, based
on an internal forward model, and the actual values (Oudeyer
and Kaplan, 2008). The intrinsic reward for each event is
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proportional to the prediction error of that event according to the
learnedmodel. Thus, interesting situations are detected by higher
prediction errors.

IM allows artificial agents to autonomously select curiosity-
driven goal-directed exploration behaviors and focus on goals
with the optimal amount of reducible prediction errors (Schillaci
et al., 2020b). Marsland et al. (2000) proposed a novelty filter
using a SOM to learn representations of normality from sonar
scans taken as a robot explores the environment. The features
of the environment are clustered in the SOM. All neurons
of the SOM are connected to a single output neuron. The
connections to this output neuron represent the habituation
process of biological neurons, recording the number of times that
each winning neuron has fired. The output received from each
winning neuron reduces with the number of times it fires. This
allows the artificial agent to recognize novel or unusual features
of the environment and forget features that repeat over time.

Competence-based models provide another measure of
interestingness, given that it is the properties of the achievement
process that will determine task selection (Oudeyer and Kaplan,
2008). Artificial agents pay little attention to those tasks
that are already solved or unsolvable, for which the learning
progress stays small (Colas et al., 2018). Thus, they engage in
tasks associated with surprising or novel situations and can
autonomously change tasks when their model has improved. The
behavior is motivated by an intrinsic reward system that favors
the development of competence rather than being directed to
externally directed goals.

IM allows the progressive learning of more complex and
hierarchically organized skills. Barto et al. (2004) proposed
a strategy to explore the task space where each decision
involves the execution of a temporally extended task. Agents
are motivated to master tasks driven by the learning progress
for each of them. Learning progress generates intrinsic rewards
that determine action selection. Most implementations of IM
use the RL computational framework given its inspiration in
the brain reward systems (Eschmann, 2021). RL algorithms
tackle the challenge of how an artificial agent can learn to
approximate an optimal behavioral strategy, usually called a
policy, while interacting directly with the environment. The
optimality criterion of a problem is defining a reward function, an
approximate solution is viewed as the skill of expertly controlling
the given system (Sutton and Barto, 1998).

Luciw et al. (2011) proposed an artificial curiosity system
based on RL for environmental exploration. The artificial
agent builds an internal representation of its world through
navigation. The reward signal is modified to contain two
distinct components, one intrinsic and one external. The external
component is the reward signal in classical RL, while the
intrinsic reward signal is based on the measure of interestingness
that is used as a motivational system to speed learning.
The measure of interestingness assigns low values to patterns
already known or that cannot be learned, and high values to
patterns not known, but that can be discovered. The model
assigns values for maximizing combined external and intrinsic
rewards using a least-squares policy iteration with an internal
forward model.

IM has focused on the exploration and manipulation of
objects. Hart and Grupen (2012) propose that a single IM
function for affordance discovery can guide long-term learning
in artificial agents. Using RL, their function rewards the discovery
of tasks such as finding, grasping, and placing simple objects. IM
has been also used to improve the model of the artificial agent’s
body state and action space (Frank et al., 2014). This is achieved
by guiding the exploration of states and actions using intrinsic
rewards. Singh et al. (2010) consider an evolutionary perspective
to define a new optimal reward framework that captures the
pressure to design good primary reward functions that lead to
evolutionary success across environments. They show that both
intrinsic and extrinsic motivation can be understood as emergent
properties of reward functions selected because they increase the
fitness of learning of artificial agents across some distribution of
environments. In general, IM allows learning to be more efficient
by enabling the selection of novel tasks and goals with the optimal
capacity for error reduction.

4. ENVIRONMENTAL CONTEXT

Environmental context refers to the state of the environment
surrounding a biological agent at a given moment, affecting how
every sensory input is processed (Nikolić, 2010). It is related to
the terrain characteristics, the climate, and illumination, as well as
all the entities or objects in a scene (Bloisi et al., 2016). However,
the arrangement of objects is a key factor in determining the
environmental context. Each scene contains specific objects
that appear with a certain probability, and the spatial relations
among them also present regularities (Bar, 2004). Thus, the
typical spatial configuration of the environment makes it
possible to distinguish different types of environmental contexts.
Environmental context restricts the tasks a biological agent
can select at a given moment through the action possibilities
that are provided in a situation. According to Gibson (2014),
affordances refer to the possibilities for action that exist by virtue
of the relational properties between the environment and an
agent. From a cognitive robotics’ view, affordances are acquired
relations through bodily interactions of an artificial agent with its
environment that provide support for planning, and reside inside
the artificial agent as explicit relations that enable to perceive,
learn, and act (Şahin et al., 2007).

Objects by themselves do not provide action possibilities,
they need to be situated in a context to stand out as relevant,
affording context-dependent interactions. Each environmental
context offers a field of affordances to the biological agents
according to the typical objects present in it Withagen et al.
(2012) and Rietveld et al. (2018). Thus, the environmental
context has a predictive impact on the behavior of the biological
agent, by allowing certain actions to be taken, and restricting
others. Furthermore, the situated body in the environment and
object configuration have predictive power in the sensorimotor
sequence necessary to interact with them. Attention is deployed
to process the general configuration of the objects in the
environment, prioritizing those relevant regions for bodily
actions (Reed and Hartley, 2021). Together, these ideas are in
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line with the elements that have been suggested as necessary
for physically grounding an affordance in an artificial agent. For
doing so, it must be able to perform a behavior with an object
given its morphology and its motor capabilities, must determine
its relevance according to the artificial agent’s intentions or goals,
andmust consider the spatio-temporal physical constraints of the
objects in the environment to perform an action in the perceived
context (Koppula and Saxena, 2014).

An embodied theory of spatial attention in a situated context
is one that dynamically adjusts affordances of the body, the
current environment, and the goals of the biological agent (Reed
and Hartley, 2021). The spatial body and object configuration
are fundamental elements of task-related context given their
essential role in the planning and execution mechanisms for the
selected task and will be addressed in Section 5. Even though
many exteroceptive sensory modalities are used to obtaining
environmental context information, for the sake of brevity, only
visual information is addressed in this context, in both types of
agents. Given the speed of contextual processing at the visual
level, this sensory channel could be key to triggering predictions
according to the context as stated by Bar and Aminoff (2003) and
Bar (2007).

4.1. Spatial Configuration of the
Environment
The semantic context of a scene might be extracted early
enough to affect the perception of individual objects in it. Visual
recognition of scenes is a fast, automatic, and reliable process
(Oliva, 2005; Greene and Oliva, 2009; Lowe et al., 2018; Kaiser
et al., 2019). Thorpe et al. (1996) have reported that complex
natural scenes can be categorized under 150 ms. To explain
this phenomenon, theories of visual perception have suggested
a mode of processing based on specific spatial frequencies
that would convey different information about the appearance
of a stimulus (Kauffmann et al., 2015; Zhang and Li, 2019;
Aghajari et al., 2020). High spatial frequencies (HSFs) represent
abrupt spatial changes in visual information such as edges and
correspond to configuration information and fine detail. Low
spatial frequencies (LSFs) represent global information about
the stimulus (Kauffmann et al., 2014). As stated by Bar and
Aminoff (2003), a blurred partially analyzed image version of the
visual input is projected rapidly from early visual areas toward
the prefrontal cortex. LSFs in the image may provide coarse
information of scenes and could reach high-order areas rapidly
by conveying information through anatomical “shortcuts.” HSFs,
then, convey fine details of the image more slowly (Kihara and
Takeda, 2010; Kauffmann et al., 2017; Petras et al., 2019).

The blurred representation of environmental context activates
expectations or predictions about the most likely interpretations
of the input image in higher levels, which in turn is back-
projected as an initial guess to the temporal cortex to be
integrated with bottom-up processing (Bar, 2007). From this
perspective, a correspondence between a novel input and an
existing representation similar to the input stored in memory
would be activated. Then, associated representations with that
similar representation would be translated into predictions.
Top-down processes may facilitate recognition by limiting the
number of object representations that could be considered

according to the experience of the biological agent (Bar,
2004). Environmental context representation is stored in unified
memory structures called context frames. Some studies have
suggested that associative representations integrate information
about the identity of objects and their locations (Gronau et al.,
2008). These structures would bring together information about
the identity of objects that are most likely to appear in a
specific scene, as well as about the probable spatial relations
between these objects (Bar, 2004; Gronau et al., 2008). Brady
et al. (2011) argue that individual items are not represented
independently of other items on the same scene. Every scene
could have multiple levels of structure, from the level of feature
representations to individual items to the level of ensembles of
objects. Each scene representation allows simulations regarding
the activated context-specific category in support of situated
action (Barsalou, 2020a).

Additionally, some studies have suggested that biological
agents represent knowledge about where an object is typically
used in conjunction with information about how the object is
used. Peelen and Caramazza (2012) provided fMRI evidence
that object representations in the anterior temporal lobes would
convey information about where and how an object is typically
used. This favors their structural coupling with the world,
generating a field of affordances relevant to each environmental
context. However, it is not entirely clear how these contextual
associations are stored and integrated in the brain. Once
biological agents learn regularities about this coupling, fast
environmental context processing would allow them to generate
predictions about possible interpretations of the situation, to
simulate situations, and act according to what the environmental
context dictates, selecting the appropriate task in each situation
taking into account also the agent-related context.

CR usually model affordances as the relation between
an action, a single object, and an action effect without
explicitly considering other aspects of the environmental
context in which objects are embedded. Some computational
algorithms for learning affordances take into account an
invariant environmental context implicitly (Yukie, 2011). From
an embodied perspective, this restricts the interaction with
the environment and the behavioral flexibility artificial agents
can acquire during the learning process. However, there exist
research on environmental context can be learned through
behavioral experience in artificial agents during navigation.
In their pioneering work, Nolfi and Tani (1999) proposed a
hierarchical architecture of prediction networks that allows a
mobile artificial agent to extract spatio-temporal regularities in
a a simple and structured environment in order to infer its
position, as well as to detect changes in the environmental
topology. In their architecture, higher layers are trained to predict
the next internal state of lower layers, extracting regularities at
different levels of organization. The lower-level prediction layer
extracts regularities such as “walls”, “corners” and “corridors”,
while the higher-level prediction layer, by being exposed to
higher-level internal states and to shorter sequences, extracts
regularities which are hidden at the sensory level, such as ‘the
left side wall of the large room’ or “I am leaving the big room”.
Each prediction layer is a feedforward network with recurrent
connections. After being trained in an environment consisting
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of two rooms joined by a short corridor, the artificial agent
is able to detect whether the corridor between the two rooms
has been closed, whether a new obstacle has been placed in the
environment, or whether the extension of one of the two rooms
has been altered. This work is inspired by previous experiments
described in Tani (1996).

In another study, Nolfi and Parisi (1996) implemented a
genetic algorithm to simulate the evolution of a population of
neural networks which control the behavior of mobile artificial
agents that must explore efficiently an environment surrounded
by walls (for a closer look at related studies see Nolfi and
Floreano, 2004). In the experiments, artificial agents must be
able to reach a circular target area in its environment that
contains food. Since generations of artificial agents are not able
to perceive the target area, they have to efficiently explore the
environment to increase its chances of reaching the food arena
without colliding with the walls. Each artificial agent is controlled
by a feedforward neural network consisting of just an input and
an output layer, without hidden units. The network includes a
teaching subnetwork that determines how the standard network
changes its connection weights during life. In this sense, the input
generated by the teaching subnetwork can be influenced by the
external context and it can teach different behaviors in different
environments. Artificial agents are selected for reproduction
according to their ability to explore one of the two possible
environments, with dark or bright walls, respectively. Their
results showed that individuals that are allowed to learn during
their life perform better than those that do not learn. Although
these types of studies are focused in learning environmental
context through the agent’s experience, these works usually pay
less attention to the manipulation of objects.

On the other hand, there exist some studies that consider the
environmental context to explore navigation and manipulation
simultaneously (Sisbot et al., 2005). Mostly, these studies endow
artificial agents with pre-set abilities so that they can perform
various tasks in domestic environments. The knowledge of
artificial agents usually includes databases of objects that they do
not need to learn and the steps necessary to achieve goals are
specified in advance. Blomqvist et al. (2020) presented a mobile
manipulation system capable of perception, location, navigation,
motor planning, and grasping. The artificial agent is mounted
on an omnidirectional mobile base and can navigate using a
3D global pre-built map of his environment. The artificial agent
builds an occupancy grid for navigation and locates itself in the
environment by an online algorithm that estimates its position on
the global map. During navigation, the artificial agent can detect
objects through an RGB-based vision system, using a pre-trained
ANN with a database of different objects. Once the task-related
object is identified, the artificial agent extracts information about
its position in space in order to grab it and the 3D geometry
of the local scene is reconstructed in detail. Subsequently, grip
pose detection algorithms are used to generate and classify a
set of possible types of grasp. Finally, a path to the chosen grip
position is planned and executed, the clamp is closed, and the
object is retrieved from the table. The artificial agent can navigate
in a laboratory, find an object on a table, take it and drop it in
another place.

Asfour et al. (2006) implemented an architecture with a three-
level hierarchical organization: task planning, synchronization
and coordination, and execution level called sensor-actor level.
Tasks are decomposed into subtasks that represent sequences
of actions and contain the necessary information for execution,
such as the parameters of the objects, and spatial information
about the environment. The level of planning specifies the
subtasks to achieve a goal and manages resources and skills. The
coordination level activates actions sequentially or in parallel
with the execution level. The execution level is based on control
theory to execute specific control commands. This level uses
specific local active models about the environment and objects.
In the beginning, active models are initialized by global models,
which integrate information from the environment, containing
the database of objects, tasks, and abilities. The global model
corresponds to long-termmemory, while active models represent
short-term memory.

Puigbo et al. (2015) endowed an artificial agent with
predefined skills such as navigation, grasping, recognizing objects
and people. They implemented the SOAR architecture as part of
their approach (Newell et al., 1987; Laird et al., 2012). SOAR acts
as the reasoner by selecting the actions that must be performed
to achieve a goal. The control system is constituted by four main
modules. Firstly, a vocal command is sent to the robot that is
translated to text using an automatic speech recognition system.
The semantic extractor module divides the received text into
grammatical structures, from which the goal is generated. The
goal is compiled in the reasoner module and sent as input to
the SOAR cognitive architecture. The actions suggested by SOAR
are translated as skill activations in the action nodes. The robot
has information about the environment in five categories: (1) a
map of the environment, (2) an ontology that contains all the
actions, names of objects, people and places, (3) a database of
2D/3D models of objects that the artificial agent can recognize
and grasp, (4) a database of faces that the robot can recognize and
(5) a database with current knowledge of the state of the world,
the artificial agent, objects and people. The information available
allows the artificial agent to manipulate objects, navigate into a
room, and interact with people.

Some efforts have been put into autonomous learning of the
environmental context through the experience of artificial agents.
However, these studies usually focus solely on environment
navigation using mobile agents. Other studies have explored
navigation and manipulation of objects at the same time.
Generally, in these studies, environmental context is not acquired
through autonomous learning. In some cases, artificial agents
can plan sequences of actions. Nevertheless, the skills that they
exhibit are not acquired through experience. However, it is clear
that considering the environmental context extends the abilities
that an artificial agent can exhibit.

5. TASK-RELATED CONTEXT

Biological and artificial agents interact with objects through
manipulation tasks, such as grasping or pushing. Each task
involves a temporarily ordered sequence of sensorimotor states
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that leads to a specific goal (Grafton et al., 1998). To effectively
plan and execute a sensorimotor task, agents need to acquire
relevant information about themselves and the objects involved
in the task. These relevant elements to achieve the task goal are
determined once the task is selected and constitute the task-
related context. The core elements for the planning and execution
of a task suggested here are body posture, peripersonal space, and
the situated body and object configuration (incoming sensory
input) which dynamically change during task execution.

When grasping an object, information about its position
and orientation is crucial to adapt the sensorimotor sequence
accurately (Chen et al., 2014; Baltaretu et al., 2020). Given
the spatial object configuration, it is possible to predict the
sequence of actions that a biological agent will perform to
achieve a specific goal. For instance, the type of grasp used
to lift a glass would depend on whether the object is upside
down or upright on a table (Rosenbaum et al., 2014). If the
task involves two or more objects, the spatial relation between
items becomes relevant to plan the task. Simultaneously, body
posture is also essential for the execution of the sensorimotor task
(Sarlegna and Sainburg, 2009). The sensorimotor sequence will
also depend on the initial position of the body. This information
can be directly acquired through proprioception or indirectly
through incoming exteroceptive information, such as vision,
which provides information about the configuration of the body
situated within an environmental context.

Planning the sensorimotor sequence of a task implies that
an agent has to predict the sensorimotor consequences product
of its actions. During its execution, the prediction error,
resulting from the difference between the predicted and the
incoming sensory information, allows to dynamically adjust
the sensorimotor sequence in accordance with the situated
body and object configuration. Together, the body posture
and object configuration would determine the sensorimotor
sequence that would allow the agent to achieve the task goal
(Rosenbaum et al., 2014). The body posture of an agent and
its peripersonal space combined determine the location of a
target relative to an extremity. The effective control of the body
to avoid or manipulate objects requires an integrated neural
representation of the body and the space around the body
(Holmes and Spence, 2004).

5.1. Body Posture
Biological agents process information about the position of
their limbs in space through sensory modalities, such as
proprioception and vision (Sherrington, 1907; Grigg, 1994;
Saunders and Knill, 2003; Saunders, 2004; Montell, 2019).
The brain integrates this information in a multimodal neural
representation known as body schema (Head and Holmes,
1911; Carruthers, 2008; Morasso et al., 2015; Hoffmann
et al., 2020). The body schema allows to constantly monitor
the body posture to trigger the planning and execution
of goal-directed movements (Schillaci et al., 2016). When
performing goal-directed movements, biological agents must
integrate information about the body position and how this
relates to extrinsic spatial coordinates of objects in the world
(Sainburg et al., 2003).

Internal models have been suggested as the mechanism to
code for body schema (Wolpert et al., 1995, 2001). These models
allow biological agents to establish a causal relationship between
their intentions and actions, as well as to anticipate the effects
generated by their actions (Miall and Wolpert, 1996; Wolpert
and Kawato, 1998; Kawato et al., 2003; Tanaka et al., 2020).
Internal models integrate spatial body configuration and motor
information to control movements and plan actions (McNamee
andWolpert, 2019). The body posture constitutes a core element
of the task-related context given its determinant role in the
planning and execution of action for a given task configuration
(Zimmermann et al., 2012).

As infants do, artificial agents can also acquire a body
schema. A common strategy is motor babbling (Demiris and
Dearden, 2005; Kuniyoshi and Sangawa, 2006; Rolf et al.,
2010; Houbre et al., 2021). During this process, artificial agents
perform random movements which, in turn, cause changes
in their sensory situation. These changes are then associated
with the movements that cause them. Learning the spatio-
temporal patterns that relate sensorimotor modalities with the
body configuration allows artificial agents to distinguish between
their own body and the environment (Diez-Valencia et al.,
2019). In CR, internal models are a typical approach to allow
artificial agents to acquire the sensorimotor representations
necessary for prediction and action generation (Dearden and
Demiris, 2005). Nevertheless, the computational tools to encode
the spatial context of the body, the sensory situation, the
movements as well as the approaches to map associations
between them varies considerably (Schillaci et al., 2016; Nguyen
et al., 2021). For example, Gama and Hoffmann (2019)
study the acquisition of body schema in humanoid robots to
construct map-like proprioceptive representations, resembling
somatotopic representations within the brain. The joint angles of
the robot are considered proprioceptive inputs and are obtained
from different body configurations. Proprioceptive information
serves as input to a modified SOM. The neuron activation in
the maps encodes one specific joint or a combination between
two or three of them as the receptive fields of neurons in the
somatosensory cortex (Krubitzer et al., 2004).

Zhang et al. (2018) implemented an autoencoder to model
proprioception in a humanoid robot. Interestingly, they do not
consider joint angles directly as proprioceptive information, as
it is typically done. Taking into account that the exact value
of joint angles is unknown for biological agents, the joint
configuration is the input to the network and the hidden layer
is considered as proprioception. Using a multimodal variational
autoencoder (VAE), Zambelli et al. (2020) proposed a system
that enables an iCub to learn representations of its sensorimotor
capabilities considering the spatial configuration of its body. The
multimodal VAE is formed by multiple encoders and decoders,
one for each sensory modality such as proprioception, vision,
tactile, sound, and motor. In another study, Escobar-Juárez et al.
(2016) endowed an artificial agent with the capacity of executing
saccadic movements to focus a stimulus in the fovea as well
as to carry out a hand-eye coordination task using multimodal
representations. They proposed the Self-Organized Internal
Models Architecture (SOIMA), a network of self-organized maps
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interconnected with Hebbian weights. SOIMA provides coupled
inverse and forward models that allow multi-modal associations
of sensory and motor information.

In these studies, body schema is not adaptable as has
been reported in biological agents (lriki et al., 1996). Inspired
by the flexibility of body representations, Nabeshima et al.
(2006) proposed a biologically inspired model of body schema
adaptation. The artificial agent reaches for and touches an object
with its hand and learns to temporally integrate visual and
tactile information in associative memory. If the recalled visual
information is consistent with the currently obtained visual
information, then the location of visual contact is considered as
the location on the hand where the tactile sensation originated.
If visual contact occurs not on the robot’s hand, but on a given
tool, then the robot is not able to adequately use the tool with the
current hand trajectory controller, which induces the system to
learn a new kinematic controller for the tool. In their model, the
global memory is composed of two associativememories: a gating
ANN to associate the visually detected target approach direction
information with tactile information and, a non-monotone ANN
associating tactile signals with the distance between the hand
and the target. The authors suggest that tool use depends on
the coherent unification of spatial and temporal aspects of
multimodal information. Their model relies on the temporal
integration of vision, touch and, proprioceptive information.

Learning algorithms are useful computational tools to create
multimodal representations in CR, such as body schema
(Hoffmann et al., 2010; Morasso and Mohan, 2021). From
proprioceptivemaps tomultimodal representations, these studies
endow artificial agents with the capacity to autonomously
acquire contextual information about their own bodies. The
most explored modalities in CR have been proprioception and
vision. However, there is a growing interest in considering other
modalities to provide artificial agents with greater behavioral
flexibility (Dahiya et al., 2013; Zenha et al., 2018; Pugach et al.,
2019).

5.2. Peripersonal Space
Peripersonal space can be understood as the reaching space
of a biological agent, that is, the distance at which an object
can be reached by the hand of the agent without moving the
trunk (Cardinali et al., 2009; Serino, 2019). This region acts
as an interface between the agent’s body and the environment
(Makin et al., 2008; Noel et al., 2021). Peripersonal space was
also known as the flight zone and it would correspond to a
margin of safety around the body (Dosey and Meisels, 1969).
There is evidence about the involvement of peripersonal space in
guiding involuntary defensive movements for protection. Some
studies show that electrical stimulation of multimodal areas in
the brain evokes a complex pattern of hand and arm movements
in monkeys, similar to avoidance or defensive reactions, such as
turning the head or raising the hand (Graziano et al., 2002).

Although biological agents perceive space as something
continuous and unified, the processing of the peripersonal
space is particularly characterized by a high degree of
multi-sensory integration, mainly between visual and
somatosensory (tactile and proprioceptive) information

(Cardinali et al., 2009; Bertoni et al., 2020). The visually
evoked responses of peripersonal multimodal neurons are
modulated by the distance between the visual object and the
tactile receptive field. In this way, visual information can be
encoded with reference to the part of the body that contains the
tactile receptive field (Cardinali et al., 2010). Such a map would
give the location of the visual stimulus concerning the body
surface in somatotopic coordinates. Additionally, peripersonal
space includes different spatial representations, such as those
around the hands and the face (Farne et al., 2005). Peripersonal
space is crucial to guide movement (Graziano, 1999). It is a
core contextual element of the task-related context given that
it informs the body-related reachable spatial region where a
specific task can be carried out.

Synthetic approaches have modeled peripersonal space
centered on different parts of the body. Fuke et al. (2009)
proposed a model that enables an artificial agent to acquire a
head-centered peripersonal spatial representation using a SOM
and Hebbian learning. Their model is inspired by the face
representation in bimodal neurons found in the adjacent ventral
intraparietal region of the brain, which codes the location of
visual stimuli through the head-centered reference and connects
visual and tactile sensations (Sereno and Huang, 2006). These
neurons have been associated with the ability to avoid objects
moving toward the face as a protective mechanism (Graziano and
Cooke, 2006). Fuke et al. (2009) use proprioceptive information
of the arm as a reference so that when the artificial agent moves
his arm in front of his face the SOM is activated and learning
occurs. Their simulated artificial agent learns the association of
the visuo-spatial representation with the tactile representation of
the face.

Juett and Kuipers (2019) recreate the learning process
of peripersonal space in an artificial agent, by associating
proprioceptive information of the arm and the visual perception
of the hand and grippers of the agent. The peripersonal space
is modeled using graphs. The nodes of the graph represent the
state of the arm, and the edges correspond to safe movements.
Paths represent safe trajectories from one pose to another. In
their proposal, a reaching action emerges as a reliable way to
hit and move an object in the environment. When an object
is accidentally grasped, it moves dynamically with the hand,
generating a grasping action. The learning process is modulated
by a mechanism of IM and the artificial agent is capable of
reaching and grasping objects based on unguided exploration.

Nguyen et al. (2019) modeled visuo-proprioceptive-tactile
integration in a humanoid robot to develop reaching behaviors.
They implemented a deep neural network that receives as input
images from the cameras of the artificial agent and the position
of the head, while the output is the arm position and tactile
information of the hand and forearm. The network predicts arm
configurations of successful reaching, together with information
about the body part that would make contact with the objects.
Finally, Jamone et al. (2012) endow an artificial agent with the
ability to learn a representation of its own reachable space using
motor experience. The reachable space map that they proposed
uses a gaze-centered, eye-fixed reference frame. The position of
a point in space can be encoded with the motor configuration
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of the head and eyes of the artificial agent. Their maps are
implemented using a locally weighted projection regression
ANN. After learning, the artificial agent is capable of estimating
the reachability of a visually detected object, even before starting
the reaching movement. Together with information about the
configuration of the body, peripersonal space allows artificial
agents to perceive the space that surrounds them in order to carry
out processes of planning and executing manipulation tasks.

5.3. Situated Body and Object
Configuration
During task execution, it is necessary for biological agents to
continuously build a visual map of the current perceived spatial
body position in relation to the spatial arrangement of objects.
This exteroceptive information complements the perceived body
posture via proprioception to guide and adjust sensorimotor
sequences within the peripersonal space of the biological agent.
Visual working memory and attentional mechanisms are coupled
by means of the action that is being executed. An action
plan guides the retrieval of the appropriate sensory memory
representations, and when the expected outcomes of the action
are successful the representations are robustly consolidated,
leading to a more rapid retrieval in the future (Olivers and
Roelfsema, 2020). Thus, the content of visual working memory
is to serve future behavior, in such a way that action encoding
occurs in response to those visual memories of relevant objects
related to the anticipated actions (Boettcher et al., 2021).

A telling example is the execution of complex grasping
actions (van Polanen and Davare, 2015). The spatial information
of an object interacts with the information of its physical
properties to control object-oriented hand movements. This
spatial object configuration must be associated with information
about the body configuration in order to map spatial information
about objects into body coordinates (Colby, 1998; Graziano
and Gross, 1998; Bertoni et al., 2020). Thus, the situated body
and object configuration is a task-related contextual element
that dynamically changes during the execution of the planned
sensorimotor sequences. Action plans require working memory
for anticipating and chaining multiple steps, as well as the use of
attentional mechanisms that are guided by the situated recurrent
feedback for learning appropriate sensory-action couplings
(Olivers and Roelfsema, 2020). In case of not having vision or any
specific modality, it would also be expected that an integration
process be carried out with those modalities available to the
agent to generate predictions according to its experience. Given
that all the information for planning sensorimotor sequences
can not be known in advance, selective attention to relevant
information during the flow of action influences subsequent
action plans (Reed and Hartley, 2021). The situated action cycle
has particular outcomes that potentially change the agent-related
and environmental context, and these changes can also trigger
further iterations of the cycle (Barsalou, 2020b).

Many studies have taken the approach of “learning by
doing” to explore the consequences of self-generated actions
in artificial agents. Fitzpatrick et al. (2003) showed how robots
learn the effect of pushing actions on objects. In each trial,
the target was placed directly in front of the robot within

the task space. Then, the artificial agent executed pushing
actions from any of four different initial positions. During the
task, two variables were monitored, the initial proprioceptive
information of the hand position and at the moment of contact
and, the direction of retinal displacement of the target. In
another study, Hogman et al. (2016) endow a robotic system
with the ability to learn different object categories in a pushing
task. The authors define categories as action-effect relations or
sensorimotor contingencies, modeling the effects in an object-
centered representation. The pushing task was parameterized
using position and velocity. The robotic platform learns the
characteristics of translation and rotation of objects and acquires
knowledge with a certain degree of confidence from repeated
observations of action-effect pairs. The translation is computed as
the Euclidean distance between the initial and the final positions
and rotation is calculated through the dihedral angle between the
two planes.

Other studies have focused on addressing tool affordances. In
this case, learning corresponds to finding the mapping between a
set of features that describe tools and the effects that these tools
produce through actions on an object. Mar et al. (2018) propose
an approach where a robot learns tool affordances through
interaction and generalizes them for similar tools based on their
3D geometry. During the training phase, a set of drag actions is
performed by an iCub with a large number of tools grasped in
different pose orientations: right, front, or left. Each trial began
by placing a tool in the robot’s hand. After grasping the tool,
the iCub automatically detects the tool-pose it was given. Once
the tool was grasped and the robot’s end-effector successfully
extended to the tip of the tool-pose, the robot performed a series
of exploratory actions to discover the tool-poses drag affordances.
Tool affordances are learned as a regression between tool-pose
features and action-effect vector projections using SOMs. In
this study, the initial position of the objects that were dragged
is constant and object-object relations between the tool and
the target object are not considered. Tool affordances are also
addressed in Nabeshima et al. (2006). Interestingly, this work
discusses how manipulable objects, such as tools, can become
incorporated into the agent’s body schema through the temporal
integration of multisensory information. The contribution of
Nabeshima et al. (2006) is mentioned in Section 5.1, given the
emphasis their research makes on the adaptation of body schema
representation.

Understanding the effects of actions is essential for planning
and executing robot tasks. Paus et al. (2020) show that
predicting the effects of a pushing action enables goal-oriented
manipulation tasks. In this research, an artificial agent learns
internalmodels based on objects and the spatial relations between
them. The perceived scenes are represented as object-centric
graphs while the internal model predicts object pose changes
due to the pushing actions. The object properties are stored
in the nodes of the graph while edges contain relative spatial
information between object pairs. The internal model is used to
predict an output graph, from which the local object position,
after the push, can be extracted. This study considers the initial
and final position of objects explicitly in the model and also takes
into consideration spatial relation between the objects in a scene.
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Using previous knowledge is crucial for performing different
tasks in new situations and contexts. Khazatsky et al. (2021)
developed a situated controlled system for efficient self-
supervised goal-conditioned RL. A robot was trained with
several previous experiences of trajectories in different tasks
and contexts and tested in new environments and tasks by
sampling goals from a visuomotor affordance model. After
training affordances (policies), the robot was tested in new
environments which contained distractor objects as well as other
objects that afforded an interaction, such as opening or closing a
drawer or placing an object on a pot. Importantly, these objects
that afforded an interaction were not previously seen but had
similar characteristics related to what they afforded (e.g., drawer
with a different type of handle). In this work, learning required
generalization in terms of visual affordances and their associated
behaviors during online interactions to collect more data and
constantly improve the associated policy. As a consequence,
the policy of grasping generalizes to grasping objects and
the continual learning of new tasks is faster as it benefits
from increasing prior knowledge. This method of visuomotor
affordance learning allows online autonomous learning of tasks
in new contexts, which highlights the relevance of using prior
knowledge from other contexts and their related affordances for
scalable and continuous learning.

In another study, QueiSSer et al. (2021) focused on the
generalization of experiences in familiar task-related contexts to
those in unfamiliar task-related contexts that can be achieved
through learning during vision-based goal-directed planning.
In their experiments, blocks of different colors were placed
at random positions in the task space, and a robot arm with
a video camera was required to stack them in an arbitrary
configuration specified by a visual goal. The proposed model
introduces a large network composed of dynamically interacting
sub-modules, which incorporates a visual working memory sub-
module (VWMs), a visual attention module, and an executive
network for prediction of motor states and images. This network,
also controls visual attention by masks visual images in the
VWM. The large network is trained by using predictive coding.
Additionally, an optimal visuo-motor plan to achieve a given goal
state is inferred using active inference. The experiments showed
that a process of generalization occurs due to the information
processing developed through the synergistic interaction between
the VWM and other modules during the course of learning,
in which memorizing image contents and transforming them
is dissociated. After learning, the performance of the model
network in generating goal directed action plans using active
inference was evaluated, in cases that involved manipulating
blocks with novel colors. The results showed a significant
improvement in performance when using an additional VWM,
compared to a case using only a single VWM. The authors
suggested that the essential aspect of the mechanism acquired
through learning is dissociation of visual image contents from the
mechanism for their manipulation. This proposedmethod allows
the artificial agent to flexible adapt to the new characteristic of
objects during goal-directed planning.

Affordances consider the change in the task space but the
representation of this change can vary drastically during task

execution and within contexts. An autonomous artificial agent
must be sensible to contextual changes to be able to predict
the best sensorimotor sequence when performing a situated task
based on the most similar previously learned situations. The use
of previous experience and affordance generalization is relevant
when exploring new environments. However, here we want to
highlight that task-selection in a given context is also guided by
the current internal needs of an agent (agent-related context), as
well as by the performance expectations the agent has associated
with different tasks. In biological agents, these two elements are
directly linked to emotional states.

6. INTERACTIONIST MODEL OF
CONTEXTS

The interaction of agent-related, environmental, and task-
related context for behavioral flexibility is analyzed in a
schematic interaction model that integrates the core contextual
elements (Figure 2), for task selection, its execution, and
disengagement when necessary. In the model, each context is
perceived by its main source of sensory information. For agent-
related context, interoception and proprioception are key for
providing an affective and embodied context. Exteroception is
central for perceiving an environmental context in a situated
manner, and finally, together, proprioception, interoception, and
exteroception, are fundamental for grounding a task-related
context during task execution. We suggest that the model
presented here is a first approximation for grounding context
in artificial agents. Artificial agents will be able to manage
physiological needs, and intrinsic drives for learning, considering
the situated perceived environmental factors. By means of
perceiving the three types of contexts and their core contextual
elements, artificial agents will behave according to the changing
contextual conditions. This means that artificial agents will
be more prone to become competent to autonomously select
tasks that are of self-relevance to ‘survive’, as well as tasks that
promote learning, in a context-sensitive manner. This proposed
interaction model is an idealized representation of the different
contextual elements. In actual operation, as with other proposals
(e.g., Barsalou, 2020b), one or more elements could be omitted,
also, the sequence could be other than the one described here.

Biological agents learn regularities about the dynamics
between the agent-related, environmental, and task-related
context during their interaction with the world. It has
been suggested that this association is encoded by different
mechanisms, under the notion of internal models (Wolpert et al.,
1995; Kawato et al., 2003; McNamee and Wolpert, 2019). Thus,
biological agents learn to achieve their goals by anticipating the
sensory consequences of their actions under specific contexts,
and so, internal models are always context-dependent.

Internal models generate predictions about the most likely
sensory consequences of self-generated actions. Biological agents
always attempt to minimize the prediction error associated with
predictions using two highly coupled strategies: by updating the
internal model to generate better predictions or by fulfilling
predictions through action to match the expected sensorimotor
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FIGURE 2 | Interactionist model of contexts. Schematic representation of the three different types of context and the interaction of their core elements for selection,

planning, execution, and when necessary switching of a task.

states (Friston et al., 2011; Clark, 2015). Furthermore, attention
has been recently drawn to the importance of the monitoring of
prediction error over time when executing a task. Thus, biological
agents also learn the associated rate of how prediction error is
being reduced while executing a task. This rate can be understood
as changes in the velocity of prediction error reduction, in such
a way that it informs how well or bad a biological agent is
performing a task. This monitoring of prediction error dynamics
and its associated reduction expected rate is thought to play a
central role in emotions and well-being (Joffily and Coricelli,
2013; Van de Cruys, 2017; Kiverstein et al., 2019; Nave et al., 2020;
Hesp et al., 2021).

The positive and negative valence experienced as we act is
directly related to the success of the selected behavior in reducing
prediction error at the expected rate. Additionally, due that
prediction error dynamics are strongly related to emotions, it has
been suggested that the monitoring of the rate of error reduction
can be conceived as a self-regulation mechanism for guiding
behavior in artificial agents (Schillaci et al., 2020b). Thus, an
artificial agent can be intrinsically motivated to autonomously
select a goal associated with an optimal reducible prediction
error. The capability of monitoring the error rate reduction when
performing the task, allows an artificial agent to autonomously
‘decide’ if it should continue with the task when the pursued
goal is being achieved, or if it has to be abandoned when no

progress is achieved. In both scenarios, the artificial agent will be
intrinsically motivated to select another goal that allows learning.
It has been suggested that prediction error minimization is by
itself rewarding. Decision-making based on rewards is replaced
by the use of previous knowledge to avoid surprising states for
survival, which is a sufficient condition to drive prediction error
minimization (Friston et al., 2012).

In the model, physiological needs are central for determining
which action has to be prioritized for maintaining the biological
agent alive. When a physiological need is experienced, an
associated emotion with a positive or negative valence, together
with the environmental context, bring about the relevant
affordances with which the biological agent can engage. As
Rietveld et al. (2018) have suggested, biological agents respond to
affordances in a context-sensitive way and affectivity is a central
aspect of selective responsiveness to relevant affordances. To
some extent, in the model, responding to relevant affordances for
task selection and planning, can be understood as solicitations.
Solicitations are those affordances that show up as relevant to
a situated agent that feels immediately drawn to act a certain
way (Dreyfus and Kelly, 2007). Responding with a preference
to achieve a state of relative equilibrium and acting to correct
for disequilibrium in relation to a dynamic field of multiple
relevant affordances has been characterized as a tendency toward
an optimal grip (Kiverstein et al., 2021). The best opportunities
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for improving the grip with the environment come from selecting
those relevant affordances that are neither too complex, nor
too simple, and can potentially lead to a desired outcome of
equilibrium. Here, selecting the best task among solicitations is
based on their associated expected error reduction rate. This
rate is learned and constantly updated during situated action
cycles, being directly linked to the current competence of the
agent to achieve the desired outcome (for an implementation see
Schillaci et al., 2020a).

When there are no physiological needs, intrinsic motivation
brings the agent to explore its environment, eliciting positive
emotions related to curiosity-driven behaviors. In this situation,
task selection occurs in a similar fashion, the field of relevant
affordances allows the agent to select the task best suited for
exploration and learning, taking into consideration its expected
error reduction rate. In this regard, inspiration comes from
research, on infants, understanding preferences toward optimal
exploratory behaviors. In general, infants prefer to attend to
stimuli that evoke an intermediate rate of complexity (Kidd et al.,
2012), and to those that contain unexpected patterns of data
(Stahl and Feigenson, 2015) to be able to learn based on their
current competences.

Thus far, all the above mentioned, refers to the upper part
of the model, the shaded areas of both agent-related and
environmental context. As an example, the functioning starts
on the state of the physiological needs of the agent, is there a
physiological need that must be fulfilled, when yes, this evokes
and emotion and together with the element in the environmental
context selects a tasks from the field of affordances to fulfill the
respective need. When there is no physiological need to fulfill,
then intrinsic motivation is the one driving the agent to select
a task in the field of affordances. For both cases, the field of
relevant affordances of a particular agent is dependent on its
current concerns and competences, as well as the environmental
situation, also, the optimal grip on the field of affordances
dynamically changes as a result of this dependency (Bruineberg
and Rietveld, 2014).

In the model, once the task has been selected, either for
equilibrium maintenance and self-regulation or for exploration
and manipulation of the environment, the task-related context
emerges. First, for planning, the proprioceptive information,
framed in the task related context (both overlapping with the
two other contexts), becomes relevant for the planning of
sensorimotor sequences. The selected sensorimotor sequence has
an expected error reduction rate, schematically shown in the
planning block of the diagram as an error occurring over time
and its respective slope. Then comes the execution of the selected
task. During execution of the task, two types of prediction error
monitoring occurs in parallel. First, the monitoring of prediction
error, the predicted sensorimotor consequences of actions are
compared with the actual sensorimotor input for prediction error
estimation. This is shown in the task execution block, again as
error over time. The perceptual fast loop occurs as the situated
body and object configuration changes as the execution of the
task progresses, allowing corrections when necessary. This can
be though of as the fast control loop of the execution of the task,
involving internal models (depicted in the overlap yellow-blue,

and the overlap yellow-green, respectively). Second, there is the
monitoring of the expected error reduction rate. As the task is
executed, the rate of error reduction in the monitored prediction
error dynamics is compared with the expected error reduction
rate. In other words, the accumulated prediction error over time
when executing the task allows a direct comparison between the
expected error reduction rate associated to the task and the actual
prediction error dynamics.

The monitoring prediction error dynamics over time and
its comparison with the expected error reduction rate signal
how good or bad the agent is at performing the task, or how
optimal is being its grip with the environment. This comparison
is schematically shown in the comparator to the right of the
task execution block. The minimization of prediction error and
its relation with the expected reduction rate is thought to be at
the core of emotions and valence of agents actions (Kiverstein
et al., 2019; Hesp et al., 2021). When a faster than expected error
reduction rate occurs, produces positive emotions, motivating
the agent to continue with the task. A well-done feeling, also
updates the expected error reduction rate for that particular
task in that particular context. This is shown by the negative
slope of the error at the lower left in the emotions block, with
an arrow going back down to planning and execution. A rate
of minimization of the actual error which is slower than the
expected one can triggers a disengagement from the task. This
difference will have a negative valence and bring the system back
to the slow loop by means of monitoring its current physiological
needs, as well as the other core agent-related and environmental
contextual elements so as to select a different task. This might
also occur when the agent is not capable to minimize the error.
this is shown by the error at the lower right in the emotions
block, with an arrow bringing the system back to monitoring of
physiological needs. When the difference between the expected
error reduction rate and the actual rate is not very large, the
agent might continue with the execution of the task. Still, the
comparison also has an emotional valence. A positive rate of
reduction is an encouragement to continue as is, whereas a
negative rate might be seen as a warning or as a signal for a
necessary change in the manner the task is being planned and
executed (Schillaci et al., 2020b).

The model shows two different temporalities in the rate that
sensory changes occur. First, a low rate of sensory changes occurs
while general properties of the contexts are processed to bring
relevant affordances for task selection (intense blue agent-related
context; intense green environmental context). This slow loop
is represented in the model by black arrows interacting with
the core contextual elements for task selection and planning.
Second, when the task-related context emerges, a fast rate of
sensory changes occur in the environment while executing the
planned sensorimotor sequence of the task (light blue, green, and
yellow). This fast loop is represented in the model by orange
arrows interacting with the core contextual elements during
task execution. In this regard, Marchi (2020) suggested that the
line that distinguishes cognition and perception can be set by
considering the functional levels of the processing hierarchy.
Cognitive levels, the higher levels of the hierarchy, perform more
abstract and general functions to represent general knowledge
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about contextual properties, and are not so susceptible to fast
sensory changes that occur in the environment. On the contrary,
perceptual levels, the lower levels of the hierarchy, are in close
spatiotemporal proximity to sensory detectors, and are highly
sensitive to fast sensory changes in the environment product
of short-term actions (e.g., grasping, taking a step). Thus, the
proposed model considers the sensitivity criterion proposed by
Marchi (2020), in such a way that cognition is depicted by
the slow loop for contextual information processing and task
selection and planning, while perception is depicted by the fast
loop, which is radically affected by fast sensory changes that occur
during the task execution.

It is important to highlight the open question with regards
to the optimal size of the time window in which prediction
error dynamics has to be monitored. Different time windows
of prediction error monitoring, starting from being very brief
to relatively long, produce different patterns of emotional
experience, as well as a different sensitivity to meaningful
changes in the error reduction rate (Carver and Scheier, 1990).
Recently, it has been suggested that the size of this time
window should change dynamically according to ‘how well or
bad things are going’ with respect to the expected progress
(Schillaci et al., 2020a,b). Thus, when the error rate constantly
decreases, meaning the agent is doing well on the task execution,
the need for error monitoring diminishes. On the contrary, if
prediction errors are increasing, a more careful evaluation has
to be done. In computational implementations, less monitoring
implies the liberation of resources. In this regard, in the proposed
model, the time window by which prediction error dynamics are
monitored could change dynamically based on the experienced
emotions product of the differences between the expected error
reduction rate and the actual reduction rate. Additionally, here
it is suggested that the time window can also be influenced by
the level of familiarity of the perceived environmental context.
When an agent becomes familiar with a particular context, the
confidence or the precision related to relevant possibilities of
action increases (Friston et al., 2017a,b). Thus, in a familiar
environmental context, the tasks that tend to be selected are very
likely to lead to preferred outcomes (pragmatic value), and as a
consequence the expected rate of error reduction is very fast. In
this scenario, previous experience guides the retrieval of robustly
consolidated representations for action planning that will lead to
the expected outcome (Olivers and Roelfsema, 2020). Given the
pragmatic value of a selected task in a familiar context, the time
window by which prediction error dynamics are monitored is
decreased. On the contrary, in novel or unfamiliar environmental
contexts the outcomes of a set of possible tasks tend to be
uncertain. Accordingly, the tasks that can be selected in a novel
environmental context tend to be for exploration and learning
(epistemic value). Hence, their associated expected rate of error
reduction is slow. As a consequence, the time window by which
prediction error dynamics are monitored is increased until more
experience is gained and appropriate sensory-action couplings
are consolidated.

Finally, in line with Barsalou (2020b), the interactionist
model of contexts presented here offers a grounded approach to
perception, cognition, and behavior. The situated action cycles in

the environmental context are grounded in the task that is being
executed. Central to the model is the processing of physiological
needs, as well as the constant monitoring of the prediction
error dynamics, which are the base for emotional states. An
optimal grip with the environment is provided by the equilibrium
experienced by acting in a particular situation to reduce affective
tension or disequilibrium (Rietveld, 2008). Thus, a situation
improves by being responsive to those relevant affordances
that potentially can bring about the experience of equilibrium.
Further, the proposed model highlights the particular role of the
different sensory systems such as interoception, proprioception
and exteroception in cognitive processes associated with the
modulation of behavior. From this perspective, cognitive and
perceptual processes not only occur in the brain, but are
distributed in the dynamic coupling, full of affectivity, between
the brain, the body, and the environment. Thus, the interactionist
model of contexts is then: a) embodied in the processing
of the physiological needs of agents, their morphology and
their sensorimotor capabilities, b) affective, as agents act to
improve the context-sensitive grip on a dynamic field of relevant
affordances, c) situated in the environmental context, the current
body and object configuration that, together, make the relevant
affordances stand out for task selection and planning, and finally,
d) grounded in the situated action cycles during task execution
that trigger the processing of fast multimodal sensory changes, as
well as the two types of prediction error monitoring that occurs
in parallel.

7. DISCUSSION

Context processing plays an essential role in autonomy
and behavioral flexibility of biological and artificial agents.
Essentially, context is involved in all cognitive, perceptual and
behavioral aspects. Endowing artificial agents with the ability to
process the context in which they are situated would allow them
to prioritize goals and tasks that are important for their internal
self-regulation and to promote their learning and mastery of
the environment. This makes context and its processing a key
element for CR. The vast majority of studies in CR consider one
or more contextual elements, however, the concept of context
is rarely explicitly addressed. There is consensus that context
acts as a set of restrictions that influence behavior, but, the
discussion is open on what the notion of context actually is.
Given the relevance of context not only in behavioral autonomy
and flexibility but in cognition in general, this work aims to
motivate the discussion about context processing within CR. In
this paper, context is treated as encompassing all those elements
of the agent and the environment that have an impact on
decision-making and behavior. The essence of context is complex
given the diverse nature of its components. Here, to address
global context, a distinction has been made, analyzing context
as agent-related, environmental, and task-related context. The
agent-related context is characterized by elements such as
physiological needs, emotions, intrinsic motivation, as well as the
morphological aspects of the body. The environmental context
relates to the characteristics of the specific environment in which
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the agent is situated, such as the spatial configuration of the
objects in the environment, as well as their relational properties.
Finally, the task-related context is characterized by elements that
dynamically change during the execution of the task, such as
the situated spatial body and object configuration (perceived
via exteroception), the body posture of the agent (perceived via
proprioception), and its peripersonal space. It is suggested here,
that the three types of context must be monitored at all times.
When an agent is involved in the execution of a task, most of its
attentional resources are devoted to achieving the goal. However,
an agent can not afford to stopmonitoring its physiological needs
or its surroundings, big changes in any context must be attended
in order to guarantee survival.

For each type of context, their core elements are analyzed
separately, and several implementations in CR, representative for
each core element, are described. Generally, each study focuses
on different cognitive processes using a variety of mathematical
and computational tools for their implementations. Here, it
is proposed that establishing agent-related, environmental and
task-related context allows a rapid identification of the elements
considered in each study, regardless of the process modeled
or computational tool used. In this sense, the classification of
implementations made here, according to the core contextual
elements, can shed light about the scope and limitations of
the study of context in CR. At the same time, further research
can be framed using this classification as a guide toward more
autonomous and flexible behavior in artificial agents.

The main aim of this work is to explore and understand how
the three contexts and their core elements should interact to
provide behavioral flexibility in biological and artificial agents.
A model is proposed integrating these core contextual elements
considering their interactions and different temporalities during
task selection and execution. Themodel gives great importance to
the role of monitoring prediction error dynamics, as well as the
expected error reduction rate. The agent-related context, together
with the environmental context bring about a field of affordances
at a given moment. Task selection is made on the field of relevant
affordances according to the expected prediction error reduction
rate for each task. Monitoring of prediction error dynamics
allows online corrections of the planned sensorimotor sequence,
by comparing predictions with incoming sensory information.
All these, occur in the grounded task-related context during the
agent’s situated action cycles. Monitoring prediction error over
time, as the task is executed, and comparing it with the expected
prediction error reduction rate allows an agent to be sensible
to its performance. This sensitivity signals if it is appropriate to
continue execution, when results are positive and it “feels good,”

or autonomously switch task, when things occur not as expected,
and the task becomes “frustrating.” The model also includes two
temporal resolutions, a slower one for cognition and a faster one
for perception and situated action cycles.

Finally, the interactionist model of contexts suggested here is
embodied, affective, and situated, by means of the monitoring of
the agent-related and environmental core contextual elements.
Additionally, it is grounded in the processing of the task-
related context and the associated situated action cycles during
task execution. The model suggests how artificial agents should
monitor the core contextual elements of the agent-related and
environmental context to give rise to the task-related context
based on the field of relevant affordances, their associated
expected error reduction rate and its positive or negative
emotional valence, reflecting a tendency toward an optimal grip.
This capability allows agents to autonomously select a task, its
planning, execution, and monitoring for behavioral flexibility.
In this regard, the model could shed light on the complexity
of the dynamics of affordances’ activation and to what extent
the context filters this activation (see Borghi, 2018, for an
extensive analysis of this issue). The modeling of context is
essential to study the structural coupling between agents and
their environment. The model presented here aims to contribute
in this direction, as well as in clarifying the notion of context
for behavioral flexibility, not only in artificial agents, also in
biological agents.
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