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Houston, TX, United States

The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen 
(HLA), which supports a central role for T cells as the drivers of autoimmunity. However, 
the precise mechanisms that allow thymic escape and peripheral activation of beta cell 
antigen-specific T cells are still largely unknown. Studies performed with the non-obese 
diabetic (NOD) mouse have challenged several immunological dogmas, and have made 
the NOD mouse a key experimental system to study the steps of immunodysregulation 
that lead to autoimmune diabetes. The structural similarities between the NOD I-Ag7 
and HLA-DQ8 have revealed the stability of the T  cell receptor (TCR)/HLA/peptide 
tri-molecular complex as an important parameter in the development of autoimmune 
T cells, as well as afforded insights into the key antigens targeted in T1D. In this review, 
we will provide a summary of the current understanding with regard to autoimmune 
T cell development, the significance of the antigens targeted in T1D, and the relation-
ship between TCR affinity and immune regulation.

Keywords: T cell, autoimmunity, type 1 diabetes, human leukocyte antigen, regulatory T cell, thymic selection

iNTRODUCTiON

Autoimmunity is generally associated with polygenetic susceptibility, while the initial precipitating 
event is likely triggered by an environmental stressor (1–4). The major alleles associated with most 
autoimmune disorders are the human leukocyte antigen (HLA), and several alleles are shared 
among autoimmune conditions (5–8). This suggests that a common T cell-dependent mechanism 
is the underlying cause of tissue-specific autoimmunity irrespective of the organ or tissue being 
targeted. Although several hypotheses have been put forth to explain the HLA-mediated suscep-
tibility, the exact mechanisms are still largely unknown. HLA structure selects for a particular 
peptide sequence motif and can affect the stability of the peptide:HLA complex (9). It is likely that 
autoimmune epitopes are not efficiently presented within the susceptible HLA molecules during 
thymic selection, or alternatively are presented with increased stability or at a higher concentra-
tion in the target tissue (10). Clearly, HLA allele structure is not the only parameter that might 
affect the stability of the tri-molecular complex [T cell receptor (TCR)/HLA/peptide], and not all 
individuals with T1D possess susceptible HLA alleles. Lower level of tissue antigen expression in 
the thymus, the relative abundance of self-antigen at the tissue site, an increase in immunogenicity 
of self-peptides either via post-translational modifications (PTMs) or molecular mimicry could 
all influence the stimulatory capacity of peptide:HLA complexes in periphery (Figure  1). How 
these changes in epitope immunogenicity could affect disease development will be discussed in 
this review.
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FigURe 1 | Abundance and stability of the tri-molecular complex at the interface of tolerance and autoimmunity. During thymic development, rare or unstable 
self-peptide: major histocompatibility (MHC) complexes can lead to escape of autoimmune T cells. Human leukocyte antigen (HLA)-DQ8 and H2-IAg7 susceptible 
alleles form unstable complexes with insulin epitope B:9-23. INS-VNTR susceptible allele results in lower level of insulin presentation in the thymus. Post-translational 
modifications (PTM) of self-epitopes can lead to more stable complexes in periphery. Increase in antigen availability in periphery or presence of structurally similar 
peptides in the context of infection (molecular mimicry) leads to priming of autoimmune T cells.
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The spontaneously diabetic non-obese diabetic (NOD) 
mouse model has been a useful system for identification of the 
key mechanisms important in the development of autoimmun-
ity due to its significant similarity to human T1D (11, 12). Nearly 
6 years after HLA was first associated with T1D in humans (13, 
14), the spontaneously generated NOD diabetic strain was 
obtained by the Jackson Laboratory from CLEA Japan, where 
it quickly became an invaluable tool in the etiology of T1D (11, 
15). The importance of the major histocompatibility (MHC) 
locus was originally traced by congenic approach, where MHC 
locus was introgressed onto the NOD background (16, 17). 
Further analysis of mice that received a non-NOD MHC class 
II transgene confirmed the important contribution of I-Ag7 to 
diabetes susceptibility (18). Although MHC II confers most of 
the susceptibility, there are over 50 genetic loci that make up the 
NOD diabetic phenotype (19). The polygenetic susceptibility 
of the NOD mouse strain mirrors human disease, and further 
underlies the complexity of T1D (20). Importantly, the I-Ag7 
MHC II variant has structural similarities with human suscepti-
ble DQ8 (DQA1*0301/DQB1*0302) (9, 21, 22). Moreover, many 
of the antigens targeted in autoimmune diabetes are shared 
between the two species (19). The similarities of the shallow 
and positively charged peptide-binding groove characteristic of 
both human DQ8 and mouse I-Ag7, and significant concordance 
in antigenic targets have made it possible to uncover sequence 
characteristics of autoimmune epitopes that are relevant to 
human disease (23, 24). Nevertheless, the precipitating events 
that lead to T  cell priming and beta cell destruction remain 
unclear (4, 25). While the NOD mouse model has been a pro-
lific tool for mechanistic insight into the many facets of T1D 
pathogenesis, recent expansion of HLA-humanized mouse 
models now allow direct interrogation of human autoimmune 
tri-molecular complex (TCR/HLA/peptide) and its role in loss 
of self-tolerance.

eviDeNCe FOR T CeLL-MeDiATeD T1D

A large body of evidence accumulated over several decades has 
implicated beta cell-specific immune response and, in particular, 
beta cell-specific T cells as the main drivers of autoimmune tis-
sue damage and development of T1D (12, 26, 27). Progression to 
disease in humans is associated with islet antigen-specific anti-
body responses, and T cells specific to islet antigens are found at 
higher frequencies in T1D patients (28–31). Importantly, both 
CD4 and CD8 T cells were observed directly in the pancreatic 
lesions, and islet antigen-specific T cells have been cloned from 
pancreatic islets of T1D organ donors (32–38). HLA, being the 
major risk allele, implies that inherent structural differences in 
HLA and, consequently, TCRs selected on those HLA alleles lead 
to erroneous T cell reactivity to self (5, 39, 40). While class II HLA 
alleles confer the majority of the genetic susceptibility, certain 
class I alleles have been shown to impose a separate risk (41). 
Multiple antigens are targeted by both CD4 and CD8 T cells in 
T1D. Beta cell-specific antigens presented by Class II molecules 
include preproinsulin (PPI), insulinoma-associated antigen 
(I-A2), glutamic acid decarboxylase (GAD) 65, heat shock 
protein (HSP)-60, HSP-70, islet-specific glucose-6-phosphatase 
catalytic subunit-related protein (IGRP), and zinc transporter 
(ZnT8) (42–44). While MHC class I responses display similar 
wide range of antigenic targets, including PPI signal peptide, 
IA2, ZNT8, human islet amyloid polypeptide (IAPP), IGRP, and 
GAD65 (45). The progression to T1D in humans is associated 
with accumulation of islet antigen antibody reactivity to IAA, 
GAD65, IA-2, and ZnT8, which mirrors the intra- and inter-
molecular “antigenic spread” of T cell responses (46, 47). Other 
non-HLA allelic risk variants are associated with pathways 
involved in T cell development, activation, and function, further 
highlighting the importance of T  cells are the key drivers of 
autoimmunity (19).
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FigURe 2 | T cell receptor (TCR) affinity for self dictates autoimmune T cell fate decisions. (A) TCR affinity for self-ligands and antigen availability dictate thymocyte 
fate choices during thymic selection. While autoimmune T cells can be selected with a range of TCR affinities, increased antigen availability and relatively stronger 
self-reactivity will preferentially result in the development of regulatory Foxp3+ T cells. (B) In peripheral tissues, self-reactive T cells are activated in response to 
increased concentrations of tissue antigen or highly immunogenic PTM antigens. While autoimmune T cells can possess a range of TCR affinities for self-antigen, 
lower affinity TCRs are less susceptible to peripheral mechanisms of tolerance. Ag, antigen; AICD, activation induced cell death; PTM, post-translational 
modification.
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HLA MeCHANiSMS OF AUTOiMMUNiTY

While the precise mechanisms that lead to loss of tolerance 
are multifaceted, HLA-DQ8 susceptibility implies that the 
stability of the tri-molecular complex is an important aspect 
that underlies autoimmune T  cell responses (Figure  1). The 
inbred NOD mouse model that possesses a single susceptible 
MHC class II allele I-Ag7 (I-Adα/I-Ag7β) has played a vital role 
in uncovering the mechanisms involved in the development 
of T1D. The structural similarities characterized by the shal-
low peptide-binding groove and the positive charge in the 
p9 peptide-binding pocket present in both I-Ag7 and human 
HLA-DQ8 point to a similar mechanism of autoimmune suscep-
tibility (22). The potential mechanisms include altered thymic 
selection due to peptide:MHC instability, and/or preferential 
binding and presentation of beta cell neo-antigens formed via 
post-transnational modifications in the periphery (Figure  1). 
Biochemical analyses revealed a propensity for both DQ8 and 
I-Ag7 to bind peptides with negatively charged C-terminus (48). 
In the case of celiac disease, which is also associated with DQ8 
susceptibility, gluten peptides targeted in disease have a negative 
charge at the C-terminus, which results in their stable binding to 
DQ8 (49). Although this observation suggests that key epitopes 
targeted in T1D should similarly contain negatively charged 
residues at p9, most beta cell antigenic epitopes lack this trait. 
Moreover, the dominant insulin epitope B:9-23 has a positively 
charged arginine at the C-terminus. Nevertheless, in support of 
this hypothesis, a mutation of InsB9–23 at presumptive p9 to a 
negatively charged glutamic acid increased the immunogenicity 
of the epitope and augmented the activation of insulin-specific 
T cells (50). In addition, a recent study has identified IAPP and 
Chromogranin A (ChgA) epitopes in beta cells that have been 
modified by peptide fusion to acquire a negative charge at the 

C-terminus (35). The modified peptides were significantly more 
immunogenic compared to unmodified wild-type epitopes. This 
groundbreaking finding offered a potential explanation for lack 
of efficient thymic selection under conditions of unstable tri-
molecular complex formation in the thymus, followed by prim-
ing and activation of autoreactive T cells in response to modified 
and stable peptide:MHC complexes in peripheral tissue.

THYMiC DeveLOPMeNT OF 
AUTOReACTive T CeLLS—wHAT iS THe 
eviDeNCe FOR ALTeReD THYMiC 
SeLeCTiON iN AUTOiMMUNiTY?

A body of evidence suggests an important role for altered thymic 
selection in the development of autoimmunity. Negative selec-
tion of autoimmune lymphocytes depends on sufficient amount 
of self-antigen available for presentation in the thymus, which 
is regulated by intra-thymic and extra-thymic sources, genetic 
variation in tissue antigen promoters, and effective antigen pres-
entation on certain HLA alleles (Figures 1 and 2A). Normally, 
tissue-specific antigens are presented by Autoimmune regulator 
(Aire) and Fezf2 expressing thymic medullary epithelial cells 
(mTECs) to aide in the deletion of self-reactive thymocytes 
(51, 52). MTECs can also transfer antigens, including beta cell 
antigens, to thymic resident dendritic cells (DCs), which in turn 
delete self-reactive T cells (53). Both DCs and Aire expressing 
mTECs are also essential in generating thymically derived 
Foxp3+ regulatory T  cells (Tregs), a critical population for 
the establishment and maintenance of self-tolerance (54, 55). 
Indeed, there appears to be a correlation between a reduction 
in DC numbers and residual β cell function in T1D subjects 
(56), while the NOD mouse exhibits an overall reduction in 
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DCs (57, 58). These observations suggest a relationship between 
self-tolerance and the absolute number of DCs present in the 
thymus and periphery. However, not all peripheral antigens are 
expressed by mTECs and, therefore, negative selection must also 
rely on peripheral antigen retrieval and delivery to the thymus 
by DCs. Importantly, studies have shown that the generation of 
thymic regulatory T cells by antigen-presenting mTECs and DCs 
early in life (neonatal) is critical in maintaining tolerance to self 
(55, 59). The idea of peripheral antigen exposure generating tis-
sue-specific Tregs was elegantly demonstrated by Scharschmidt 
et. al., where skin colonization of S. epidermidis allowed for 
the development and trafficking of microflora-specific Tregs to 
the skin. Using sphingosine-1-phosphate receptor antagonist, 
FTY720, the authors blocked Treg egress and pinpointed the 
thymus as the main source for Treg development (59).

There is no direct evidence for thymic selection deficiencies 
in individuals with T1D; however, several key observations 
suggest that there is a role for altered selection in the develop-
ment of autoimmune responses to insulin. The level of thymic 
insulin expression in humans is controlled in part by the 
polymorphic variable number of tandem nucleotide repeats 
found in the region proximal to the promoter region of the 
insulin gene (INS–VNTR) (60). It has been shown that VNTR I 
alleles express 26–63 tandem repeats while the VNTR III carries 
141–209 repeats. This difference translates into higher thymic 
transcript levels for the VNTR III individuals and a threefold 
to fourfold relative protection from T1D (61, 62). It appears 
that the number of repeats affects AIRE binding to the insulin 
promoter region, thus controlling transcriptional regulation of 
insulin in the thymus (51, 62, 63). In support of alterations in 
thymic selection, analysis of human peripheral blood from T1D 
patients and healthy controls revealed that subjects expressing 
the INS-VNTR I (T1D-predisposing) allele displayed elevated 
frequencies of high affinity proinsulin-specific T cells compared 
to INS–VNTR I HLA–DR4 subjects (64). INS-VNTR allelic 
expression appears to determine insulin reactivity rather than 
the total number of insulin-reactive T  cells, as both VNTR I 
and VNTR III groups displayed similar total number of insulin-
reactive T cells in peripheral blood (64). However, it has only 
been hypothesized that the differences in thymic insulin expres-
sion between VNTR I and VNTR III subjects influence positive 
and negative selections of insulin-reactive T cells, but this has 
never been formally demonstrated in vivo due to a lack of VNTR 
mouse models.

The role of thymic insulin expression in the establishment of 
central tolerance has been addressed in the NOD mouse model 
by both deletion and overexpression of insulin in the thymus. 
Deletion of insulin specifically in thymic Aire expressing mTECs 
enhanced diabetes development in both male and female mice 
(65). In addition, transgenic overexpression of proinsulin, but 
not GAD65 (66) or IGRP (67), significantly delayed (68) or 
prevented (69) diabetes progression in NOD mice. However, 
in these studies overexpression of insulin was targeted to all 
MHC class II expressing APCs and, therefore, the relative role 
of central compared to peripheral tolerance was not determined 
(68, 69). A more recent set of experiments determined that a 
narrow window of ectopic proinsulin expression in APCs (from 

birth until weaning) could prevent the development of diabetes 
in NOD mice (70). This timeframe fits with a previous study 
that showed organ specific autoreactive T cell escape from the 
thymus is greatest during the first 10 days of life in NOD mice 
(71). In the former study by Jhala et. al., protection was due 
in part to the deletion of insulin-specific T  cells, but also the 
inability of the remaining insulin-specific T  cells to respond 
to cognate antigen in periphery (70). In our recent study, we 
tested two TCRs (4-8 and 12-4.1, Table 1) with defined affinities 
for InsB9–23 for their ability to escape negative selection in the 
presence of ectopic overexpression of insulin. Surprisingly, we 
did not observe any increase in thymic deletion of the relatively 
high (4-8) or low (12-4.1) TCRs, although the increase in insulin 
expression did protect mice from developing autoimmune dia-
betes. Protection from disease appeared to be due to an increase 
in Treg development with a significant increase in thymic, 
splenic, and pancreas-residing insulin-specific Tregs (72). These 
findings pose an intriguing possibility that the amount or stabil-
ity of self-peptide:MHC complexes during thymic selection is 
more important for Treg development rather than deletion of 
self-reactive T cells (Figure 2A).

Chromogranin A is the only other currently known beta cell 
antigen necessary for the initiation of autoimmune diabetes 
in NOD mice; however, expression of ChgA in the thymus 
has not yet been detected (73). Therefore, tolerance to ChgA 
may rely in part on transport of antigen by peripheral DCs to 
the thymus. Whether islet-derived antigens are carried to the 
thymus to promote islet-specific Treg development has not been 
explored; nevertheless, the divergent TCR repertoire between 
islet-infiltrating effector and regulatory T cells suggests a lack of 
local Treg conversion in favor of thymic lineage being the pre-
dominant Treg population in the pancreas (74). The thymic Treg 
niche was thought to be highly specialized and restricted (75); 
however, a recent study has demonstrated that the manipulation 
of either the number of antigen-presenting cells or an increase 
in antigen exposure within the thymus can expand the Treg 
niche (54).

While highly self-reactive T cells are removed from the T cell 
repertoire by negative selection, the quality and the quantity 
of self-reactive Tregs that develop from the moderately self-
reactive thymocyte pool is a critical component of peripheral 
self-tolerance (Figure 2A). This idea is consistent with the obser-
vation that healthy individuals possess significant frequencies of 
self-reactive T cells, but are free from autoimmunity (76, 77). The 
escape of self-reactive T cells in itself is not just a byproduct of 
Treg development, but seems to serve an important immunologi-
cal purpose, since some level of self-reactivity is associated with 
enhanced responsiveness to foreign pathogens (78–80). It is likely 
that the fine balance between beneficial self-reactivity and self-
tolerance is uniquely perturbed in individuals with a susceptible 
genetic background. A slight change in thymic antigen expression 
or the overall stability of the tri-molecular complex could shift the 
T  cell development spectrum toward Treg insufficiency, rather 
than escape of higher affinity cells. Therefore, the ratio of beta 
cell antigen-reactive Tregs vs. effector or memory T cells might 
be a better predictive biomarker of autoimmunity than the overall 
frequencies of self-reactive cells.
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TABLe 1 | Pathogenicity of beta antigen-reactive T cells.

T cell receptor Restriction epitope Model infiltration % Diabetes Reference

Mouse

Chromogranin A (ChgA)
BDC2.5 IAg7 ChgA 359–372 Tg/Rg Insulitis 75/100 (83, 96)
BDC10.1 IAg7 ChgA 359–372 Rg Insulitis 100 (83)
insulin
12.4-1 IAg7 InsB 9–23 Tg/Rg Insulitis 5/50/72 (82, 83, 103, 104)
12.4-4 IAg7 InsB 9–23 Rg Insulitis 51 (82)
12.4-4m1 IAg7 InsB 9–23 Rg Peri-insulitis – (82)
8-1.1 IAg7 InsB 9–23 Rg Insulitis 27 (82)
P2 IAg7 InsB 9–23 Rg No – (82)
1-10 IAg7 InsB 9–23 Rg Peri-insulitis 48 (82)
4-8 IAg7 InsB 9–23 Rg Insulitis 59 (82)
3-4 IAg7 InsB 9–23 Rg Insulitis 21 (82)
G9C8 Kd/Db InsB 15–23 Tg Mild insulitis – (105)
2H6 IAg7 InsB 9–23 Tg Prevents diabetes – (97)
8F10 IAg7 InsB 9–23 Tg Insulitis 100 (100)

glutamic acid decarboxylase (gAD)
PA17.9G7 IAg7 GAD65 284–300 Rg no – (83)
PA15.14B12 IAg7 GAD65 206–220 Rg no – (83)
PA19.5E11 IAg7 GAD65 206–220 Rg Peri-insulitis – (83)
PA18.10E1 IAg7 GAD65 524–538 Rg n/d – (96)
PA18.9H7 IAg7 GAD65 524–538 Rg Peri-insulitis – (83)
IA4 IAg7 GAD65 217–236 Rg Peri-insulitis – (83)

Protein tyrosine phosphatase-like (iA2)
Phogrin 13 IAg7 IA2 640–659 Rg Peri-insulitis – (83)
Phogrin 18 IAg7 IA2 755–777 Rg Mild insulitis – (83)
10.23 IAg7 IA2 676–688 Rg Peri-insulitis – (83)

iselt-specific glucose-6-phosphatase (igRP)
8.3 Kd IGRP 206–214 Tg Insulitis 33 (95)

islet amyloid polypeptide (iAPP)
BDC6.9 IAg7 DLQTLAL-NAAR (Ins-IAPP fusion) Tg/Rg Insulitis 56 (35, 83)

Unknown islet antigen
NY4.1 IAg7 Tg/Rg Insulitis 72/60/71 (83, 95, 96)
AI4 Db Tg Insulitis 100 (98, 102)

Human

glutamic acid decarboxylase (gAD)
164 DR4 GAD65/67 555–567 Tg Insulitis – (101)
T1D4 DR4 GAD65 115–127 Rg Mild to no insulitis – (99)
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TCR PARAMeTeRS OF T CeLL 
PATHOgeNiCiTY

Autoimmune T  cell responses in general, as well as, the T  cell 
population that infiltrates the NOD pancreatic islets, are com-
posed of cells with different T  cell lineages, diabetogenic or 
regulatory capabilities, antigenic specificities, and TCR affinities 
(10, 81–83). All of these parameters are directly influenced by the 
TCR (84). Therefore, TCR sequence, specificity, and affinity hold 
the key to understanding the dynamics of diabetogenic T  cell 
responses during chronic progressive autoimmune disorders, 
such as T1D. The antigenic specificity of each TCR is dictated by 
the highly variable CDR3 region found within the α and β chains 
of the TCR heterodimer. The variability is the result of random 
genetic recombination events that bring together one of many 
variable (V) genetic segments with a joining (J) region. The large 
number of TCR sequences infiltrating an organ, their variability 
among individuals, and the heterodimeric structure of the TCR 

has been a significant roadblock in a comprehensive functional 
analysis of TCRs. In this section, we will summarize the studies 
that have investigated beta cell-specific TCR parameters for their 
ability to predict T cell pathogenic potential.

TCR Sequence As a Biomarker of 
Pathogenicity
One of the main hurdles in the identification and functional 
analysis of beta cell-reactive T cells in humans with T1D is the 
breadth of antigens and epitopes that are targeted among affected 
individuals. Peptide/MHC tetrameric reagents have been the 
most effective approach to identify T  cells with autoimmune 
potential; however, beta cell-reactive cells comprise a small 
population of peripheral blood, which makes such approaches 
technically challenging. Moreover, tetramers detect only the 
highest affinity subpopulation of T cells specific for a particular 
epitope, while the majority of autoimmune responder T cells are 
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often overlooked, as was effectively demonstrated in the mouse 
model of multiple sclerosis (85). As such, the field is currently 
lacking sufficient approaches to perform in depth tracking of 
antigen-specific T cells over time. Recent technological advances 
in high-throughput sequencing have opened new avenues for 
tracking self-reactive T  cells and could be easily applicable to 
studies of human tissue-infiltrating T  cells (86). A promising 
biomarker approach could be based on high-throughput TCR 
sequencing with focus on TCR motifs known to be associated 
with a specific target epitope. While human CD4 responses have 
proven to be highly diverse (87, 88), CD8 T cells are generally 
more clonotypic (86). A recent study was able to identify a public 
CDR3 motif associated with IGRP265–273 specific memory T cells in 
antibody-positive subjects and individuals diagnosed with T1D 
(89). Their findings suggest that dominant clonotypes persist in 
the same individual over time, and some TCR sequences could 
be shared among individuals. Interestingly, the public TCR motif 
was also identified in healthy controls, although it was restricted 
to the naïve T cell compartment. While promising as a potential 
biomarker, such deep sequencing approaches necessitate knowl-
edge of multiple TCR sequences associated with reactivity to 
several beta cell antigens.

Antigen Specificity of Pathogenic TCRs
Although, T  cells of multiple antigenic reactivities have been 
isolated from pancreatic islets of T1D donors (35–38), it does not 
necessitate that these cells are equally pathogenic or are actively 
involved in beta cell destruction. In order to identify potentially 
important initiating antigens in T1D, multiple beta cell proteins 
have been mutated on the NOD background, including IAPP, 
GAD65, insulin, IGRP, and islet Ag-2 (90–94). Interestingly, only 
the mutation of insulin and chromogranin resulted in protec-
tion against diabetes (73, 94). This suggests that insulin and 
chromogranin-reactive T cells are either critical for the initiation 
of autoimmunity, or are necessary for further propagation of the 
disease and the ultimate destruction of beta cells.

Over the years, pathogenic potential of T  cells reactive to 
various islet antigens was directly assessed in single TCR systems. 
Multiple mouse and a few human TCRs reactive against various 
beta cell proteins have been expressed in mice utilizing both 
transgenic and retrogenic approaches (82, 83, 95–105) (Table 1). 
Importantly, the observed tissue infiltration and spontaneous 
disease development were highly variable among the antigenic 
specificities (Table 1). Single TCR mice expressing either insu-
lin, chromogranin, or IGRP reactive mouse TCRs developed 
spontaneous diabetes, supporting the important pathogenic role 
for these reactivities in autoimmune diabetes. The majority of 
phogrin (IA2b) and I-A2 reactive mouse TCRs can induce islet 
infiltration, albeit without overt diabetes. Reactivity to multiple 
GAD epitopes, however, results in no disease and very limited 
infiltration for both human and mouse TCRs (Table 1). Based on 
these observations, it is likely that TCRs with select beta cell anti-
genic specificities are central to disease pathogenesis. Moreover, 
certain specificities might be important at different stages of 
disease, while others might not have a pathogenic but rather a 
regulatory effect, as was observed for GAD-reactive mouse T cells 
(106–109). Nevertheless, our ability to effectively extrapolate 

contribution of T  cell specificities to disease in a polyclonal 
multi-antigen specific environment by analyzing their behavior 
in single TCR systems is limited. NOD mouse models exhibit 
a single MHC II restriction; therefore, pathogenic responses to 
antigens presented in alternative susceptible HLA class II or class 
I alleles might be overlooked. Alternatively, it is possible that 
inflammation induced by T cells specific for the initiating antigen 
results in exposure or modification of secondary antigens, leading 
to pathogenic activation of a distinct repertoire of T cells specific 
to the newly displayed epitopes.

The molecular determinants of pathogenic TCRs in autoim-
munity are still largely unknown. Antigen availability, immuno-
genic modification of T cell epitopes, and TCR avidity could all 
shape the responses of beta cell-specific T cells (Figure 2). While 
it is still unclear whether antigen reactivity is an absolute pre-
requisite for tissue entry, several experimental approaches have 
shown that T cell accumulation in NOD pancreatic islets is driven 
by antigen recognition (110–112). The difference in antigen avail-
ability could explain relative importance of T cell specificities in 
the development and progression of autoimmunity. For example, 
reduced pathogenicity of GAD65-reactive T cells in NOD mouse 
model might be due to insufficient antigen availability in the 
pancreas. T cell reactivity to GAD65 and GAD67 can be observed 
early in NOD mice (113, 114), and antibodies specific for GAD 
are associated with progression to T1D in humans (115), which 
suggests a role for GAD reactivity in T1D. However, relative to 
other beta cell antigens, GAD T cells exhibit reduced pathogenic-
ity in mouse models compared to other antigens (Table 1), with 
only one study showing diabetogenic activity of GAD65-reactive 
T  cells (116). The rather mild pathogenic potential of GAD-
reactive T cells in NOD model could be attributed to relatively 
low levels of both GAD65 and GAD67 expressed in the mouse 
islets compared to rat or human pancreas (117). In support of 
this, overexpression of GAD65 under the rat insulin promoter 
enhanced pancreatic infiltration of GAD-reactive T cells (110). 
Although, this observation serves as a proof of principle for the 
importance of antigen availability for islet infiltration, overex-
pression of GAD65 in polyclonal NOD mice does not result in 
enhanced insulitis or diabetes (118). Therefore, other parameters 
in addition to islet antigen availability must regulate T cell patho-
genic potential.

TCR Affinity of Pathogenic T Cells
It is logical to assume that TCR affinity for antigen is associated 
with increased pathogenicity; however, that is not always the case, 
as we have shown for insulin-reactive TCRs. When eight NOD 
CD4 T cell-derived TCRs with variable affinity for insulin InsB9–23 
epitope were compared for their ability to drive spontaneous 
diabetes, high- and low-affinity T  cells were similarly patho-
genic (82) (Table 1). This is consistent with observations that a 
polyclonal autoimmune T  cell response can encompass a wide 
range of TCR affinities, and low-affinity T cells are important con-
tributors to the immune response (85, 119). However, it appears 
that there are certain functional distinctions between high- and 
low-affinity insulin-reactive T  cells. Compared to high-affinity 
TCRs, low-affinity TCRs were less sensitive to thymic negative 
selection pressures, exhibited lower frequencies of Foxp3+ T cell 
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development, and had a reduction in negative regulators of T cell 
activation (82). Their inability to reach the threshold for engage-
ment of regulatory elements could allow the low-affinity cells to 
exert effector functions and induce beta cell damage even under 
relatively low level of TCR stimulation (Figure 2B).

PeRiPHeRAL PRiMiNg OF AUTOiMMUNe 
T CeLLS

Molecular Mimicry
The mechanisms behind self-reactive T cell priming and ensu-
ing loss of self-tolerance are complex and poorly understood. 
Autoimmune T  cells exhibit a level of reactivity for self-
antigens, but are somehow able to escape negative selection 
in the thymus. In the periphery, these cells encounter cognate 
self-antigen with enough affinity and in the right context 
to become activated and cause tissue damage. In the case of 
T1D, studies have implicated molecular mimicry as a potential 
trigger, where beta cell-reactive T  cells could undergo initial 
priming and activation in response to structurally similar 
microbial epitopes (120) (Figure 1). While the direct evidence 
for molecular mimicry as a cause for autoimmunity is lacking, 
recent work exposing the previously unrecognized propensity 
of T cells for cross-reactivity reinforces molecular mimicry as 
a valid hypothesis (87, 121, 122). Islet-specific glucose-6-phos-
phatase catalytic subunit-related protein (IGRP)-reactive CD8 
T cells were shown to recognize a transporter protein peptide 
of Fusobacteria. Importantly, activation of IGRP-specific 
NY8.3 T  cells by Fusobacteria contributed to enhanced dia-
betes development (123). Microflora composition in general 
has been implicated in both human and mouse T1D. In mice, 
gender hormones influence microbiota and subsequent T1D 
development (124, 125), while autoantibody-positive children 
have distinct microbiota signatures (126). It has yet to be seen 
whether specific microbiota species drive activation of islet-
reactive T cells leading to beta cell destruction.

Unusual Orientation of the Tri-Molecular 
Complex
It is hard to reconcile exceedingly lower reactivity of autoimmune 
T  cells to their cognate antigen, compared to non-self-reactive 
TCRs, with their capacity to exert significant tissue damage. For 
example, insulin-reactive TCR 12-4.1 isolated from pancreatic 
islets of NOD mice exhibits barely detectable reactivity to insulin 
in  vitro (82), but causes spontaneous diabetes in 50–80% of 
mice (82, 103) (Table 1). As we alluded to earlier, lower affinity 
self-reactive TCRs are to some degree resistant to central and 
peripheral tolerance mechanisms, which might explain their 
ability to persist in an activated state (82). However, it is still 
unclear how self-reactive T cells with very low affinity for antigen 
are capable of causing beta cell destruction and highly penetrant 
diabetes. It is possible that the inherent unusual TCR structural 
and signaling characteristics are potential contributing factors 
that lead to unique responsiveness of autoimmune T cells. Crystal 
structures of autoimmune TCR:pMHC complexes have uncov-
ered an unconventional docking of self-reactive TCRs on pMHC 

(127–129). Moreover, self-reactive human and mouse TCRs form 
unusual disorganized T cell synapses, exhibit slower kinetics of 
TCR signaling pathways, and yet they are still able to undergo 
activation and exert effector functions (130, 131). Conceivably, 
these characteristics allow autoimmune T cell escape from thymic 
selection, while in the target tissue high level of antigen is suf-
ficient to elicit effector response.

Tissue-Specific PTM of Target epitopes
In the case of autoimmune T1D, beta cell fragility characterized 
by increased susceptibility to oxidative and ER stress may be 
a critical factor in loss of self-tolerance. A consequence of the 
cellular stress is the altered processing and changes in PTM of 
proteins. The changes in beta cell epitopes can lead to the genera-
tion of tissue-specific neo-antigens that are not expressed in the 
thymus. T cells specific for neo-antigens can evade mechanisms 
of central tolerance and initiate an autoimmune response once 
exposed to PTM antigens in periphery (Figure 1). Interestingly, 
insulin containing granules are highly immunogenic compared 
to artificially synthesized protein, which suggests some manner 
of PTM takes place within the NOD beta cell granules (10). In 
the case of the dominant insulin epitope targeted in the NOD 
mice (InsB9–23), the modification likely affects the MHC-binding 
residue of the peptide, resulting in stable binding of peptide in a 
register that is normally unstable and very likely presented at low 
levels in the thymus (10, 50, 132). In support of this idea, studies 
have shown that a mimotope of the InsB9–23 insulin peptide with 
a change in the MHC anchor residue (R22E) was highly stimula-
tory for insulin-reactive T cells, and R22E peptide:MHC tetram-
ers identified insulin-reactive cells within the islet-infiltrating 
T cell population (50, 133). Just in the last few years, it has been 
demonstrated that neo-antigenic PTM epitopes can form by 
fusion of either ChgA or IAPP peptide with a pro-insulin peptide 
(35). These fusion peptides were highly stimulatory to IAPP- and 
ChgA-reactive diabetogenic NOD T cell clones, as well as CD4 
T  cells isolated from the islets of T1D donors (35, 37). While 
the fusion peptides were identified in beta cells, it is unknown 
whether their formation is increased during inflammation or ER 
stress. More recent work has identified immunogenic peptides 
generated from an alternate insulin reading frame, the translation 
of which was further increased under ER stress (134). CD8 T cell 
clones isolated from peripheral blood of T1D subjects and specific 
for these defective ribosomal products (DRiPs) were able to cause 
direct beta cell damage in  vitro, supporting a potentially criti-
cal role for DRiPs in T1D. This is yet another PTM mechanism 
within a mounting evidence for connection between beta cell ER 
stress and generation of immunogenic PTMs. Nevertheless, it is 
still unknown exactly to what extent PMT antigen-specific T cells 
contribute to T1D.

At the moment, we have very little insight into the functional 
concentration of PTM antigens vs. wild type epitopes presented in 
the inflamed tissue, the relative frequency of PTM-reactive T cells 
vs. T  cells that recognize the wild-type epitopes, or how these 
parameters change over the course of chronic autoimmune tissue 
damage. It is likely that some T cells have a restricted specificity 
to either PTM or wild-type antigens, while others respond to both 
with different levels of activation. Addressing these questions 
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will lead to our better understanding of the triggers that induce 
autoimmune response, as well as identification of the initiating 
antigens and the key pathogenic T cell populations. It is currently 
unknown whether tissue-specific PTM antigens are transported 
and expressed in the thymus. In order to model how the presence 
of post-translationally modified peptides in the thymus could 
alter the selection of insulin-reactive TCRs (4-8 and 12-4.1) that 
normally escape negative selection, we ectopically expressed the 
R22E insulin mimetope in bone marrow-derived APCs (72). In 
the presence of R22E, the high-affinity 4-8 TCR bearing thymo-
cytes were efficiently deleted, while the low affinity 12-4.1 popula-
tion was affected to a lesser degree, albeit still showing an increase 
in negative selection based on Annexin V staining. Nevertheless, 
the ectopic expression of R22E significantly reduced peripheral 
T cells and halted any islet infiltration in both the 4-8 and 12-4.1 
retrogenic mice. These results suggest that unlike expression of 
wild-type antigen, expression of PTM epitopes in the thymus 
results in efficient deletion of autoimmune T cells.

Accumulating evidence indicates PTMs as the key to our 
understanding of autoimmune disease development (35, 
135–140). Importantly, T  cells specific for PTM GAD65 and 
ChgA epitopes have been identified in individuals diagnosed 
with T1D (35, 139). Although the evidence so far is limited, PTM 
epitope expression is likely restricted to peripheral tissue and is 
absent from the thymus. While wild-type self-proteins presented 
in the thymus successfully limit development of high-affinity 
self-reactive T cells, lower affinity T cells evade central tolerance 
to be able to respond to PTM antigens in periphery (Figures 1 
and 2B). Moreover, it is conceivable that the lack of PTM antigen 
expression in the thymus could lead to holes in the Treg reper-
toire. While multiple studies have shown that modification of 
beta cell epitopes increases their immunogenicity, it is unclear 
what proportion of antigens in the pancreas has been modified. 
Presumably, relatively low concentrations of immunogenic PTM 
epitopes are sufficient to prime autoimmune T cells, while pres-
ence of wild-type epitope is adequate for propagation of chronic 
autoimmune response. Further biochemical analyses of the pan-
creatic beta cells are necessary to identify the predominant PTM 
epitopes and the stress conditions that lead to their development.

HLA-HUMANiZeD MiCe TO MODeL T1D 
ANTigeN ReSPONSeS

While we have learned a great deal from the NOD mouse, there 
are certain limitations to the conclusions and parallels we can 
draw to human T1D. In order to improve the model, several 
HLA transgenic mouse strains expressing susceptible or pro-
tective alleles have been generated, some of these on the NOD 
background. Surprisingly, NOD mice expressing susceptible DQ8 
or DR4 alleles do not develop spontaneous diabetes (141–143). 
However, HLA-DQ8 humanized mice do develop spontaneous 
autoimmune cardiomyopathy (144). Still, both DR4 and DQ8 
alleles support the development of beta cell-reactive autoim-
mune T cells but require an additional trigger to initiate beta cell 
targeted autoimmunity. When DR4 and DQ8 mice were crossed 
with transgenic mice expressing B7.1 co-stimulatory molecule on 

beta cells, both HLA-humanized strains developed spontaneous 
diabetes (141). The main utility for HLA-humanized mice has 
been realized by performing systematic identification of the key 
antigenic epitopes presented on human HLAs (24). Future stud-
ies should be extended to assess the in vivo functional potential 
of human autoimmune TCRs specific for key immunogenic 
epitopes. To date only one beta cell antigen-reactive human TCR 
transgenic mouse with specificity for GAD65 has been described 
(101). In vivo functional analysis of TCRs, and human TCRs in 
particular, has been hindered due to limited access to patient sam-
ples, labor, and time involved in generating TCR transgenic mice. 
We have overcome the limitation of TCR transgenic system by 
utilizing a TCR retrogenic approach that allows rapid functional 
analysis of multiple TCRs through retroviral gene delivery (110, 
145, 146). Using this approach, we have expressed a GAD65115–127 
reactive TCR isolated from peripheral blood of an individual diag-
nosed with T1D (99). Although we observed robust development 
of GAD-reactive T cells in this system, similar to the transgenic 
expression, we detected a low level of islet infiltration. Future 
analyses should be expanded to other beta cell protein epitopes 
targeted in human T1D, including PTM epitopes. The human-
ized TCR retrogenic approach will allow efficient and relatively 
high-throughput analysis of autoimmune antigens important in 
human disease, and can be utilized as a platform for develop-
ment of antigen-specific immunotherapies. It is likely that many 
questions pertinent to our understanding of autoimmune T cell 
development and pathogenicity will be eventually addressed in 
the context of human susceptible HLA alleles and human TCRs.

CONCLUSiON

The biology of low-affinity autoimmune T cells has been perplex-
ing due to the seeming contradiction between suboptimal in vitro 
responses and robust in vivo pathogenicity. In many cases, self-
reactive autoimmune T cells do not follow the dogma prescribed 
by studies performed with T cells specific for infectious or model 
antigens. In addition to unusual TCR:pMHC interactions and 
downstream signaling, autoimmune antigens themselves can have 
atypical characteristics. Over the years, it has become clear that 
antigens targeted in autoimmunity, and particularly in T1D, are 
often modified versions of self-peptides that are presented during 
thymic selection. These exceptions to the rule characteristic of 
autoimmune T cell responses are often centered on the stability 
of the tri-molecular complex as a master switch from tolerance 
to autoimmunity.
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