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Abstract

In evolutionary genomics, it is fundamentally important to understand how characteristics of genomic sequences, such as
gene expression level, determine the rate of adaptive evolution. While numerous statistical methods, such as the
McDonald–Kreitman (MK) test, are available to examine the association between genomic features and the rate of
adaptation, we currently lack a statistical approach to disentangle the independent effect of a genomic feature from the
effects of other correlated genomic features. To address this problem, I present a novel statistical model, the MK
regression, which augments the MK test with a generalized linear model. Analogous to the classical multiple regression
model, the MK regression can analyze multiple genomic features simultaneously to infer the independent effect of a
genomic feature, holding constant all other genomic features. Using the MK regression, I identify numerous genomic
features driving positive selection in chimpanzees. These features include well-known ones, such as local mutation rate,
residue exposure level, tissue specificity, and immune genes, as well as new features not previously reported, such as gene
expression level and metabolic genes. In particular, I show that highly expressed genes may have a higher adaptation rate
than their weakly expressed counterparts, even though a higher expression level may impose stronger negative selection.
Also, I show that metabolic genes may have a higher adaptation rate than their nonmetabolic counterparts, possibly due
to recent changes in diet in primate evolution. Overall, the MK regression is a powerful approach to elucidate the
genomic basis of adaptation.

Key words: adaptive evolution, positive selection, McDonald–Kreitman test, statistical inference, causal inference.

Introduction
Understanding the genetic basis of positive selection is a fun-
damental problem in evolutionary biology. Numerous statis-
tical approaches have been developed to detect loci under
positive selection. A popular framework is codon substitution
models that seek to infer positively selected genes solely from
interspecies sequence divergence (Goldman and Yang 1994;
Muse and Gaut 1994; Yang et al. 2000). By contrasting the
rate of nonsynonymous substitutions (dN) against the rate of
synonymous substitutions (dS), codon substitution models
can identify positively selected genes with a dN/dS ratio
greater than 1. However, because negative (purifying) selec-
tion can dramatically reduce dN/dS ratios, codon substitution
models may be underpowered to detect genes that experi-
enced both positive selection and strong negative selection
(Hughes 2007).

Unlike codon substitution models, the McDonald–
Kreitman (MK) test utilizes both interspecies divergence
and intraspecies polymorphism to elucidate positive selection
in a species of interest (McDonald and Kreitman 1991; Fay et
al. 2001; Smith and Eyre-Walker 2002). By contrasting the
levels of divergence and polymorphism at functional sites

and putatively neutral sites, the MK test seeks to identify
positively selected genes that show an excess of interspecies
divergence at functional sites. Because highly deleterious
mutations can neither segregate nor reach fixation in a pop-
ulation, the MK test is intrinsically robust to the presence of
strong negative selection. On the other hand, weak negative
selection may lead to biased results in the MK test because
mutations under weak selection can segregate in a popula-
tion but not reach fixation. To address this problem, several
recent studies have extended the MK test to account for the
effects of weak negative selection on intraspecies polymor-
phism (Eyre-Walker and Keightley 2009; Messer and Petrov
2013; Galtier 2016; Haller and Messer 2017; Uricchio et al.
2019), ensuring that the inference of positive selection is
not biased by the presence of weak selection. Thus, the MK
test and its extensions are powerful methods to disentangle
positive selection from ubiquitous negative selection.

Because MK-based methods use relatively sparse diver-
gence and polymorphism data from closely related species,
they may be underpowered to pinpoint individual genes un-
der positive selection. To boost statistical power, MK-based
methods often are applied to a collection of genes or
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nucleotide sites with similar genomic features. Using this
pooling strategy, previous studies have identified numerous
genomic features associated with positive selection in
Drosophila and primates. The features associated with posi-
tive selection in Drosophila include local mutation rate
(Campos et al. 2014; Castellano et al. 2016; Rousselle et al.
2020), local recombination rate (Marais and Charlesworth
2003; Campos et al. 2014; Castellano et al. 2016), gene expres-
sion specificity (Fraı̈sse et al. 2019), residue exposure to sol-
vent (Moutinho, Trancoso et al. 2019), X linkage (Avila et al.
2015; Campos et al. 2018), and sex-biased expression
(Pröschel et al. 2006; Avila et al. 2015; Campos et al. 2018).
The features associated with positive selection in primates
include protein disorder (Afanasyeva et al. 2018), virus–host
interaction (Enard et al. 2016; Uricchio et al. 2019), protein–
protein interaction (PPI) degree (Luisi et al. 2015), and X
linkage (Hvilsom et al. 2012).

While existing MK-based methods can identify genomic
features associated with the signatures of positive selection,
they may not be able to distinguish genomic features inde-
pendently affecting the rate of adaptive evolution from spu-
rious features without independent effects on adaptation
(Moutinho, Trancoso et al. 2019; Fraı̈sse et al. 2019). For in-
stance, MK-based methods often are applied to one genomic
feature at a time. If a genomic feature with an independent
effect on the rate of adaptive evolution is strongly correlated
with a second feature without an independent effect, MK-
based methods may report a spurious association between
the second feature and adaptive evolution.

Before the current study, two simple heuristic methods
have been previously used to estimate the independent effect
of a genomic feature on the rate of adaptation by controlling
for other potentially correlated features. If we are interested in
estimating the independent effect of a gene-level feature,
such as tissue specificity, we may estimate the rate of adap-
tion at the gene level and then fit a standard linear regression
model, in which we treat the feature of interest and correlated
genomic features as covariates and treat the gene-level rate of
adaptation as a response variable (Luisi et al. 2015; Castellano
et al. 2016; Moutinho, Trancoso et al. 2019; Fraı̈sse et al. 2019).
The regression coefficient associated with the feature of in-
terest can be interpreted as its independent effect on positive
selection, holding constant all other genomic features.
Although this strategy is powerful and elegant, it cannot be
applied to species with low levels of polymorphism, such as
primates, due to the challenge of estimating the rate of ad-
aptation at the gene level. Alternatively, we may first stratify
genes into a “treatment” group and a “control” group based
on the genomic feature of interest. Then, we may use statis-
tical matching algorithms to match each gene from the
“treatment” group with a gene of similar characteristics
from the “control” group. A significant difference in the
rate of adaptation between the two groups of matched genes
indicates that the feature of interest has an independent ef-
fect on positive selection. Although this method has been
successfully used in previous studies (Enard et al. 2016;
Campos et al. 2018; Castellano et al. 2019), it is difficult to
match genes when there are a large number of genomic

features to control for. Therefore, we currently lack a general
and powerful statistical framework to estimate the indepen-
dent effects of genomic features on positive selection by
adjusting for a large number of correlated genomic features.

In the current study, I present a novel statistical method,
the MK regression, to estimate the independent effects of
genomic features on the rate of adaptive evolution. The
MK regression is a hybrid of the MK test and the generalized
linear regression. Unlike standard linear regression models
and statistical matching algorithms, the MK regression can
control for a large number of correlated genomic features and
is applicable to species with a low level of polymorphism. To
the best of my knowledge, the MK regression is the first
evolutionary model tailored to characterize the independent
effects of genomic features on adaptive evolution. Using syn-
thetic data, I show that the MK regression can unbiasedly
estimate the independent effect of a genomic feature even
when it is strongly correlated with another genomic feature.
Applying the MK regression to polymorphism and divergence
data in the chimpanzee lineage, I corroborate previous find-
ings that local mutation rate, residue exposure level, tissue
specificity, and immune system genes are key determinants of
positive selection in protein-coding genes. In addition, I show
that highly expressed genes and metabolic genes may have a
higher rate of adaptive evolution than other genes after con-
trolling for several correlated genomic features, which has not
been widely reported in previous studies. Taken together, the
MK regression is a valuable addition to evolutionary biolo-
gists’ arsenal for investigating the genetic basis of adaptation.

Results

The MK Regression is a Generalized Linear Model
Tailored to Estimate the Effects of Genomic Features
on Positive Selection
The key idea behind the MK regression is to model the site-
wise rate of adaptive evolution as a linear combination of
local genomic features (fig. 1). I use xa, the relative rate of
adaptive substitutions at a functional nucleotide site with
respect to the average substitution rate at neutral nucleotide
sites, as a measure of the rate of adaptation (Booker et al.
2017; Moutinho, Bataillon et al. 2019). Unlike previous MK-
based models that treat xa as a gene-level measure, I treat xa

as a measure of adaptive evolution at an individual nucleotide
site and assume that it can be predicted from local genomic
features. To integrate the effects of multiple features on the
rate of adaptive evolution, I assume that xa, in a site-wise
manner, is a linear combination of local genomic features,
such as local mutation rate, local recombination rate, and
gene expression level. For each genomic feature, the MK re-
gression seeks to estimate a regression coefficient indicating
its independent effect on the rate of adaption, holding con-
stant all other genomic features.

Specifically, the MK regression consists of two compo-
nents: a generalized linear model and an MK-based likelihood
function (fig. 1). First, I assume that xa, in a site-wise manner,
is a linear combination of local genomic features followed by
an exponential transformation,
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xa ¼ expðb0 þ b1X1 þ � � � þ biXi þ � � � þ bMXMÞ:

In this equation, Xi is the ith feature at a functional
nucleotide site; b0 is an intercept indicating the baseline
rate of adaptive evolution when all genomic features are
equal to 0; bi is a regression coefficient indicating the ith
feature’s effect on the rate of adaptation; M is the total
number of genomic features; exp is an exponential inverse
link function which ensures xa is positive. If bi is statisti-
cally different from 0, I consider that feature i may have an
independent effect on adaptation after adjusting for the
other features. Similarly, to accommodate the effects of
local genomic features on polymorphism data, I assume
that the probability of observing intraspecies polymor-
phism at a functional nucleotide site, Pfunc, is another linear
combination of local genomic features followed by a logis-
tic transformation (fig. 1).

Second, in the component of MK-based likelihood func-
tion (fig. 1), I combine xa and Pfunc at every functional site
with two neutral parameters to calculate the probability of
observed polymorphism and divergence data at both func-
tional and neutral sites, which allows for a maximum like-
lihood estimation of model parameters. Finally, I use the
Wald test to examine whether the estimated regression
coefficient, bb i, is significantly different from 0 for each fea-
ture i. It is worth noting that, unlike the standard linear
regression, the MK regression does not assume that re-
sponse variables, that is, polymorphism and divergence
data, follow a normal distribution. Instead, the likelihood
function of the MK regression uses the Jukes–Cantor sub-
stitution model (Jukes and Cantor 1969) and the Bernoulli
distribution to describe the generation of divergence and

polymorphism in a site-wise manner. Thus, the MK regres-
sion can naturally describe the evolution of functional and
neutral sites.

Joint Analysis of Multiple Features Distinguishes
Independent Effects from Spurious Associations
I conducted two simulation experiments to assess the MK
regression’s validity and its power to infer the independent
effects of genomic features on the rate of adaptive evolution.
The simulation experiments consisted of two steps. First, I
randomly sampled genomic features from a bivariate normal
distribution at each functional site. Second, I generated syn-
thetic polymorphism and divergence data at both functional
and neutral sites based on the MK regression model.

In the first simulation experiment, I assumed that there
were two genomic features of interest. The first genomic
feature had an independent effect on the rate of adaptive
evolution, and its regression coefficient, b1, was equal to 1. On
the other hand, the second feature had no independent effect
on selection. Thus, its regression coefficient, b2, was equal to 0
by definition. The other parameters required for the simula-
tion experiment were chosen to ensure that genome-wide
levels of polymorphism and divergence are comparable be-
tween synthetic data and empirical data from chimpanzees
(see details in the Materials and Methods section). To sys-
tematically assess the MK regression’s performance with re-
spect to various degrees of correlation between genomic
features, I generated four sets of synthetic data with different
correlation coefficients between features (0.0, 0.2, 0.4, and 0.6).
In each synthetic data set, I generated 10 independent repli-
cates each of which consisted of 10 Mb functional sites and
10 Mb neutral sites.

FIG. 1. Schematic of the MK regression. The MK regression consists of two components: a generalized linear model and a McDonald–Kreitman-
based likelihood function. First, I assume that, in a site-wise manner, the rate of adaptive evolution (xa) at a functional site is a linear combination
of local genomic features followed by an exponential transformation, in which regression coefficient bi indicates the effect of the ith feature on
adaptive evolution. Similarly, I assume that the probability of observing a SNP (Pfunc) at the same functional site is another linear combination of
the same set of genomic features, followed by a logistic transformation. Second, in the McDonald–Kreitman-based likelihood function, I combine
xa and Pfunc at every functional site with two neutral parameters, Dneut and Pneut, to calculate the probability of observed divergence and
polymorphism data given model parameters. Dneut and Pneut denote the expected number of substitutions and the probability of observing a SNP
at a neutral site, respectively. Dfunc denotes the expected number of substitutions at a functional site.
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I applied two different versions of the MK regression to the
synthetic data. The first version was the simple MK regression
that analyzed one genomic feature at a time, which was
designed to mimic previous MK-based methods. The second
one was the multiple MK regression that analyzed two fea-
tures simultaneously. As shown in figs. 2A and 2B, both the
simple MK regression and the multiple MK regression pro-
duced unbiased estimates of regression coefficients when
there was no correlation between features. However, the sim-
ple MK regression frequently estimated that bb2 was positive
when the two features were correlated with each other,
whereas the true value of b2 was equal to 0. On the other
hand, the multiple MK regression always produced unbiased
estimates of regression coefficients regardless of the degree of
correlation between features.

In the second simulation experiment, I evaluated the ex-
tent to which the correlation between two causal features
complicates the estimation of their independent effects. I set
the regression coefficients of the two features to b1 ¼ 1 and
b2 ¼ �0:2, respectively. Then, I followed the same procedure
described in the first simulation experiment to generate syn-
thetic data. As shown in figs. 2C and 2D, the multiple MK
regression accurately estimated regression coefficients with-
out any noticeable bias, whereas the simple MK regression
produced biased results when the two features were corre-
lated with each other. Importantly, when the correlation was
strong, the simple MK regression estimated that bb2 was pos-
itive while the true value of b2 was equal to �0.2.

Furthermore, using the same synthetic data, I evaluated
the performance of a previous MK-based method (Smith and
Eyre-Walker 2002; Fraı̈sse et al. 2019), which can only analyze
one feature at a time. For each genomic feature, I stratified
functional sites into two equal-sized groups. The first group
included the top half of functional sites with higher feature
value, whereas the second group included the bottom half of
functional sites with lower feature value. I estimated xa for
each group separately. Then, I calculated Dxa, that is, the
difference in xa between the two groups of functional sites. If
the previous MK-based method can unbiasedly estimate the
effects of genomic features, the sign of Dxa should match the
sign of the true regression coefficient. However, the previous
MK-based method frequently produced wrong estimates of
the sign of Dxa when genomic features were strongly corre-
lated with each other (supplementary fig. 1, Supplementary
Material online). In summary, it is critical to jointly analyze
multiple genomic features for an unbiased estimation of their
independent effects on adaptive evolution.

The Multiple MK Regression Elucidates Genomic
Determinants of Positive Selection in Chimpanzees
I investigated positive selection in chimpanzee autosomal
genes using the MK regression. Because gene annotations
were of high quality in the human genome, I converted 4-
fold degenerate (4D) and 0-fold degenerate (0D) sites anno-
tated in dbNSFP (Liu et al. 2013, 2016) from the human ge-
nome to the chimpanzee genome. Because all point
mutations at 4D sites are synonymous, I assume that they
are putatively neutral. On the other hand, because all point

mutations at 0D sites are nonsynonymous, I assume that they
are potentially functional. I obtained a genome-wide map of
single nucleotide polymorphisms (SNPs) in 18 central chim-
panzee (Pan troglodytes troglodytes) individuals (de Manuel
et al. 2016), and inferred ancestral alleles using a recon-
structed chimpanzee ancestral genome (Herrero et al. 2016;
Yates et al. 2020). Because the SNP data set consisted of
samples from both females and males, the number of sam-
pled sequences was different between autosomes and sex
chromosomes. Thus, I retained only autosomal genes for
downstream analysis. To mitigate the impact of weak nega-
tive selection on the inference of positive selection, I filtered
out SNPs with a derived allele frequency lower than 50% for
downstream analysis. In addition, I reconstructed fixed sub-
stitutions at 4D and 0D sites in the chimpanzee lineage by
comparing the reconstructed ancestral genome with the
chimpanzee reference genome. I estimated that the propor-
tion of adaptive nonsynonymous substitutions (a) was equal
to 15.3% in chimpanzee autosomal genes, which is similar to
the estimate in a previous study (Tataru et al. 2017).

I collected six genomic features in chimpanzee autosomal
genes, including local mutation rate, local recombination rate,
residue exposure level, gene expression level, tissue specificity,
and the number of unique protein–protein interaction part-
ners per gene (PPI degree). Specifically, I obtained a
chimpanzee-based map of local recombination rates from a
previous study (Auton et al. 2012) and constructed a map of
local mutation rates using putatively neutral substitutions in
the chimpanzee lineage. Because functional genomic data
were more complete and of higher quality in humans than
in chimpanzees, I obtained tissue-based gene expression data
from the Human Protein Atlas (Uhlen et al. 2015) and utilized
the expression level averaged across all tissues and a summary
statistic, tau (Yanai et al. 2005), as measures of gene expres-
sion level and tissue specificity, respectively. I also obtained
predicted levels of residue exposure to solvent and experi-
mentally determined PPI degrees in the human genome from
previous studies (Wong et al. 2011; Luck et al. 2020). I con-
verted human-based annotations of gene expression level,
tissue specificity, residue exposure level, and PPI degree to
the chimpanzee genome (panTro4) using liftOver
(Haeussler et al. 2019).

I first employed the simple MK regression to analyze the
effect of one genomic feature at a time, with no attempt to
distinguish independent effects from spurious associations.
Because the MK regression used a logarithmic link function
for xa, I explored if a logarithmic transformation of genomic
features can improve model fitting. I found that the logarith-
mic transformation improved the fitting of the simple MK
regression for all features but tissue specificity (supplementary
table 1, Supplementary Material online). Therefore, I applied
the logarithmic transformation to all features except tissue
specificity throughout this study. In the simple MK regression,
the regression coefficients of local mutation rate, residue ex-
posure level, and PPI degree were significantly higher than 0,
whereas the regression coefficient of gene expression level was
significantly lower than 0 (fig. 3A and supplementary table 2,
Supplementary Material online). On the other hand, local
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recombination rate and tissue specificity were not signifi-
cantly associated with the rate of adaptive evolution in the
simple MK regression (fig. 3A and supplementary table 2,
Supplementary Material online).

As discussed in the simulation experiments, the simple MK
regression may produce biased estimates of regression coef-
ficients if genomic features are correlated with each other. To
test if this was the case in the chimpanzee data, I used the
multiple MK regression to analyze the effects of the six geno-
mic features simultaneously. Surprisingly, while local muta-
tion rate, local recombination rate, and residue exposure level
showed similar effects in the multiple MK regression, the
regression coefficients of the other features were different
between the multiple MK regression and the simple MK re-
gression (fig. 3B and supplementary table 3, Supplementary
Material online). Specifically, the regression coefficient of PPI
degree was not significant in the multiple MK regression (bb ¼
0.002; P-value ¼ 0.975), whereas the same coefficient was
significant in the simple MK regression (bb ¼ 0.460; P-value
¼ 3.178� 10�4). The coefficient of gene expression level was
significantly higher than 0 in the multiple MK regression (bb ¼
0.347; P-value¼ 6.674� 10�12), whereas the same coefficient
was negative in the simple MK regression (bb ¼ �0.310; P-
value ¼ 3.534 � 10�10). Also, the regression coefficient of

tissue specificity was significantly higher than 0 in the multiple
MK regression (bb ¼ 1.168; P-value¼ 6.394� 10�31) but not
in the simple MK regression (bb ¼ 0.157; P-value ¼ 0.622).

To examine whether these results were robust to different
metrics of tissue specificity, I utilized the negative value of Hg
(Kryuchkova-Mostacci and Robinson-Rechavi 2017) as an al-
ternative metric of tissue specificity. Similar to tau, a higher
value of negative Hg indicates a higher level of tissue specific-
ity. I observed qualitatively similar regression coefficients
when I replaced tau with negative Hg in the multiple MK
regression (supplementary fig. 2, Supplementary Material on-
line), although the regression coefficient of local mutation
rate was not statistically significant when negative Hg was
used. Thus, the estimated effects of genomic features may
be robust to different metrics of tissue specificity.

To investigate whether correlations between genomic fea-
tures could explain the differences in estimated coefficients
between the multiple and the simple MK regression, I calcu-
lated the Kendall rank correlation coefficient for all pairs of
genomic features (fig. 3C and supplementary table 4,
Supplementary Material online). I found that local mutation
rate, local recombination rate, and residue exposure level
were weakly correlated with other features, which may ex-
plain why the regression coefficients of these features were
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FIG. 2. Simulation results. (A) Estimates of regression coefficients in the simple MK regression. The true coefficients are b1 ¼ 1 and b2 ¼ 0. (B)
Estimates of regression coefficients in the multiple MK regression. The true coefficients are b1 ¼ 1 and b2 ¼ 0. (C) Estimates of regression
coefficients in the simple MK regression. The true coefficients are b1 ¼ 1 and b2 ¼ �0:2. (D) Estimates of regression coefficients in the multiple
MK regression. The true coefficients are b1 ¼ 1 and b2 ¼ �0:2. In each plot, dots and error bars indicate the means and the 2-fold standard
deviations of estimated coefficients across 10 independent replicates, respectively.
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consistent between the multiple and the simple MK regres-
sion. In contrast, gene expression level and tissue specificity
showed a strong negative correlation, which may cause spu-
rious associations in the simple MK regression. I also found
that PPI degree was correlated with gene expression level and
tissue specificity, although the correlations were to a lesser
extent compared with the correlation between gene expres-
sion level and tissue specificity. Thus, the observed association
of PPI degree with positive selection in the simple MK regres-
sion could be due to its correlation with gene expression level
and/or tissue specificity.

Statistical Matching Analysis Confirms Genomic
Determinants Identified by the Multiple MK
Regression
I used statistical matching algorithms to corroborate the
results of the multiple MK regression. First, I verified whether
the association between PPI degree and the rate of adaptive
evolution could be explained away by controlling for gene
expression level and tissue specificity. I stratified protein-
coding genes into two groups with different PPI degrees, in
which 1,556 genes with at least 10 protein interaction part-
ners were assigned to the high PPI-degree group whereas

8,471 genes with no more than one interaction partner
were assigned to the low PPI-degree group. Without control-
ling for gene expression level and tissue specificity, the high
PPI-degree group had a higher xa than the low PPI-degree
group (supplementary fig. 3A, Supplementary Material on-
line), but the difference in xa was not significant (P-value ¼
0.146; two-tailed permutation test), possibly due to a reduc-
tion of sample size in the stratified analysis. Then, using the
default propensity score matching algorithm in MatchIt (Ho
et al. 2011), I matched each gene from the high PPI-degree
group with a gene of similar expression level and tissue spe-
cificity from the low PPI-degree group. In the matched data,
xa was not different between the high-PPI and low-PPI
groups (supplementary fig. 3B, Supplementary Material on-
line). I observed similar results using two alternative cutoffs, 5
and 20, for the high PPI-degree group (supplementary fig. 4,
Supplementary Material online). Thus, PPI degree is unlikely
to be a genomic determinant of positive selection in
chimpanzees.

I also verified the effect of tissue specificity on the rate of
adaptation after adjusting for gene expression level. Due to
the strong negative correlation between expression level and
tissue specificity (supplementary fig. 5, Supplementary
Material online), MatchIt returned few matched genes
when I attempted to control for expression level. Therefore,
I implemented a different matching approach. By closely ex-
amining the relationship between expression level and tissue
specificity, I found that the variation in tissue specificity was
high among highly expressed genes (supplementary fig. 5,
Supplementary Material online). Thus, I stratified 737 highly
expressed genes (gene expression level > 30) into two equal-
sized groups based on the ranking of their tissue specificity. As
shown in fig. 4A, highly expressed genes with high tissue
specificity had a significantly higher xa than their counter-
parts with low tissue specificity (P-value ¼ 0.001; two-tailed
permutation test). Therefore, my gene matching analysis con-
firms the positive effect of tissue specificity on the rate of
adaptation in the multiple MK regression.

As an alternative analysis to infer the independent effect of
tissue specificity after controlling for expression level, I divided
genes into 10 equal-sized groups (deciles) based on their ex-
pression levels. In each decile, I further divided genes into two
equal-sized subgroups based on the ranking of their tissue
specificity within the decile. As expected, the subgroup with
high tissue specificity had a significantly higher xa than the
subgroup with low tissue specificity in the decile with the
highest expression level (supplementary table 5,
Supplementary Material online), which confirms the positive
effect of tissue specificity on adaptation rate in highly
expressed genes. The difference in xa was not significant in
other deciles, possibly due to the low variation in tissue spe-
cificity in lowly expressed genes (supplementary fig. 5,
Supplementary Material online).

I observed that the variation in expression level was high
among genes with high tissue specificity (supplementary fig. 5,
Supplementary Material online). To verify the positive effect
of gene expression level after adjusting for tissue specificity, I
stratified 993 tissue-specific genes (tau > 0.85) into two
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FIG. 3. Effects of genomic features on the rate of adaptive evolution.
(A) Estimated coefficients of genomic features in the simple MK re-
gression. (B) Estimated coefficients of genomic features in the multi-
ple MK regression. In each bar plot, error bars indicate 95%
confidence intervals while one, two, and three asterisks indicate
0.01 � P-value < 0.05, 0.001 � P-value < 0.01, and P-value <
0.001, respectively. (C) Correlations between genomic features.
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approximately equal-sized groups based on the ranking of
their expression levels. The first group consisted of the top
495 tissue-specific genes with higher expression level, whereas
the second group consisted of the bottom 498 tissue-specific
genes with lower expression level. The mean expression levels
were equal to 5.905 and 0.368 in the two gene groups, which
corresponds to a 16-fold difference in mean expression level.
As shown in fig. 4B, tissue-specific genes with a high expres-
sion level had a significantly higher xa than their lowly
expressed counterparts (P-value ¼ 0.002; two-tailed permu-
tation test), which confirms the positive effect of gene expres-
sion level on the rate of adaptive evolution in the multiple
MK regression.

As an alternative analysis to infer the independent effect of
gene expression level after controlling for tissue specificity, I
divided genes into 10 deciles based on their tissue specificity.
In each decile, I further divided genes into two equal-sized
subgroups based on the ranking of their expression levels
within the decile. As expected, I observed that the subgroup
with a high expression level had a significantly higher xa than
its counterpart in the decile with the highest tissue specificity
(supplementary table 6, Supplementary Material online). To a
lesser extent, xa was slightly lower in the subgroup with a
high expression level than the subgroup with a low expression
level in the 7th decile (supplementary table 6, Supplementary
Material online). The difference in xa was not statistically

significant in other deciles, possibly due to the low variation
in expression level among genes with low tissue specificity
(supplementary fig. 5, Supplementary Material online). On
average, highly expressed genes showed a higher rate of adap-
tive evolution than their lowly expressed counterparts.

Also, I used phyloP scores (Pollard et al. 2010; Hubisz
et al. 2011) to examine the effects of gene expression level
and tissue specificity on the rate of protein evolution. After
controlling for gene expression level, phyloP scores increased
with decreasing tissue specificity (fig. 4C), which is in line
with the observation that housekeeping genes tend to evolve
at a lower substitution rate than tissue-specific genes
(Zhang and Li 2004; Zhu et al. 2008). On the other hand, after
controlling for tissue specificity, phyloP scores increased
with increasing expression level (fig. 4D), which is in line
with stronger purifying selection on highly expressed genes
(Zhang and Yang 2015). Taken together, it seems that highly
expressed genes may be subject to more frequent positive
selection than their lowly expressed counterparts, although a
higher expression level may impose stronger purifying selec-
tion and reduce the overall rate of protein evolution.

The Rate of Adaptive Evolution May Also Increase
with Gene Expression Level in Drosophila
In the previous section, I showed that the rate of adaptive
evolution may increase with increasing gene expression level
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FIG. 4. Statistical matching analysis. (A) Estimates of xa in 369 highly expressed genes with low tissue specificity and 368 highly expressed genes
with high tissue specificity. (B) Estimates of xa in 498 tissue-specific genes with a low expression level and 495 tissue-specific genes with a high
expression level. In each violin plot, dots indicate point estimates of xa while violins depict the distributions of xa from a gene-based boot-
strapping analysis with 1,000 resamplings. (C) Distributions of phyloP scores in 369 highly expressed genes with low tissue specificity and 368 highly
expressed genes with high tissue specificity. (D) Distributions of phyloP scores in 498 tissue-specific genes with a low expression level and 495
tissue-specific genes with a high expression level. In each box plot, the bottom, the top, and the middle horizontal bar of the box indicate the first
quartile, the third quartile, and the median of phyloP scores, respectively. The whiskers indicate 1.5-fold interquartile ranges.
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in chimpanzees. Recently, Fraı̈sse et al. (2019) examined the
same problem in Drosophila melanogaster. Fraı̈sse et al. (2019)
first estimated xa for each gene separately. Then, they
regressed the gene-level xa on expression level and other
potentially correlated genomic features, such as tissue specif-
icity, using the standard linear regression. The coefficients of
the standard linear regression were interpreted as the inde-
pendent effects of genomic features after controlling for other
correlated features. Unlike the current study, Fraı̈sse et al.
(2019) observed that the rate of adaptation might decrease
with increasing expression level in D. melanogaster.

To reconcile the discrepancy between the current study
and Fraı̈sse et al. (2019), I reanalyzed the data from Fraı̈sse et
al. (2019). Following Fraı̈sse et al. (2019), I used the standard
linear regression to regress the gene-level estimate of xa on
gene expression level and tissue specificity, and observed that
the coefficient of gene expression was negative (�0.041384; P-
value¼ 8.93� 10�9). However, the standard linear regression
may suffer from two critical problems in this data set. First,
the residuals of the standard linear regression did not follow a
normal distribution, as suggested by a quantile–quantile plot
(supplementary fig. 6A, Supplementary Material online).
Second, the majority of genes had less than 4 nonsynony-
mous polymorphisms in this data set (supplementary fig. 6B,
Supplementary Material online), so the gene-level estimate of
xa may be highly inaccurate. Thus, I argue that the standard
linear regression may not be an appropriate statistical
method for analyzing this data set.

On the other hand, gene expression level had a positive
regression coefficient in the multiple MK regression (supple-
mentary fig. 7A, Supplementary Material online). In an or-
thogonal statistical matching analysis, I stratified 681
Drosophila tissue-specific genes (tau > 0.85) into two gene
groups based on the ranking of their expression levels. The
first group consisted of the top 340 tissue-specific genes with
higher expression level, whereas the second group consisted
of the bottom 341 tissue-specific genes with lower expression
level. Again, tissue-specific genes with higher expression level
had a higher xa than tissue-specific genes with lower expres-
sion level (supplementary fig. 7B, Supplementary Material
online) despite that the difference in xa was marginally sig-
nificant (P-value¼ 0.067; two-tailed permutation test). Taken
together, the rate of adaptation may also increase with in-
creasing gene expression level in D. melanogaster.

Metabolic and Immune Genes May Be under Frequent
Positive Selection in Chimpanzees
To explore whether the positive effect of gene expression level
on the rate of adaptive evolution can be explained by the
functions of highly expressed genes, I examined the enrich-
ment of Reactome pathways (Jassal et al. 2020) and tissue
types (Uhlen et al. 2015) in the aforementioned 495 chim-
panzee tissue-specific genes with a high expression level, using
the 498 chimpanzee tissue-specific genes with a low expres-
sion level as a background set. Surprisingly, genes associated
with the metabolism of proteins and lipids, and genes with
enriched expression in the intestine, liver, and pancreas,
showed a strong enrichment in the 495 tissue-specific genes

with a high expression level (fig. 5A and 5B; false-discovery
rate< 0.01). Based on these results, I hypothesized that met-
abolic genes may be subject to more frequent positive selec-
tion than nonmetabolic genes in chimpanzees.

To test this hypothesis, I constructed a genomic feature
indicating whether each 0D site was located in one of the
2,220 metabolic genes from MSigDB (Subramanian et al. 2005;
Liberzon et al. 2011). Then, I used the multiple MK regression
to simultaneously estimate the effects of the new feature and
the six original features. As shown in fig. 5C and supplemen-
tary table 7, Supplementary Material online, the regression
coefficient of metabolic genes was significantly higher than 0
in the multiple MK regression (bb ¼ 0.537; P-value¼ 1.075�
10�4), suggesting that metabolic genes might have a higher
rate of adaptation than their nonmetabolic counterparts.
Interestingly, the effect of metabolic genes was not significant
in the simple MK regression (bb ¼ 0.276; P-value ¼ 0.516).
Therefore, controlling for potentially correlated features is
critical for revealing elevated positive selection in metabolic
genes. Metabolic genes may partially explain the positive ef-
fect of gene expression level on adaptive evolution because
the regression coefficient of gene expression level reduced
moderately from 0.347 to 0.314 after adding metabolic genes
as a new feature in the multiple MK regression (supplemen-
tary tables 3 and 7, Supplementary Material online).

I observed similar results using propensity score matching.
Specifically, I observed that residue exposure level, gene ex-
pression level, and tissue specificity showed different distribu-
tions between metabolic and nonmetabolic genes
(supplementary fig. 8, Supplementary Material online).
Before controlling for these correlated genomic features, xa

was similar between metabolic and nonmetabolic genes (sup-
plementary fig. 8, Supplementary Material online). On the
other hand, xa was more than two times higher in metabolic
genes than in nonmetabolic genes (0.0550 vs. 0.0234) after
controlling for residue exposure level, gene expression level,
and tissue specificity (supplementary fig. 8, Supplementary
Material online) despite that the difference was not statisti-
cally significant due to reduced sample size (P-value¼ 0.390;
two-tailed permutation test).

To test whether the effect of metabolic genes on adapta-
tion rate can be explained away by their biased expression in
digestive organs, I obtained 2,274 genes with biased or
enriched expression in digestive organs, including intestine,
liver, pancreas, salivary gland, and stomach, from the Human
Protein Atlas (Uhlen et al. 2015). As expected, metabolic
genes were more likely to have a biased expression in digestive
organs than nonmetabolic genes (odds ratio¼ 2.177; P-value
<2.2 � 10�16; Fisher’s exact test). Then, I constructed a ge-
nomic feature indicating whether each 0D site was located in
the 2,274 genes with biased expression. After adding this ge-
nomic feature to the multiple MK regression analysis (sup-
plementary fig. 9, Supplementary Material online), I observed
that the regression coefficient of metabolic genes was still
significantly higher than 0 (bb ¼ 0.475; P-value ¼ 8.780 �
10�4), whereas the regression coefficient of digestive
system-biased genes was only marginally significant (P-value
¼ 0.028). Thus, the effect of metabolic genes on the
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adaptation rate could not be explained by their biased ex-
pression in digestive organs.

In line with frequent positive selection on the immune
system (Schlenke and Begun 2003; Nielsen et al. 2005;
Kosiol et al. 2008; Barreiro and Quintana-Murci 2010), I ob-
served that genes associated with the immune system had a
2- to 4-fold enrichment in the 495 tissue-specific genes with a
high expression level (fig. 5A; false-discovery rate < 0.01). To
formally test if immune system genes have a higher rate of
adaptation than nonimmune genes in chimpanzees, I con-
structed a genomic feature indicating whether each 0D site
was located in one of the 3,400 immune system genes from
MSigDB (Subramanian et al. 2005; Liberzon et al. 2011). After
adding this new feature to the multiple MK regression

analysis, I observed that the regression coefficient of immune
genes was significantly higher than 0 (supplementary fig. 10,
Supplementary Material online and supplementary table 8,
Supplementary Material online). Thus, immune genes may
have a higher rate of adaptive evolution than their nonim-
mune counterparts. Immune genes may also partially explain
the positive effect of gene expression level on the rate of
adaptive evolution, since the regression coefficient of gene
expression level decreased from 0.314 to 0.238 after adding
immune genes as a new feature (supplementary tables 7 and
8, Supplementary Material online).

Discussion
In this work, I have introduced the MK regression, the first
evolutionary model for jointly estimating the effects of mul-
tiple, potentially correlated genomic features on the rate of
adaptive substitutions. Based on similar ideas, my colleagues
and I have previously developed statistical approaches to infer
negative selection on genetic variants (Huang et al. 2017;
Huang and Siepel 2019; Huang 2020) and the evolutionary
turnover of cis-regulatory elements (Dukler et al. 2020). Thus,
unifying generalized linear models and evolutionary models
may be a powerful strategy to address a variety of statistical
problems in evolutionary biology.

As shown in the simulation experiments (fig. 2), when two
genomic features are correlated with each other, even at a
moderate level, the simple MK regression and a previous MK-
based method (Smith and Eyre-Walker 2002; Fraı̈sse et al.
2019) cannot accurately estimate the independent effects
of genomic features because they cannot control for corre-
lated genomic features. On the other hand, the multiple MK
regression can unbiasedly estimate the independent effects of
genomic features if all relevant genomic features are included
in the same analysis. Because we are almost always interested
in the independent effects of genomic features, the multiple
MK regression may be superior to the simple MK regression
and other MK-based methods that can only analyze one
feature at a time.

Regression coefficients in the multiple MK regression
might be interpreted as the direct causal effects of genomic
features on the rate of adaptation. However, similar to other
linear regression models (Pearl et al. 2016), the causal inter-
pretation of the multiple MK regression relies on two implicit
assumptions. First, genomic features of interest and all corre-
lated genomic features should be included in the same MK
regression analysis. Second, there should be no reverse cau-
sality, that is, the rate of adaptive evolution should not cause
changes in genomic features. As discussed in the literature of
causal inference (Pearl et al. 2016), these assumptions cannot
be verified using observational data alone and, thus, have to
be justified by domain knowledge on a case-by-case basis.

It is worth noting that I do not attempt to infer the total
causal effects of genomic features on adaptation rate in the
current study. According to the theory of causal inference
(Pearl et al. 2016), the total effect of a genomic feature of
interest includes its direct effect on the rate of adaptation as
well as its indirect effect through mediators, that is, others
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FIG. 5. Positive selection in metabolic genes. (A) Enrichment of
Reactome pathways in 495 tissue-specific genes with a high expres-
sion level. (B) Enrichment of tissue types in 495 tissue-specific genes
with a high expression level. In each enrichment test, 498 tissue-
specific genes with a low expression level are used as a background
gene set. A dashed blue line indicates that the fold of enrichment is
equal to 1 (no enrichment). (C) Estimates of regression coefficients in
the multiple MK regression. This analysis includes a new binary fea-
ture indicating whether each 0D site is located in a metabolic gene.
Error bars indicate 95% confidence intervals while one, two, and three
asterisks indicate 0.01 � P-value < 0.05, 0.001� P-value < 0.01, and
P-value < 0.001, respectively.
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genomic features that reside on a directed path from the
genomic feature of interest to the rate of adaptation in an
assumed causal graph. Thus, inferring the total effect of the
genomic feature of interest will require me to impose very
strong assumptions about the causal relationship between
genomic features (see examples in Rosenbaum et al. 2020;
Laubach et al. 2021). On the other hand, to infer the direct
effect of the genomic feature of interest, I can simply control
for all potentially correlated features without specifying their
causal relationship with the genomic feature of interest
(Laubach et al. 2021). In other words, the MK regression ef-
fectively assumes a simplified causal graph where I do not
specify the directions of causality between genomic features
(supplementary fig. 11, Supplementary Material online; see
also Chapter 4.3 in Shipley 2016).

It is also worth noting that I have ignored potential inter-
actions between genomic features in the current study. It is
possible to add interaction terms to the multiple MK regres-
sion. However, because of the large number of potential in-
teraction terms and the spareness of polymorphisms in the
chimpanzee genome, I may lack statistical power to detect
interactions between features in chimpanzees.

Using the multiple MK regression, I have identified numer-
ous genomic features with independent effects on adaptive
evolution in the chimpanzee lineage (fig. 3B). First, in line with
previous studies (Campos et al. 2014; Castellano et al. 2016;
Rousselle et al. 2020), I have shown that the rate of adaptation
increases with increasing mutation rate. Because mutations
are the ultimate source of genetic variation, a higher mutation
rate will increase the genetic variation for positive selection to
act on.

Second, previous studies have shown that local recombi-
nation rate is positively correlated with the rate of adaptation
in Drosophila (Marais and Charlesworth 2003; Campos et al.
2014; Castellano et al. 2016), probably due to a reduced effect
of Hill-Robertson interference in recombination hotspots.
However, I have not observed the same pattern in chimpan-
zees, which could be explained by a reduced impact of linked
selection in species with a small census population size, such
as chimpanzees (Corbett-Detig et al. 2015). Alternatively, my
analysis may have limited power to detect a weak association
between recombination rate and positive selection due to the
lower level of polymorphism and the smaller proportion of
adaptive substitutions in chimpanzees compared with
Drosophila (Castellano et al. 2016).

Third, in agreement with a previous study (Moutinho,
Trancoso et al. 2019), I have shown that the rate of adaptive
evolution increases with the increasing level of residue expo-
sure to solvent. On the other hand, it is well-known that the
site-wise rate of protein evolution is positively correlated with
the level of residue exposure, possibly due to relaxed negative
selection on exposed residues (Goldman et al. 1998; Franzosa
and Xia 2009; Liberles et al. 2012; Echave et al. 2016). Taken
together, exposed residues on protein surfaces may be subject
to both weaker negative selection and more frequent positive
selection than their buried counterparts. From a biophysical
perspective, missense mutations on protein surfaces are less
likely to disrupt protein stabilities than mutations in

hydrophobic cores (Bloom et al. 2005; Bloom, Labthavikul
et al. 2006; Bloom, Drummond et al. 2006; Franzosa and Xia
2009). Thus, missense mutations on protein surfaces may be
under more frequent positive selection because they are less
likely to perturb protein folding. Alternatively, protein surfa-
ces may have a higher rate of adaptive evolution because they
may play an important role in host–pathogen interactions
(Moutinho, Trancoso et al. 2019).

Fourth, I have shown that the tissue specificity of a gene
has a positive effect on the rate of adaptation after controlling
for correlated genomic features, such as gene expression level.
Thus, tissue-specific genes are more likely to be under positive
selection than housekeeping genes. Because nonsynonymous
mutations in housekeeping genes have a higher chance to
disrupt multiple phenotypes, my findings support that the
pleiotropic effect is a key determinant of adaptive evolution
(Fraı̈sse et al. 2019).

Fifth, I have shown that the rate of adaptive evolution
increases with increasing gene expression levels in both chim-
panzees (figs. 3B and 4B) and Drosophila (supplementary fig.
7, Supplementary Material online) after controlling for corre-
lated genomic features, such as tissue specificity. Recently,
Fraı̈sse et al. (2019) reported an opposite trend in
Drosophila by regressing a gene-level estimate of xa on
gene expression level and potentially correlated features.
However, my reanalysis of their data suggests that the stan-
dard linear regression used in Fraı̈sse et al. (2019) may not be
an appropriate method for inferring the effects of genomic
features in Drosophila. Unlike the standard linear regression,
the MK regression does not rely on inaccurate estimates of xa

at the gene level, and does not assume that the response
variables follow a normal distribution. Thus, the MK regres-
sion may be more broadly applicable than the standard linear
regression in inferring the effects of genomic features on
adaptation.

Sixth, numerous studies have shown that immune genes
may have a higher rate of adaptive evolution than other genes
in various species (Schlenke and Begun 2003; Nielsen et al.
2005; Kosiol et al. 2008; Barreiro and Quintana-Murci 2010).
Using the MK regression, I have observed the same trend in
chimpanzees (supplementary fig. 10, Supplementary Material
online and supplementary table 8, Supplementary Material
online). Thus, immune genes may be subject to constant
adaptation in chimpanzees to fight against ever-evolving
pathogens and parasites.

Last but not least, I have shown that highly expressed genes
are more likely to be associated with metabolic pathways and
digestive organs than their lowly expressed counterparts (fig.
5A and 5B), which implies that frequent positive selection in
metabolic genes may partially explain the positive effect of
gene expression level on the rate of adaptation. In agreement
with this hypothesis, I have shown that metabolic genes may
have a higher rate of adaptation than their nonmetabolic
counterparts after controlling for potentially correlated geno-
mic features (fig. 5C). Similarly, a recent study has reported
that metabolic pathways may be subject to more frequent
positive selection than nonmetabolic pathways in multiple
inner branches of the primate phylogeny (Daub et al. 2017).
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Taken together, genes in metabolic pathways may be subject
to frequent positive selection in multiple primate species,
possibly due to recent changes in diet in primate evolution
(Daub et al. 2017; Haygood et al. 2007; Blekhman et al. 2008,
2014). In future studies, it is also interesting to examine
whether other genomic features related to metabolism,
such as the replication timing of genes (Chen et al. 2010) in
digestive organs, have independent effects on the rate of
adaptive evolution using the MK regression.

Frequent positive selection in metabolic genes has not
been widely reported in primates, except in the current study
and in Daub et al. (2017). I speculate that the discrepancy
could be explained by the unique design of the MK regression
and the method in Daub et al. (2017). First, previous studies
focused on identifying individual genes with significant signals
of positive selection. If metabolic pathways are under poly-
genic selection, the signal of selection in a single gene may be
too weak to reach genome-wide significance (Csill�ery et al.
2018; Barghi et al. 2020). In contrast, the MK regression and
the method in Daub et al. (2017) have pooled data across a
large number of metabolic genes, which may significantly
increase the statistical power to detect diffused signals of
polygenic selection (Barghi et al. 2020). Second, if metabolic
genes are under lineage-specific adaptation in primates, pos-
itive selection may only be detected by statistical approaches
tailored for a single branch of the primate phylogeny, such as
the MK regression and the branch-site codon substitution
model (Daub et al. 2017). Third, many previous methods
may not be able to control for the effects of correlated ge-
nomic features. In the current study, I have shown that the
effect of metabolic genes is manifested in the multiple MK
regression but not in the simple MK regression, which high-
lights the importance of controlling for correlated genomic
features. In future studies, it is tempting to test these hypoth-
eses for a comprehensive understanding of adaptive evolu-
tion in metabolic genes.

Similar to a previous study (Luisi et al. 2015), I have found
that the rate of adaptation increases with increasing PPI de-
gree in the simple MK regression (fig. 3A). However, the same
pattern cannot be replicated in the multiple MK regression
(fig. 3B). Also, after controlling for gene expression level and
tissue specificity using propensity score matching, I have
found no difference in the rate of adaptation between genes
with high PPI degree and genes with low PPI degree (supple-
mentary fig. 3B, Supplementary Material online). Thus, PPI
degree is unlikely to be a key determinant of positive selection
in chimpanzees.

Because functional genomic data are scarce in the chim-
panzee genome, I have mapped multiple genomic features
from the human genome to the chimpanzee genome to ex-
amine adaptive evolution in the chimpanzee lineage. It is
worth noting that the current study does not require or as-
sume that these genomic features are perfectly correlated
between humans and chimpanzees. Unlike studies that aim
to identify individual loci under positive selection, I focus on
examining genome-wide relationships between genomic fea-
tures and adaptation rate. As long as genomic features are
well correlated between humans and chimpanzees at the

genome-wide scale, my results should be robust to species
differences in genomic features in a small set of genes. Because
of the short divergence time between humans and chimpan-
zees, I expect that human features are reasonable proxies of
corresponding chimpanzee features at the genome-wide
scale. Nevertheless, it is of interest to revisit the results
reported in the current study when chimpanzee-specific
annotations become available in the future.

While the MK regression is a powerful framework to esti-
mate the effects of multiple genomic features simultaneously,
it has a few limitations that are worth of future exploration.
Notably, the MK regression is based on the classical MK test
and, thus, inherits its limitations (McDonald and Kreitman
1991; Smith and Eyre-Walker 2002). First, the MK regression
does not explicitly model the effects of weak negative selec-
tion on polymorphism data. To mitigate this problem, I have
used a simple strategy to filter out low-frequency SNPs. This
strategy may not be optimal, because a large proportion of
SNPs cannot be used in the MK regression despite the fact
that they are potentially informative of positive selection
(Messer and Petrov 2013). Second, the MK regression
assumes that positively selected mutations have a negligible
contribution to polymorphisms. This assumption is valid
when weak positive selection is rare. However, there is evi-
dence for frequent weak positive selection in the human ge-
nome, and ignoring the effects of weak positive selection may
lead to an underestimation of the adaptation rate in humans
(Uricchio et al. 2019). Thus, the MK regression may not be
suitable for examining positive selection in the human ge-
nome. Third, the MK regression does not explicitly model the
impact of demography on polymorphisms. In future studies,
it is tempting to extend the MK regression by explicitly
modeling the effects of weak negative selection, weak positive
selection, and demography on the site-frequency spectrum of
polymorphisms (Eyre-Walker and Keightley 2009; Messer and
Petrov 2013; Galtier 2016; Haller and Messer 2017; Uricchio et
al. 2019).

From a statistical point of view, several aspects of the MK
regression may also be improved in future studies. First, it is
tempting to relax the strong assumption of a linear relation-
ship between genomic features and the rate of adaptation.
For instance, we may replace the generalized linear model in
the MK regression by a generalized additive model (Hastie
1990), which can accommodate more complicated relation-
ships between features and selection while maintaining the
interpretability of the MK regression. Second, the MK regres-
sion is mainly designed to infer the effects of genomic features
on the rate of adaptive evolution. Thus, it may not be the best
tool for pinpointing individual genes under frequent positive
selection. If positive selection at the gene level is of the main
interest, and if the numbers of polymorphic and divergent
sites are large in a gene, the classical MK test (McDonald and
Kreitman 1991; Smith and Eyre-Walker 2002) may be more
appropriate for inferring positive selection at the gene level.
Third, the MK regression currently can only accommodate
the fixed effects of genomic features. It is tempting to extend
the MK regression by introducing a gene-level random effect
(Huang 2020), which may allow for estimating the rate of
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adaptation at the gene level. Fourth, the MK regression cur-
rently can only estimate the effects of genomic features on
xa. Based on the extensive literature on the MK test (Booker
et al. 2017; Moutinho, Bataillon et al. 2019), it is possible to
extend the MK regression to estimate the effects of genomic
features on other measures of natural selection, such as the
rate of nonadaptive evolution (xna) and the proportion of
adaptive substitutions (a). Fifth, similar to other multiple re-
gression models, the MK regression might yield unreliable
estimates of regression coefficients if there is strong collinear-
ity between genomic features (Dormann et al. 2013). The
current study is unlikely to be affected by strong collinearity
because the absolute values of correlation coefficients be-
tween genomic features are smaller than 0.7 (supplementary
table 4, Supplementary Material online), an established cutoff
for strong collinearity (Dormann et al. 2013). Nevertheless, in
future studies, it is tempting to explore rigorous statistical
techniques, such as the variance inflation factor (Fox and
Monette 1992), to detect and handle potentially strong col-
linearity in the MK regression. Finally, when used as a part of a
causal inference pipeline, the MK regression is not an auto-
matic tool and requires domain knowledges of all genomic
features being considered in an analysis. I expect that future
extensions of the MK regression will enable systematic explo-
rations of the genomic basis of adaptive and nonadaptive
evolution in various species, such as humans and Drosophila.

Materials and Methods

Details of the MK Regression
The MK regression consists of two components: a generalized
linear model and an MK-based likelihood function. In the
generalized linear model, I assume that xj

a, the relative rate
of adaptive substitutions at functional site j, is a linear com-
bination of genomic features followed by an exponential
transformation,

xj
a ¼ expðb0 þ b1Xj

1 þ � � � þ biX
j
i þ � � � þ bMXj

MÞ; (1)

in which Xj
i is the ith local genomic feature at site j, bi is a

regression coefficient indicating the effect of feature i on xj
a,

b0 in an intercept, and M is the total number of genomic
features. Because genomic features may also influence the
levels of polymorphism at functional sites, I model the prob-
ability of observing a SNP at functional site j, Pj

func, as another
linear combination of genomic features followed by a logistic
transformation,

Pj
func ¼ logisticðc0 þ c1Xj

1 þ � � � þ ciX
j
i þ � � � þ cMXj

MÞ

¼ expðc0 þ c1Xj
1 þ � � � þ ciX

j
i þ � � � þ cMXj

MÞ
1þ expðc0 þ c1Xj

1 þ � � � þ ciX
j
i þ � � � þ cMXj

MÞ
;

(2)

in which c0 and ci are an intercept and a regression coefficient
with respect to Pj

func, respectively. Similar to the regression
coefficients in equation 1, ci represents the effect of feature i
on the occurrence of polymorphism at functional site j. It is
worth noting that I effectively assume an infinite-site model

here (Kimura 1969), so no more than one SNP is allowed at a
single site. Finally, I introduce two neutral parameters, Dneut

and Pneut, which represent the expected number of substitu-
tions and the probability of observing a SNP at a neutral site,
respectively. These neutral parameters are shared by all neu-
tral sites.

In the MK-based likelihood function, I specify the proba-
bility of polymorphism and divergence data at both neutral
and functional sites given model parameters (b0, bi, c0, ci,
Dneut, and Pneut). First, I denote Yk

neut as a binary response
variable indicating the presence/absence of a SNP at neutral
site k and assume that it follows a Bernoulli distribution,

PðYk
neutÞ ¼

Pneut; if Yk
neut ¼ 1

1� Pneut; otherwise:

(
(3)

Similarly, I denote Yj
func as a binary response variable indi-

cating the presence/absence of a SNP at functional site j and
assume that it follows a Bernoulli distribution,

PðYj
funcÞ ¼

Pj
func; if Yj

func ¼ 1

1� Pj
func; otherwise:

(
(4)

Second, I employ the Jukes–Cantor substitution model
(Jukes and Cantor 1969) to describe the distribution of inter-
species divergence at neutral sites. Denoting Zk

neut as a binary
response variable indicating if the reference genome and the
ancestral genome have different nucleotides at neutral site k,
the Jukes–Cantor model suggests that

PðZk
neutÞ ¼

3

4
� 3

4
expð� 4

3
DneutÞ; if Zk

neut ¼ 1

1

4
þ 3

4
expð� 4

3
DneutÞ; otherwise:

8>><>>: (5)

Third, to model the effects of positive selection and neutral
factors on interspecies divergence at functional sites, I assume
that Dj

func, that is, the expected number of substitutions at
functional site j, is equal to the sum of the number of adaptive
substitutions and the number of neutral substitutions (Bierne
and Eyre-Walker 2004; Gossmann et al. 2010),

Dj
func ¼ xj

aDneut|fflfflffl{zfflfflffl}
substitutionsAdaptive

þ Pj
func

Pneut
Dneut|fflfflfflfflffl{zfflfflfflfflffl}

substitutionsNeutral

; (6)

in which
Pj

func

Pneut
is equal to the relative rate of neutral evolution

at functional site j compared with neutral sites. Given Dj
func at

each functional site, I again employ the Jukes–Cantor substi-
tution model to describe interspecies divergence at functional
site j,

PðZj
funcÞ ¼

3

4
� 3

4
expð� 4

3
Dj

funcÞ; if Zj
func ¼ 1

1

4
þ 3

4
expð� 4

3
Dj

funcÞ; otherwise;

8>><>>: (7)

in which Zj
func indicates if the reference genome and the an-

cestral genome have different nucleotides at functional site j.
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Finally, I assume that nucleotide sites evolve independently
given genomic features and model parameters. Thus, I define
the MK-based likelihood function of the whole data set asY
j2 all functional sites

PðYj
funcÞPðZ

j
funcÞ

Y
k2 all neutral sites

PðYk
neutÞPðZk

neutÞ:

(8)

It is worth noting that the MK regression currently can
only be applied to a nucleotide site where all the potential
mutations have similar effects, such as 0D and 4D sites in
coding regions.

I estimate model parameters (b0, bi, c0, ci, Pneut, and Dneut)
by maximizing the logarithm of the MK-based likelihood
function (equation 8). Also, I estimate the standard errors
of parameters using the observed Fisher information matrix
and compute the P-values of estimated parameters using the
(two-tailed) Wald test.

Simulation Experiments
In each simulation run, I first sampled genomic features (Xj

i)
at 10 Mb functional sites from a bivariate normal distribution.
I set the means and variances of the bivariate normal distri-
bution to 0 and 1, respectively, and varied its correlation
coefficient from 0 to 0.6 to examine the performance of the
MK regression with respect to various degrees of correlation
between features. Given genomic features, I generated diver-
gence and polymorphism data following the likelihood func-
tion of the MK regression. Specifically, I generated xj

a, the rate
of adaptive evolution at each functional site j, using equation
1 in the MK regression model. Also, I generated Pj

func, the
polymorphic rate at each functional site j, using equation 2
in the MK regression. Finally, I generated binary response
variables of polymorphism and divergence at 10 Mb neutral
sites (Yk

neut and Zk
neut) and 10 Mb functional sites (Yj

func and
Zj

func) using equations 3, 4, 5, and 7 in the MK regression.
I performed two simulation experiments each of which

consisted of four sets of synthetic data. In the first experiment,
I set b0 ¼ �2; b1 ¼ 1; b2 ¼ 0; c0 ¼ �8, and sampled c1

and c2 from a normal distribution with a mean of 0 and a
standard deviation of 0.5 in each simulation run. These
parameters were chosen to ensure that genome-wide levels
of polymorphism and divergence are comparable between
synthetic and empirical data. I generated four sets of synthetic
data with different correlation coefficients (0, 0.2, 0.4, and 0.6)
between features in the aforementioned bivariate normal dis-
tribution. In each data set, I performed 10 independent sim-
ulation runs using the method described in the previous
paragraph. In the second experiment, I generated synthetic
data using the same procedure but replaced b2 with �0.2.

Polymorphism and Divergence Data
Throughout this work, I focused on analyzing 0D and 4D sites
within previously defined callable regions on autosomal chro-
mosomes in the panTro4 reference genome (de Manuel et al.
2016). I obtained whole-genome sequencing (WGS) based
genotypes of 18 central chimpanzee (Pan troglodytes troglo-
dytes) individuals from de Manuel et al. (2016). I filtered out

all multiallelic sites and sites with missing genotypes. Then, I
filtered out SNPs without a high-confidence ancestral allele
(see below) and SNPs with a derived allele frequency below
0.5.

I obtained high-confidence chimpanzee ancestral alleles
from Ensembl release 75 (Herrero et al. 2016; Yates et al.
2020). Ensembl reconstructed chimpanzee ancestral alleles
using a phylogenetic approach, and defined that an ancestral
allele was of high confidence if it was identical to both the
human reference allele and the reconstructed allele in the
human–chimpanzee–macaque ancestor. To annotate inter-
species divergence in the chimpanzee lineage, I compared the
chimpanzee ancestral allele with the reference allele in
panTro4 at each monoallelic site.

Estimation of a and xa

Based on the aforementioned polymorphism and divergence
data in chimpanzee autosomal genes, I computed dn, pn, ds,
and ps, which are the proportions of 0D sites with divergence,
0D sites with polymorphism, 4D sites with divergence, and 4D
sites with polymorphism, respectively. Each of these propor-
tions was calculated as the ratio of the number of sites with
divergence/polymorphism to the total number of sites. I es-
timated the proportion of adaptive substitutions as
(Charlesworth 1994; Smith and Eyre-Walker 2002)

a ¼ 1� ds

dn

pn

ps
: (9)

Similarly, given the polymorphism and divergence data in a
gene group of interest, I estimated the relative rate of adaptive
substitutions with respect to neutral evolution as (Smith and
Eyre-Walker 2002; Booker et al. 2017; Fraı̈sse et al. 2019)

xa ¼ dn � a
ds

¼ dn

ds
� pn

ps
:

(10)

I also used equation 10 to estimate xa for synthetic data,
where dn, pn, ds, and ps were interpreted as the proportions of
simulated functional sites with divergence, simulated func-
tional sites with polymorphism, simulated neutral sites with
divergence, and simulated neutral sites with polymorphism,
respectively.

Genomic Features
Because gene annotations and functional genomic data were
more complete and of higher quality in humans than in
chimpanzees, I obtained human-based annotations of 0D
sites, 4D sites, residue exposure level, gene expression level,
tissue specificity, and protein–protein interactions. Then, I
converted these annotations from the human reference ge-
nome to the panTro4 assembly using liftOver (Haeussler et al.
2019). Because of the very short divergence time between
humans and chimpanzees, human-based genomic features
should serve as an accurate proxy for the corresponding ge-
nomic features in chimpanzees. Specifically, I obtained the
coordinates of 0D and 4D sites in the human genome from
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dbNSFP version 4.0 (Liu et al. 2013, 2016) and converted the
coordinates from the original hg19 assembly to the panTro4
assembly using liftOver (Haeussler et al. 2019). I obtained
predicted probabilities of residue exposure (PredRSAE) in
the hg19 assembly from SNVBox (Wong et al. 2011). I
obtained human-based consensus RNA expression levels
across 62 tissues from the Human Protein Atlas version
19.3 (Uhlen et al. 2015). For each human protein-coding
gene, I computed its (mean) expression level,

expression level ¼

PK
1

Rk

K
; (11)

in which Rk is the gene’s consensus RNA expression level in
tissue k and K is the total number of tissues. I computed the
tissue specificity (tau) of each human gene,

s ¼

PK
1

1� Rk=maxðRkÞ

K � 1
; (12)

in which maxðRkÞ is the gene’s maximum expression level
across all tissues (Yanai et al. 2005). Also, I computed an
alternative metric of tissue specificity (the negative value of
Hg; Kryuchkova-Mostacci and Robinson-Rechavi 2017),

�Hg ¼
XK

1

pk � log 2ðpkÞ; (13)

where pk ¼ RkPK

1

Rk

is the normalized expression level of a gene

in tissue k. I obtained 2,274 genes with biased or enriched
expression in digestive organs, including intestine, liver, pan-
creas, salivary gland, and stomach, from the Human Protein
Atlas (Uhlen et al. 2015). I obtained human protein–protein
interaction data from HuRI (Luck et al. 2020) and computed
each gene’s PPI degree, that is, the total number of unique
interaction partners. Also, I obtained 2,220 human metabolic
genes involved in one or more curated metabolic pathways
and 3,400 human genes involved in one or more immune
system pathways from MSigDB release 7.1 (Subramanian et al.
2005; Liberzon et al. 2011). Finally, I converted human-based
annotations of residue exposure level, gene expression level,
tissue specificity, PPI degree, metabolic genes, and immune
system genes from the hg19 assembly to the panTro4 assem-
bly using liftOver (Haeussler et al. 2019).

I used chimpanzee-based data to build a map of local
recombination rates and a map of local mutation rates.
Specifically, I obtained a fine-scale chimpanzee genetic map
from panMap (Auton et al. 2012) and converted the data
from panTro2 to panTro4 using liftOver. Then, I constructed
a map of local recombination rates by averaging the recom-
bination rates from the chimpanzee genetic map with a 1 Mb
nonoverlapping sliding window. Also, I utilized interspecies
divergence in the chimpanzee lineage to construct a map of
local mutation rates in the panTro4 assembly. To do so, I
converted putatively neutral regions defined in Huang

(2020) from hg19 to panTro4 using liftOver. Then, I com-
puted the density of chimpanzee-specific substitutions in pu-
tatively neutral regions using a 100 Kb nonoverlapping sliding
window, which was used as a proxy of local mutation rates.

Estimating the Effects of Genomic Features on the
Rate of Adaptation
I fit the MK regression to one genomic feature at a time,
which I named as the simple MK regression. To evaluate if
a logarithmic transformation can improve model fitting, I
carried out two analyses for each feature. In the first analysis,
I standardized the feature by subtracting its mean and divid-
ing by its standard deviation, and then fit the simple MK
regression to the standardized feature. In the second analysis,
I calculated the logarithm of each feature, standardized the
output, and then fit the simple MK regression to the trans-
formed data. Because the logarithm of PPI degree is undefined
if the PPI degree is equal to 0, I added a pseudocount of 1 to
the PPI degree before the logarithmic transformation. I com-
puted the log likelihood of the simple MK regression in each
analysis, and used the transformation with a higher log like-
lihood for each feature throughout this work. I also fit the MK
regression to all the features simultaneously, which I named as
the multiple MK regression.

Statistical Matching Analysis
I used statistical matching algorithms to estimate the effects
of PPI degree, gene expression level, and tissue specificity after
adjusting for other correlated genomic features. To estimate
the effect of PPI degree, I stratified protein-coding genes into
two groups based on PPI degree. The first group consisted of
1,556 genes with 10 or more interaction partners (PPI degree
� 10) while the second group consisted of 8,471 genes with 1
or less interaction partners (PPI degree � 1). Here I chose a
10-fold difference in PPI degree between the two gene groups,
because a larger difference in PPI degree led to significantly
smaller gene groups, whereas a smaller difference in PPI de-
gree may attenuate the potential difference in xa between
the two gene groups. I calculated xa for the two groups of
genes separately using equation 10, and calculated the P-value
of the difference in xa between the two gene groups using a
two-tailed permutation test with 1,000 resamplings. Also, I
used MatchIt to match each gene from the high-PPI group
with a gene of similar log expression level and tissue specificity
from the low-PPI group (Ho et al. 2011). Then, I repeated the
calculation of xa and P-value for the two groups of matched
genes.

To estimate the effect of tissue specificity after controlling
for gene expression level, I stratified highly expressed genes
(mean expression level > 30) into two approximately equal-
sized groups based on the ranking of their tissue specificity.
The first gene group consisted of 368 highly expressed genes
with higher tissue specificity while the second group consisted
of 369 highly expressed genes with lower tissue specificity.
Then, I calculated xa for the two groups of genes separately
using equation 10, and calculated the P-value of the difference
in xa using a two-tailed permutation test with 1,000
resamplings.

Huang . doi:10.1093/molbev/msab291 MBE

14



Finally, I estimated the effect of gene expression level after
controlling for tissue specificity. I stratified tissue-specific
genes (tau> 0.85) into two approximately equal-sized groups
based on the ranking of their expression levels. The first group
consisted of 495 tissue-specific genes with higher expression
level while the second group consisted of 498 tissue-specific
genes with lower expression level. I calculated xa for the two
groups of genes separately using equation 10, and calculated
the P-value of the difference in xa using a two-tailed permu-
tation test with 1,000 resamplings.

Reanalysis of Data from Fraı̈sse et al. (2019)
I estimated the effects of gene expression level and tissue
specificity on the rate of adaptive evolution in D. mela-
nogaster by reanalyzing data from Fraı̈sse et al. (2019). I
obtained gene-level estimates of xa, mean expression levels,
tissue-by-stage specificity (tau), polymorphism data, and di-
vergence data from http://doi.org/10.15479/at:ista:/5757. In
the analysis of standard linear regression, I regressed the
gene-level estimate of xa on the logarithm of mean expres-
sion level and the tissue-by-state specificity using the lm func-
tion in R (R Core Team 2017). In the analysis of multiple MK
regression, I used 0D sites and 4D sites annotated by SIFT 4G
(Vaser et al. 2016) as functional and putatively neutral sites,
respectively, and used the logarithm of mean expression level
and the tissue-by-state specificity as input features. In the
statistical matching analysis, I stratified 681 tissue-specific
genes (tau > 0.85) into a group of 340 genes with higher
expression level and a group of 341 genes with lower expres-
sion level. I calculated xa for the two groups of genes sepa-
rately using equation 10, and calculated the P-value of the
difference in xa using a two-tailed permutation test with
1,000 resamplings.

Tissue and Pathway Enrichment
I downloaded annotations of tissue-enriched genes from the
Human Protein Atlas version 19.3 (Uhlen et al. 2015). To
reduce the burden of multiple testing, I focused on analyzing
tissues with at least 50 tissue-enriched genes. I then analyzed
the enrichment of each set of tissue-enriched genes in the 495
tissue-specific genes with a high expression level, in which the
498 tissue-specific genes with a low expression level were used
as a background gene set. The P-value of each enrichment
test was computed using the Fisher’s exact test and then
adjusted for multiple testing with false-discovery-rate correc-
tion. Similarly, I analyzed the enrichment of Reactome path-
ways in the 495 tissue-specific genes with a high expression
level using PANTHER (Mi et al. 2017), in which I used the 498
tissue-specific genes with a low expression level as a back-
ground gene set.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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