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. . access article distributed under the terms of

Our data also suggest that SNP/allele counts should always be combined with WGS P———————————"_
clustering analysis generated by phylogenetically meaningful algorithms on a suffi- International license.
cient number of isolates, and the SNP/allele threshold alone does not provide suffi- Address correspondence to Yi Chen,
cient evidence to delineate an outbreak. The putative prophages were conserved yichenefdahhsgov.

across all the outbreak isolates. All outbreak isolates belonged to clonal complex 5
and serotype 1/2b and had an identical inlA sequence which did not have prema-
ture stop codons.

IMPORTANCE In this outbreak, multiple analytical approaches were used for maxi-
mum discriminatory power. A PFGE-matched, epidemiologically unrelated isolate had
high genetic similarity to the outbreak-associated isolates, with as few as 7 SNP dif-
ferences. Therefore, the SNP/allele threshold should not be used as the only evi-
dence to define the scope of an outbreak. It is critical that the SNP/allele counts
be complemented by WGS clustering analysis generated by phylogenetically meaningful
algorithms to distinguish outbreak-associated isolates from epidemiologically unrelated
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isolates. Careful selection of a variant calling approach and phylogenetic algorithm is
critical for core-genome-based analyses. The whole-genome-based analyses were able to
construct the highly resolved phylogeny needed to support the findings of the outbreak
investigation. Ultimately, epidemiologic evidence and multiple WGS analyses should be
combined to increase confidence levels during outbreak investigations.

KEYWORDS whole genome multilocus sequence typing, core genome multilocus
sequence typing, whole genome sequencing, Listeria monocytogenes, outbreak

isteria monocytogenes can survive and/or reproduce in a wide variety of foods and

environmental reservoirs and cause foodborne outbreaks (1). For many years,
pulsed-field gel electrophoresis (PFGE) has been the gold standard for laboratory
analysis of food and clinical isolates for Listeria outbreak investigations. However, PFGE
does not provide a measure of phylogenetic relatedness, and thus, highly related L.
monocytogenes isolates may exhibit different PFGE patterns and isolates that are not
related might be indistinguishable by PFGE (2). In contrast, whole genome sequencing
(WGS) analysis is more phylogenetically relevant, and a variety of WGS tools have been
implemented by public health laboratories in different countries to perform real-time
or retrospective molecular epidemiological analyses of L. monocytogenes. Some WGS
analytical approaches have targeted the entire genome of L. monocytogenes (2-4),
while others have targeted the core genome (5-7). The precision of WGS allows
different approaches to assess genomic variations: single nucleotide polymorphisms
(SNPs) (8, 9), allelic profiles (2, 4-7), and k-mers (10). To support the rapid archiving and
dissemination of WGS data related to foodborne illnesses, the United States launched
the GenomeTrakr network of state, federal, and international public health laboratories;
this network now has participants from around the world sharing genome sequencing
data along with relevant metadata (11). PulseNet has also added WGS to its structure
and toolbox to facilitate routine application of WGS in public health laboratories (2).
The WGS data are housed in the National Center for Biotechnology Information (NCBI)
and are used to generate an SNP-based WGS tree with daily updates (https://www.ncbi
.nIm.nih.gov/pathogens/isolates/). This tree, which contains over 14,000 L. monocyto-
genes genomes to date, provides an initial signal of clusters to be followed by
additional WGS analyses and epidemiologic investigation. In the past 3 years, the
implementation of WGS for global epidemiological surveillance has assisted in the
investigations of numerous listeriosis outbreaks, some of which were multinational
outbreaks (2, 8, 12).

Between late 2013 and early 2014, a listeriosis outbreak was initially recognized by
PFGE and ultimately included 7 Hispanic patients in Maryland and one in California (13).
All patient isolates were serotype 1/2b and indistinguishable by PFGE (13). A PFGE-
indistinguishable isolate collected from a cheese product in New York in 2012 was then
found in the PulseNet database. The PFGE pattern was rare and was seen only among
isolates analyzed during the outbreak investigation. Epidemiological investigation,
based on interviews of patients, determined that all patients in Maryland available for
interview reported consuming Hispanic-style cheese and shopping at different loca-
tions of a small grocery chain (13). Subsequent testing of Hispanic-style cheese that
were sold by this grocery chain and were produced by company A in Delaware yielded
L. monocytogenes. Patients did not report consuming cheese produced by the New York
company that made the 2012 cheese product, and the investigation did not identify
any connections between the New York company and company A in Delaware (13). No
food history for the patient in California was available (13); this patient was at the time
considered part of the outbreak because (i) the onset date of illness was within the
same time window as the patients in Maryland, (ii) the isolate appeared to be fairly
similar to the Maryland isolates by WGS, and (iii) the outbreak PFGE pattern was rare
(13). Given the improvements in resolution made possible by genome sequence-based
surveillance, WGS was used to determine the genetic relatedness of the isolates under
investigation to complement the epidemiologic data. Multiple federal and state agen-
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cies performed WGS on representative company A food samples and environmental
isolates, the Maryland and California clinical isolates, and the New York cheese isolate.

Three months after that WGS analysis was completed, routine surveillance and
real-time WGS of L. monocytogenes-positive samples identified an environmental isolate
from company B that matched the outbreak-associated isolates. An internal FDA
investigation discovered that company B in Delaware had purchased equipment from
company A; no connection between company B and the New York cheese company
was identified. We describe here the WGS analyses of the outbreak-associated clinical,
food, and environmental L. monocytogenes isolates performed using multiple methods:
a whole genome SNP-based approach (14) performed during the outbreak investiga-
tion, a core genome SNP-based approach, a whole genome multilocus sequence typing
(WgMLST) scheme (2), and a core genome multilocus sequence typing (cgMLST)
scheme (5), all performed retrospectively for comparisons.

RESULTS

Isolates. All the isolates recovered from food and environmental samples from
company A and company B were serotype 1/2b and exhibited the same PFGE pattern
observed in clinical isolates, with PulseNet pattern assignment of GX6A16.0259/
GX6A12.2046 (Ascl/Apal). It was a rare combination pattern in the entire PulseNet
database, as it was seen only among isolates analyzed in the present study. In silico
MLST showed all isolates had MLST sequence type 5 (ST5), were part of clonal complex
5 (CC5), alternatively classified as epidemic clone VI (15). The outbreak strain contained
internalins A, B, C, E, F, H, J, K, and P and Listeria pathogenicity island 1 (LIPI-1) (16), but
it did not contain LIPI-3 (17) or LIPI-4 (5). inlA in the outbreak isolates did not have
premature stop codons. These features were the same as the CC5 strains associated
with a recent outbreak linked to contaminated ice cream (8).

SNP-based analyses. Phylogenetic analysis using whole genome SNPs identified by
the FDA Center for Food Safety and Applied Nutrition (CFSAN) SNP Pipeline placed the
Maryland clinical isolates as well as the company A and company B food and environ-
mental isolates into one clade, clade I. The subclades did not show any association with
sample types or sources of sample collection; the 2013 California clinical isolate
(PNUSALO000355) and 2012 New York cheese isolate (CFSAN009740) were both placed
outside clade I (Fig. 1). A 2013 clinical isolate from New Mexico (PNUSAL000140) of ST5
with a distinct PFGE pattern, which we chose as the outgroup, was clearly distant from
all other isolates (Fig. 1), even though it shared the same ST as the outbreak-associated
isolates.

The SNP-based WGS analysis showed that the California clinical isolate, the New
York cheese isolate, and all clade | isolates except CFSAN010088 had an identical
plasmid sequence. CFSAN010088 differed from other isolates by one SNP in the
plasmid. Thus, we refer exclusively to SNPs on the chromosome among different
isolates in the discussion below. Without counting gaps, clade | isolates differed by 0 to
12 SNPs (median, 4) (Fig. 1). The California clinical isolate differed from clade | isolates
by 10 to 17 SNPs (median, 12), and the New York cheese isolate differed from clade |
isolates by 7 to 14 SNPs (median, 9). The New Mexico clinical isolate differed from clade
| isolates by at least 200 SNPs. The relatively large number of outbreak-associated
isolates allowed the identification of specific SNPs that distinguished all clade | isolates
from CFSAN009740 (3 nonsynonymous, 3 synonymous, and one noncoding SNP) and
all clade I isolates from PNUSALO00355 (4 nonsynonymous, 5 synonymous, and one
noncoding SNP) (Table 1). We then chose a subset of the polymorphic loci that were in
the cgMLST core coding genome (5), and the maximum likelihood algorithm based on
these core coding SNPs placed the California clinical isolate and the New York cheese
isolate outside clade | (see Fig. S1 in the supplemental material), congruent with the
whole genome SNP analysis. Clade | isolates differed by 0 to 9 SNPs in the core genome.
The New York isolate differed from one clade | isolate, CFSAN010085, by 8 core SNPs
and differed from other clade | isolates by 3 to 7 core SNPs; the numbers of differences
were smaller than the numbers of SNPs between some clade | isolates. The whole
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FIG 1 Maximum likelihood tree constructed from SNPs identified by using the CFSAN SNP Pipeline.
Isolate identifiers are followed by the abbreviation of the state where they were isolated and the type
of sample. The bootstrap value for clade | and the minimum and maximum numbers of pairwise
chromosomal SNPs among clade | isolates are listed near the root. The environmental isolate from
company B, the New York (NY) cheese isolate, and the California (CA) clinical isolate are highlighted in
red, blue, and green boxes, respectively.

genome kSNP analysis also placed these two isolates outside clade I, which contains
outbreak-associated isolates (Fig. S2).

wgMLST and cgMLST analyses. For wgMLST using allele calls combining the
assembly-free and assembly-based approaches (designated summary calls via use of
BioNumerics 7.5 [Applied Maths, Sint-Martens-Latem, Belgium]), both neighbor-joining
(NJ) and unweighted pair group method with arithmetic mean (UPGMA) algorithms
generated congruent clustering as the SNP-based analysis did: the New York cheese
isolate and the California clinical isolate were placed outside clade I, which contains
isolates from food and environmental samples from company A and company B and
from patients from Maryland (Fig. 2A; Fig. S3). The New Mexico clinical isolate was
distant from all other isolates. The minimum spanning tree (MST) did not clearly
illustrate the differentiation between the New York cheese isolate and clade | isolates
because they were genetically close (Fig. 3). The alleles were identified that specifically
distinguished all clade | isolates from the New York cheese and California clinical
isolates (Table 2). The NJ algorithm using cgMLST summary calls generated a
clustering congruent with the wgMLST trees, placing the New York cheese and
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TABLE 1 Single nucleotide polymorphisms that specifically distinguished clade | isolates from the cheese isolate from New York
(CFSAN009740) and clinical isolate from California (PNUSAL000355)7

Nucleotide at the Amino acid at the
Esbnpnyclaicls postionjiniiolaiets) Gene locus tag, putative protein function, and
from: from: . .
Synonymous corresponding gene locus tag in wgMLST
SNP position Clade | NY CA change? Clade | NY CA pan-genome
479720 T cb C Yes CG42_RS02440, ZIP family metal transporter,
Imo0414
607603 G G T No A A E CG42_RS02995, Lacl family transcriptional regulator,
Imo0535
782555 T C C Yes CG42_RS03880, flagellar cap protein FliD, Imo0707
1080475 A G G No E G G CG42_RS05405, copper homeostasis protein CutC,
Imo1018
1298795¢ C C A No P P Q CG42_RS06585, DNA primase, LMON_1266
1334724 C T No T 1 T CG42_RS06775, histidine phosphatase family
protein, Imo1244
1740888 T C C Yes CG42_RS08730, VOC family protein, Imo1635
1762440 C G G Intergenic
1775838 C A C No A D A CG42_RS08875, rRNA methyltransferase, Imo1662
2275331 T T G Yes CG42_RS11330, sugar ABC transporter substrate-
binding protein, Imo2125
2311944 A A G Yes CG42_RS11530, xylose isomerase, Im02160
2532881 C C A No w w L CG42_RS12665, glutamate decarboxylase, Imo2434

aThe reported SNP position, protein ID, and putative functions are based on the complete and annotated chromosome of isolate CFSAN010068 (GenBank accession
number NZ_CP014250.1). All specific SNPs are located on the chromosome.

bUnderlining indicates that the nucleotide is different from that in clade | isolate.

<The locus is in the putative prophage region.

California clinical isolates outside clade | (Fig. S4). Clade | isolates differed from each
other by 0 to 9 alleles. The New York isolate differed from a clade | isolate,
CFSANO010085, by 8 alleles and differed from other clade | isolates by 3 to 7 alleles,
an amount smaller than the maximum pairwise distance among clade | isolates. In
contrast, the UPGMA algorithm using cgMLST summary calls placed the New York
cheese isolate in clade | (Fig. 2B).

For wgMLST using only assembly-free allele calls or only assembly-based allele calls,
both NJ and UPGMA phylogenies placed the New York cheese and California clinical
isolates outside clade |, consistent with the phylogeny based on summary calls (Fig. S5,
S6, S7, and S8). For cgMLST, the NJ phylogeny using only assembly-based calls was
congruent with that using the summary calls, placing the New York cheese and
California clinical isolates outside clade | (Fig. S9); however, the NJ phylogeny based on
only assembly-free calls placed the New York cheese isolate in clade | (Fig. S10), possibly
because in some isolates more loci had no allele calls by assembly-free calling than by
assembly-based and summary calling. The UPGMA phylogenies based on only
assembly-free calls and only assembly-based calls for cgMLST were congruent with that
based on summary calls, placing the New York cheese isolate inside clade | (Fig. S11 and
S12).

Prophage analysis. The combination of PHAST-based (18) and PHASTER-based (19)
analyses of the fully closed genome of CFSAN010068 predicted 2 putative complete
prophages, designated prophage 1 (position 68,171 to 115,163) and prophage 2
(position 1,281,529 to 1,324,833). BLAST analyses showed that the 2 putative regions
were conserved, with =99% query coverage (percentage of the query sequence that
overlapped the subject sequence) and =99% sequence identity among PFGE-matched
isolates: clade | isolates, the New York cheese isolate, and the California clinical isolate.
BLAST analyses further showed that prophage 1 was absent (BLAST query coverage of
18%) in the New Mexico clinical isolate (PNUSAL000140), which exhibited a different
PFGE pattern, and that the alignment of prophage 2 between the New Mexico clinical
isolate and CFSAN010068 had 80% BLAST query coverage, indicating more diversity
than that in prophage 2 among PFGE-matched isolates.
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FIG 2 Phylogenetic trees constructed based on wgMLST loci that had summary allele calls for at least one
isolate, based on NJ by wgMLST (A) and UPGMA by cgMLST (B). The company B isolate, the New York
(NY) cheese isolate, and the California (CA) clinical isolate are highlighted in red, blue, and green boxes,
respectively.

DISCUSSION

These data confirm that WGS is a useful tool for laboratory analysis during
investigations of listeriosis outbreaks. To integrate the enhanced information of
WGS analyses into public health investigations, the FDA and CDC established a real-
time Listeria project (2, 11), in which virtually all clinical isolates and the majority of food
and environmental isolates of L. monocytogenes collected in the United States are now
sequenced and archived, and those genomic data are publicly available. This is a case
in which real-time WGS was used by multiple federal and state agencies during the
laboratory analysis of food and environmental isolates to support findings of an
epidemiological investigation of a listeriosis outbreak in the United States. Data from
the real-time Listeria project led to the identification of the transmission of the outbreak
strain from company A to company B. The WGS analyses clustered all Maryland clinical
isolates with company A food and environmental isolates collected as part of the
outbreak investigation and implicated by the epidemiological investigation, and the
analysis also excluded the PFGE-indistinguishable isolate collected from an epidemio-
logically unrelated food source in New York. Although the isolate from the California
patient was relatively closely related to the outbreak-associated isolates, further WGS
analyses performed after the investigation’s conclusion did not support the inclusion of
this patient’s illness as part of the outbreak. The food history for this patient was not
available to allow suggestions of any alternative food sources for sampling and testing
(13). Nonetheless, WGS analyses corroborated the conclusion based on the epidemio-
logical investigation on food histories of Maryland patients: company A cheese prod-
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PNUSAL000355

PNUSAL000140

CFSAN009740

FIG 3 Minimum spanning tree based on wgMLST loci that had summary allele calls for all the isolates. Clade | isolates illustrated in Fig.
1 and 2, except the company B environmental isolate, are shown in white circles, and isolate identifiers are not shown. The New Mexico
clinical isolate, California clinical isolate, New York cheese isolate, and company B environmental isolate are in black, green, blue, and red,
respectively. The area of each circle is proportional to the number of isolates represented. The number of allele differences between two
circles is listed on the line connecting the two circles. The length of each connecting line is proportional to the log of the number of allele
differences.

ucts were the likely source of the outbreak. The WGS clustering and the small number
of SNPs/alleles differentiating clade | isolates from the California clinical isolate and the
New York cheese isolate indicated that all of these isolates descended from a very
recent common ancestor, which we hypothesize existed outside company A.

WGS data allowed a side-by-side comparison of WGS analysis methods. MLST-
based methods only consider variants in coding regions. In addition, they count all
variants in one coding region as one allele difference, to correct for recombination
events that account for multiple variants in one region (33). Thus, MLST methods
inherently offer less resolution than whole-genome-wide variants. However, the per-
formance of a specific MLST method or a specific SNP-based method is also affected by
the allele/SNP calling algorithms. For example, an indel results in a different allele call
by wgMLST, but it would not be counted by the CFSAN SNP Pipeline unless at least one
other isolate had an SNP in that nucleotide position. The CFSAN SNP Pipeline employs
a filter to remove SNPs that may be the result of recombination or low-quality
sequencing/mapping. BioNumerics also employs algorithms to process questionable
wgMLST calls (discussed below). In this study, we used an outbreak-associated isolate
(CFSANO10068) as the reference for the CFSAN SNP Pipeline to increase the mapping
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TABLE 2 Alleles that specifically distinguished clade | isolates from the cheese isolate from New York (CFSAN009740) and the clinical
isolate from California (PNUSAL0O00355)

Allele profile for isolate(s) from:

Locus in the Putative protein function and corresponding gene

pan-genome Clade | NY CA locus tag in CFSAN010068 genome

Imo04144 88t 7¢ 7 ZIP family metal transporter, CG42_RS02440

Imo04594 5 5 117 Transcriptional regulator, CG42_RS02650

Imo0460° 14 14 105 Membrane-associated lipoprotein, CG42_RS02660

Imo0535 5 5 115 Lacl family transcriptional regulator, CG42_RS02995

Imo0707 100 10 10 Flagellar cap protein FliD, CG42_RS03880

Imo1018 84 108 108 Copper homeostasis protein CutC, CG42_RS05405

LMON_12669¢ 4 24 DNA primase, CG42_RS06585

Imo12444 13 128 13 Histidine phosphatase family protein, CG42_RS06775

Imo1337 4 117 Rhomboid family intramembrane serine protease,?
CG42_RS07240

Imo16359 36 6 VOC family protein,4 CG42_RS08730

Imo1662 11 134 1 rRNA methyltransferase, CG42_RS08875

Imo02125 2 2 119 Sugar ABC transporter substrate-binding protein,
CG42_RS11330

Imo2160° 17 17 122 Xylose isomerase, CG42_RS11530

Imo2434 15 or 129 15 117 Glutamate decarboxylase, CG42_RS12665

9The locus was included in the wgMLST scheme but not in the cgMLST scheme.

bln the BioNumerics allele database, numbers to designate the same alleles for CDC users are different from those for general users.

cUnderlining indicates that the nucleotide is different from that in clade I isolates.

dThe functions of genes were identified as hypothetical proteins in the EGD-e annotation (GenBank accession number NC_003210.1), and so the functions of
corresponding regions in isolate CFSAN010068 (GenBank accession number NZ_CP014250.1) are listed.

eThe locus was identified from the complete genome of EGD (NC_022568.1) as part of the pan-genome panel. The designations for other loci are from the EGD-e
genome.

quality (20). This genome was completely closed to maximize the resolution of variant
calling. wgMLST identified 6 alleles that specifically distinguished the entire clade | from
the New York cheese isolate, and 3 of the alleles were not targeted by cgMLST (Table
2). wgMLST also identified 2 other alleles (Im02691 and Imo02434) in which the New
York cheese isolate differed from at least 5 of the clade | isolates; Im02691 was not
targeted by cgMLST. This may explain why the UPGMA algorithm or assembly-free
allele calling by cgMLST placed the New York cheese isolate into clade I. When we
compared the New York cheese isolate with clade | isolates, the specific SNPs identified
by the CFSAN SNP Pipeline were concordant with the specific alleles identified by
wgMLST (Tables 1 and 2). However, when comparing the California clinical isolate with
clade | isolates, there were differences between the CFSAN SNP Pipeline and wgMLST.
Specifically, the SNP Pipeline identified an SNP in an intergenic region, which was not
targeted by wgMLST. In the reference genome (CFSAN0O10068) regions corresponding
to the 3 wgMLST allele mismatches (Imo1337, Imo0459, and Imo0460), the SNP Pipeline
did not call any SNPs (Tables 1 and 2). We then checked the raw reads mapping and
found a single nucleotide deletion in the genomic region corresponding to Imo1337 in
the California clinical isolate. The indel in this isolate resulted in a different allele call by
wgMLST, but it was not counted by the SNP Pipeline because no other isolates had an
SNP in the same nucleotide position. Examination of raw reads confirmed DNA varia-
tions in the genomic regions corresponding to Imo0459 and Imo0460 in the California
clinical isolate. Through the use of the Tandem Repeats Finder program (21), we
discovered that those variations were in a tandem repeat region (data not shown),
which would be challenging to resolve by next-generation sequencing and often
generates false high-density SNPs with reads mapping (8, 22). This explains why they
were filtered from the final SNP matrix by the SNP Pipeline. Thus, the use of multiple
WGS analysis approaches maximized the discovery of genetic variants, which illustrates
that using multiple tools could help exclude unrelated isolates in future investigations
where isolates are highly similar to each other.

The BioNumerics process, used at the default setting, combines the call generated
by the assembly-based approach and the call generated by the assembly-free approach
into a summary call for each locus. Briefly, when the two approaches yield an identical
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call, that call is the summary call; when the two approaches yield different calls, there
is be no summary allele call; when one approach yields an allele call and the other
approach yields no allele call, the summary call is the call yielded by the first approach.
NJ and UPGMA are two common phylogenetic algorithms for analyzing allele profiles.
In this study, the summary calls, assembly-based calls, and assembly-free calls yielded
the same NJ and UPGMA wgMLST phylogenies between the New York/California
isolates and clade | isolates, despite minor differences in the subclades within clade |,
which were expected. However, the assembly-free calls for cgMLST could not differen-
tiate the New York isolate from clade | isolates. In the future, even for the same
wgMLST/cgMLST target gene set, different software to implement the analyses, differ-
ent allele-calling algorithms, or different parameters of the same allele-calling algorithm
should be thoroughly evaluated using more outbreak data sets, especially when
epidemiologically unrelated isolates exhibit high genetic similarity to the outbreak
isolates.

The kSNP analysis corroborated the results of the SNP analysis method and of
wgMLST in the identification of the food source of this outbreak. However, the utility
of the kSNP approach for routine identification of outbreak clusters still needs further
evaluation (23).

WGS phylogeny is critical for identifying the scope of an outbreak and we
cannot solely rely on the SNP/allele threshold. The accuracy of SNP calling in
reference-based methods can be reduced when they are applied to relatively diverse
genomes; that is why when the determination of the number of SNPs among isolates
is critical, it is preferable to remove the relatively distant outgroup for a second analysis
(8). In this data set, removing the New Mexico isolate from the SNP Pipeline analysis did
not change the SNP calling among other isolates. The same SNP-based analysis and
wgMLST analysis revealed that isolates involved in other outbreaks had various degree
of diversity, with 4 to 42 SNPs (8, 24, 25) or 5 to 43 alleles (2, 12, 26, 27). Isolates could
accumulate various degrees of genetic variations after entering a food-processing
facility; alternatively, isolates from a common source could evolve for years, accumu-
lating genetic variations, prior to entering a facility through a single or multiple
contamination events. In some other WGS studies of listeriosis outbreaks, the minimum
number of SNP/allele differences between outbreak-associated isolates and epidemi-
ologically unrelated isolates was more than 3 times the maximum number of pairwise
SNP/allele differences among outbreak-associated isolates (9, 28). These studies either
did not employ any molecular subtyping tools or employed MLST for screening
suspect/background isolates (9, 28). In contrast, we used PFGE, which has greater
discriminatory power than MLST, to screen for suspect/background isolates more likely
to be genetically close to the outbreak isolates, and we included them in the epide-
miologic investigation and WGS analysis. This approach was also used in some other
studies (4, 29). Our data showed that the numbers of SNP/allele differences between
clade | isolates and the epidemiologically unrelated, PFGE-matched New York and
California isolates were not much larger than those among clade | isolates. In contrast,
the MLST-matched New Mexico clinical isolate, which had a different PFGE profile from
clade I isolates, differed from clade | isolates by more than 200 SNPs. The high genetic
similarity among the PFGE-matched isolates is what led us to conclude that all of these
isolates share a recent common ancestor. Since the 2012 New York cheese isolate was
known not to be linked to the outbreak, we also believe that the California clinical
isolate might not be part of the outbreak. Our exclusion of the New York isolate and the
California isolate is not based on an SNP/allele threshold, rather, it is supported by
topologies generated using the whole genome SNP matrix, core genome SNP matrix,
whole genome k-mer SNP, wgMLST, and NJ topologies generated using cgMLST
summary allele calls or assembly-based allele calls. These results highlight why it is
critical that genetic differences be complemented by WGS trees generated by
phylogenetically meaningful algorithms to distinguish outbreak-associated isolates
from epidemiologically unrelated isolates. The sufficient number of food and
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environmental isolates was also important in generating the meaningful WGS
phylogeny.

MLST approaches convert sequence variations to allelic profiles and use distance-
based methods to reconstruct phylogeny. NJ and UPGMA are two of the most com-
monly used distance-based phylogenetic reconstruction algorithms; they build phylo-
genetic clustering by searching the genetic distance matrix for the most closely related
isolates and then connecting these isolates at a node (30). UPGMA assumes a perfect
molecular clock and an equal evolutionary rate for all isolates, which is a very rare
condition. In contrast, NJ is more flexible as it allows the evolutionary rates to vary by
isolates (30). Therefore, NJ incorporates more parameters of evolution for phylogenetic
reconstruction and is generally more reliable than UPGMA (30). The purpose of WGS for
source tracking is to differentiate outbreak-associated isolates from epidemiologically
unrelated isolates. Therefore, if these isolates are genetically distant, the choice of
phylogenetic reconstruction algorithms may not be critical. In this outbreak, the
number of SNPs/alleles between epidemiologically unrelated isolates was relatively
small, but UPGMA topologies based on wgMLST alleles still differentiated epidemio-
logically unrelated isolates. The number of SNPs/alleles between epidemiologically
unrelated isolates in the core genome was even smaller, which exposed the weakness
of UPGMA. MSTs display the number of allelic differences between isolates and thus
should be interpreted with caution when outbreak-associated isolates are genetically
close to epidemiologically unrelated isolates, especially considering that central allelic
profiles of MSTs may not be ancestral founders but rather frequent allelic profiles
among a group of isolates (31). cgMLST had limited discriminatory power in this
investigation, and therefore we suggest that different phylogenetic algorithms be
explored with cgMLST and that any cgMLST clustering should be followed by wgMLST
and/or whole-genome SNP analysis when using epidemiologic evidence.

Putative prophages had significant divergence among the MLST-matched iso-
lates but were conserved among the PFGE-matched isolates and not sufficient to
exclude epidemiologically unrelated isolates from the outbreak. There were no
major prophage variations among clade | isolates, the California clinical isolate, and the
New York cheese isolate; this was consistent with the finding that only one of the SNPs
that specifically differentiated PNUSAL000355 from clade | isolates was a putative
prophage (Table 1). Thus, the prophage variations did not contribute to the differen-
tiation between the New York/California isolates and clade I isolates. In contrast, the
CC5 isolate from New Mexico, which exhibited a different PFGE pattern, significantly
differed in prophage profile from those of isolates exhibiting the outbreak PFGE
pattern. Thus, PFGE and prophage variations possessed similar discriminatory power,
which was lower than that of WGS analysis. The prophage variations resulted in a high
density of SNPs between the New Mexico isolate and other isolates and were excluded
by the SNP Pipeline because these variations could be the result of recombination and
the number of SNPs does not necessarily reflect the evolutionary relatedness among
isolates. In some other studies, prophage variations have been more discriminatory
than PFGE. For example, PFGE-indistinguishable ST11 isolates that persisted in the same
food-processing facility had significant comK prophage divergence (32). Prophages
were conserved among prophage-containing isolates associated with an ice cream
outbreak and were diverse between outbreak isolates and nonoutbreak isolates
that were matched by PFGE (8). DNA sequence variations are more informative than
PFGE banding patterns, and thus, even in situations in which prophage variations
offer similar discriminatory power as PFGE, they are still valuable for studying strain
relationships. Some of the insertions/deletions in prophages could be sequencing
artifacts; however, we fully closed the reference genome, and the alignment of
prophages (>99% coverage) between the closed genome and draft genomes of
PFGE-matched isolates indicated that the draft sequencing in this study resolved
prophages very well.

CC5 isolates are involved in more than half of reported invasive listeriosis
outbreaks caused by confirmed serotype 1/2b strains. There are 13 serotypes of
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L. monocytogenes, with serotypes 4b, 1/2b, and 1/2a associated with the majority of the
listeriosis outbreaks (7). The clonal complexes of L. monocytogenes were defined based
on allele differences identified by a 7-gene MLST scheme (33), and it was recently
demonstrated that the clonal complex definition is generally compatible with WGS
clustering (5, 7). Historically, confirmed serotype 1/2b strains (i.e., serotypes confirmed
by antisera agglutination, not just by PCR serogrouping) have been mostly associated
with gastrointestinal outbreaks, linked to contaminated chocolate milk in lIllinois in
1994 (34), contaminated rice salad in Italy in 1993 (35), and contaminated imitation crab
salad in Canada in 1996 (36). One patient involved in the Canada crab salad outbreak
had an invasive infection, but the symptoms were predominantly gastrointestinal (36).
A 1987 Pennsylvania outbreak linked to contaminated salami or ice cream involved
serotype 1/2b isolates (CC3) and invasive listeriosis (37). Recently, more invasive liste-
riosis outbreaks involving serotype 1/2b were reported, including the outbreak we
evaluated here (CC5), a cluster of illnesses in the 2011 U.S. cantaloupe outbreak (CC5)
(38), a 2013-2014 Spain foie gras outbreak (CC87) (39), a 2013-2014 Spain outbreak with
an unidentified food source (CC87) (39), a cluster of ilinesses in the 2010-2015 U.S. ice
cream outbreak (CC5) (8), and a 2011-2013 Austria outbreak linked to contaminated
cheese or meat (CC5) (4). Interestingly, 4 of these 6 outbreaks involved CC5, which
indicates this clonal group might have hypervirulent phenotypes or phenotypes that
allow more successful persistence in foods and food-processing environments than
other serotype 1/2b strains.

Conclusions. WGS analysis was a highly useful addition to epidemiologic and
trace-back data in the investigation of this outbreak and in tracing the spread of
outbreak isolates across more than one food-processing facility. Notably, WGS distin-
guished outbreak-associated isolates from the PFGE-matched New York cheese isolate
collected from an epidemiologically unrelated food source. Additional phylogenetic
analysis conducted after conclusion of the outbreak suggested that the California
clinical isolate with high genetic similarity to the outbreak isolates was likely not part
of the outbreak. The detailed scrutiny of this data set demonstrated that prophage
variations, the UPGMA algorithm, or assembly-free allele calling for cgMLST were
insufficient for exclusion of the New York cheese isolate that was not associated with
the outbreak. From the analyses based on whole genome variations, we were able to
construct the highly resolved phylogeny needed for investigation; we should not rely
solely on an SNP/allele threshold to delineate an outbreak. Ultimately, a combination of
epidemiologic evidence, PFGE data, and multiple WGS analyses should be applied to
increase confidence during outbreak investigations.

MATERIALS AND METHODS

Isolates. The following isolates were included in the study: 5 isolates from patients in Maryland
obtained in 2013, 1 isolate from the patient in California obtained in 2013, 1 isolate from the cheese
sample collected in New York in 2012, and 48 isolates from L. monocytogenes-positive cheese samples of
different batches and environmental samples from different company A facility areas collected in 2014;
also included was 1 isolate from the company B environmental sample obtained during a regular
surveillance sampling 3 months after the outbreak investigation (Table 3). Four of the seven Maryland
patients were mother-newborn pairs, for which only the newborn clinical isolates were analyzed. We
used the genome sequence of the clinical isolate in New Mexico in 2013 (PNUSAL000140) as the
outgroup for the above-mentioned isolates; PNUSAL000140 has the same MLST-based ST as the
outbreak-associated isolates, but it has a distinct PFGE pattern.

PFGE and whole genome sequencing. The standard PulseNet protocol with restriction endonu-
clease digestion by Ascl/Apal (40) was used to perform the PFGE. One outbreak isolate, CFSANO10068,
taken from a company A cheese sample, was selected to be fully sequenced using the PacBio RS Il system
(Pacific Biosciences, Menlo Park, CA, USA) and achieved at least 100X average genome coverage, as
previously described (24, 41). This fully closed genome was used as the reference genome for
mapping and SNP calls, as described below. Other isolates were sequenced using the MiSeq V2 kit
(Illumina, Inc., San Diego, CA) (two 250-bp-length runs) as previously described (24). All of the
sequences were deposited in the FDA GenomeTrakr database (http://www.ncbi.nlm.nih.gov/
bioproject/183844) (Table 3).

SNP analyses. SNPs were identified using the FDA CFSAN SNP Pipeline v0.6.0 with default settings
(3, 14). Briefly, raw reads from each genome were mapped to CFSAN010068 by using Bowtie 2 version
2.2.2 (42). The BAM file was sorted using Samtools version 0.1.19 (43), and a pileup file for each genome
was produced. These files were then processed using VarScan2 version 2.3.9 to identify high-quality
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Strain identifier GenBank accession no. Source state Sample type Collection date
PNUSAL0001404 SRR974871 New Mexico Clinical July 2013
PNUSAL000355 SRR1027093 California Clinical October 2013
CFSAN009740 SRR1200763 New York Cheese December 2012
PNUSAL000569 SRR1174760 Maryland Clinical August 2013
PNUSAL000571 SRR1193826 Maryland Clinical August 2013
PNUSAL000570 SRR1193825 Maryland Clinical August 2013
PNUSAL000517 SRR1112195 Maryland Clinical October 2013
PNUSAL000520 SRR1112204 Maryland Clinical November 2013
CFSANO11016 SRR1378358 Maryland Cheese February 2014
CFSANO011017 SRR1378351 Maryland Cheese February 2014
CFSAN011018 SRR1378353 Maryland Cheese February 2014
CFSAN010068 NZ_CP014250.1¢ Maryland Cheese February 2014
CFSAN010069 SRR1181541 Maryland Cheese February 2014
CFSAN010070 SRR1181568 Maryland Cheese February 2014
CFSAN010071 SRR1181535 Maryland Cheese February 2014
CFSAN010072 SRR1181561 Maryland Cheese February 2014
CFSAN010073 SRR1181538 Maryland Cheese February 2014
CFSAN010074 SRR1181554 Maryland Cheese February 2014
CFSAN010075 SRR1181556 Maryland Cheese February 2014
CFSAN010076 SRR1181567 Maryland Cheese February 2014
CFSAN010077 SRR1181511 Maryland Cheese February 2014
CFSANO011015 SRR1378347 Maryland Cheese February 2014
CFSAN010972 SRR1198952 Washington, DC Cheese February 2014
CFSAN010973 SRR1198878 Washington, DC Cheese February 2014
CFSAN010088 SRR1195636 Delaware Environment February 2014
CFSAN010089 SRR1195637 Delaware Environment February 2014
CFSAN010090 SRR1195675 Delaware Environment February 2014
CFSAN010091 SRR1195661 Delaware Environment February 2014
CFSAN010092 SRR1195691 Delaware Environment February 2014
CFSAN010093 SRR1186333 Delaware Environment February 2014
CFSAN010094 SRR1195629 Delaware Environment February 2014
CFSAN010095 SRR1195657 Delaware Environment February 2014
CFSAN010096 SRR1195670 Delaware Environment February 2014
CFSAN010097 SRR1186346 Delaware Environment February 2014
CFSAN010098 SRR1186334 Delaware Environment February 2014
CFSAN018314 SRR1555351 Delaware Environment May 2014
CFSANO010067 SRR1177313 Virginia Cheese February 2014
CFSAN010078 SRR1181539 Virginia Cheese February 2014
CFSAN010079 SRR1182716 Virginia Cheese February 2014
CFSAN010080 SRR1182219 Virginia Cheese February 2014
CFSAN010081 SRR1182220 Virginia Cheese February 2014
CFSAN010082 SRR1182225 Virginia Cheese February 2014
CFSAN010083 SRR1182221 Virginia Cheese February 2014
CFSAN010084 SRR1182222 Virginia Cheese February 2014
CFSAN010085 SRR1182223 Virginia Cheese February 2014
CFSAN010086 SRR1182224 Virginia Cheese February 2014
CFSAN010087 SRR1181522 Virginia Cheese February 2014
CFSAN010754 SRR1187613 Virginia Cheese February 2014
CFSANO010755 SRR1187589 Virginia Cheese February 2014
CFSAN010756 SRR1187587 Virginia Cheese February 2014
CFSAN010757 SRR1187440 Virginia Cheese February 2014
CFSAN010758 SRR1187427 Virginia Cheese February 2014
CFSAN010759 SRR1187445 Virginia Cheese February 2014
CFSAN010760 SRR1187584 Virginia Cheese February 2014
CFSAN010761 SRR1187420 Virginia Cheese February 2014
CFSAN010762 SRR1187616 Virginia Cheese February 2014
CFSAN010763 SRR1187425 Virginia Cheese February 2014

aAll isolates were serotype 1/2b, CC5. All isolates except PNUSAL000140 had the PFGE pattern GX6A16.0259/GX6A12.2046 (Ascl/Apal).

bFor identification of SNPs via the CFSAN SNP Pipeline, the completely closed genome of the reference isolate and raw reads from other isolates were used. The

closed genome was not used in the wgMLST/cgMLST analyses.

variant sites (44). The Python script was used to parse the .vcf files and construct an initial SNP matrix.
For this set of relatively closely related isolates, the SNP Pipeline applied a filter to exclude variant sites
in high-density variant regions (=3 variant sites in =1,000 bp of any one genome), since they may be
the result of recombination or low-quality sequencing/mapping, which often occurred in repetitive
regions. The excluded regions combined were 2,632 bp (containing 31 variant sites), 38,051 bp (778
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variant sites), and 3,906 bp (31 variant sites). The first two regions were in prophages, containing SNPs
only between PNUSAL000140 and other isolates; the third region was a repetitive region containing SNPs
only between PNUSAL000355 and other isolates. No excluded regions contained SNPs among other
isolates. Detailed information (e.g., code and instructions) is available at https://github.com/CFSAN
-Biostatistics/snp-pipeline. GARLI (45) was subsequently used to infer two phylogenies, one based on the
SNP matrix in the entire genome and the other based on the SNPs only in the core genome (1,748 coding
sequences, as discussed below). A separate k-mer-based approach was also used to generate a whole
genome tree, by using kSNP v3 software (46) in order to determine whether the different SNP-based
approaches generated concordant clustering.

wgMLST and cgMLST analyses. wgMLST and cgMLST analyses were performed using tools in

BioNumerics 7.5. Briefly, alleles were identified by the combination of an assembly-free k-mer-based
approach using raw reads and assembly-based BLAST approach using SPAdes version 3.5.0-assembled
genomes (47) with the wgMLST and cgMLST L. monocytogenes tools within BioNumerics 7.5. The wgMLST
scheme contains 4,797 coding loci, representing a pan-genome of L. monocytogenes identified from over
150 previously published genomes (48). Among them, 1,748 coding loci represent the core genome of
L. monocytogenes (5). Once all alleles were assigned to each genome, NJ and UPGMA trees were
constructed for wgMLST and cgMLST. Loci with no allele calls were ignored in the pairwise comparison
during the tree construction. For wgMLST, a subset of loci in which all isolates had allele calls was used
to construct an MST based on the allelic profile of each individual isolate. We also performed the same
WgMLST/cgMLST analyses using the assembly-free-only approach and assembly-based-only approach in
BioNumerics 7.5.

In silico MLST, prophage, and virulence profile analyses. In silico MLST analysis was performed

using the tools in BioNumerics 7.5. The presence of major internalins and Listeria pathogenicity islands
(5) in these isolates were determined using the tools in BioNumerics 7.5. A combination of PHAST (18)
and PHASTER (19) was used to identify putative prophages from the complete genome of CFSAN010068.
Sequences of the putative prophages of CFSAN010068 were analyzed via BLAST (49) against SPAdes
v3.5.0-assembled draft genomes (47), and the query coverage (percentage of the query sequence that
overlaps the subject sequence) and sequence identify of the BLAST alignment were determined.

Accession number(s). The WGS sequences were deposited with GenBank under the accession

numbers provided in Table 3 (for the complete genome) and were also assigned Sequence Read Archive
(SRA) identifiers for draft genomes.
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