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Abstract
Background: The new coronavirus (SARS-CoV-2), which has 
been responsible for the recent coronavirus disease 2019 
(COVID-19) pandemic, uses the cell receptor angiotensin 
converting enzyme-2 (ACE2) for entry and the serine prote-
ase TMPRSS2 for spike (S) protein priming. Meanwhile, the 
presence of B0AT1 (SLC6A19) may prevent TMPRSS2 from 
accessing the cutting position on ACE2. Identifying the ex-
pression of these cell receptor-related genes of SARS-CoV-2 
is critical for understanding the pathogenesis of SARS-CoV-2 
in various tissues, especially in the kidney. Methods: The sin-
gle-cell transcription datasets of the human cell landscape 
(HCL) and other relevant single-cell transcription databases 
were used to analyze the expression of ACE2, TMPRSS2, and 
SLC6A19 in various organs and tissues, but mainly in the kid-
ney. Results: ACE2 was significantly expressed in the S1, S2, 

and S3 segments of proximal tubule (PT) cells. TMPRSS2 was 
widely expressed in several renal tubule populations ex-
tending from the PT cells to the collection system cell type, 
of which intercalated cells and the distal convoluted tubule 
cells showed more significant expression than PT cells.  
Unexpectedly, although expressed on various renal tubule 
populations, SLC6A19 was mainly enriched in PT cells, in line 
with ACE2 expression. Although alveolar-type (AT) 2 cells of 
the lung and intestinal epithelial cells expressed ACE2 as well 
as PT cells, AT 2 cells significantly expressed TMPRSS2 but 
not SLC6A19, while all 3 genes were significantly expressed 
in intestinal epithelial cells. Conclusions: ACE2 was widely 
expressed in specific cell subgroups of various human tis-
sues, especially in intestinal epithelial cells, kidney PT cells, 
and also AT 2 cells of the lung. These 3 types of cells demon-
strated significant differences in the distribution of the cell 
receptor-related genes of SARS-CoV-2, which may indicate 
the diversity of cell surface structures and differences in the 
affinity between SARS-CoV-2 and cells.
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Introduction

The rapid national and international spread of the dis-
ease caused by SARS-CoV-2 (COVID-19) has posed a 
global health threat and has infected millions of people 
[1]. Although SARS-CoV-2 is closely related to SARS-
CoV in gene sequence (about 79% identity), it has no evo-
lutionary relationship with SARS-CoV and belongs to the 
subgenus sarbecovirus of the genus betacoronavirus [2, 
3]. The spike (S) protein of SARS-CoV-2, composed of 
the amino N-terminal receptor-binding S1 and carboxyl 
C-terminal membrane fusion S2 subunits, mediates virus 
entry into target cells [4, 5]. During viral infection, the S 
protein is cleaved into S1 and S2 subunits, and the S1 sub-
unit contains the receptor-binding domain, which direct-
ly binds to the peptidase domain of ACE2 [4, 6]. When 
the receptor-binding domain binds to the ACE2, another 
cleavage site on S2 is exposed and cleaved by host prote-
ases, which is critical for viral infection [7–9]. Hoffmann 
et al. [10] have documented that host cell entry of SARS-
CoV-2 depends on ACE2 and can be blocked by the cel-
lular type II transmembrane serine protease TMPRSS2. 
The arginine and lysine residues in amino acids 697–716 
of ACE2 are essential for cleavage by TMPRSS2, and 
ACE2 processing is necessary for augmentation of SARS-
S-driven entry by these proteases [8]. The cryo-electron-
microscopic structure of full-length human ACE2 has 
been resolved in the presence of the amino acid trans-
porter B0AT1 (also known as SLC6A19), and it is found 
that residues 697–716 form the 3rd and 4th helices in the 
neck domain [11]. The ACE2-B0AT1 exists as a dimer of 
heterodimers, and each B0AT1 interacts with the neck in 
the adjacent ACE2 [11]. This structure suggests that the 
presence of B0AT1 (SLC6A19) may prevent TMPRSS2 
from accessing the cutting position on ACE2. Hence, ac-
cording to the present studies, SARS-CoV-2 may infect 
target cells through synaptic effects of viral spike protein, 
ACE2, and TMPRSS2 while inhibited by B0AT1. 

Cell subgroups expressing ACE2 may be SARS-CoV-
2-targeted cells, and the co-expression of TMPRSS2 indi-
cates that they may have a direct risk of infection. Previ-
ous studies have found that ACE2 is strongly expressed 
in the renal tubules [12], and recent single-cell transcrip-
tome analyses have revealed that proximal tubule (PT) 
cells significantly express ACE2 [13]. Yet, the incidence 
of acute kidney injury (AKI) in COVID-19 patients varies 
in various studies [14–18]. Meanwhile, there is still debate 
about the presence of viruses in the urine [19–21]. SARS-
CoV-2 entry into target cells is an elegantly regulated 
multistep processes, of which binding to ACE2 is only the 

first. Identifying the expression of cell receptor-related 
genes of SARS-CoV-2 in the kidney is critical for under-
standing the pathogenesis of SARS-CoV-2. In this study, 
we analyze the expression of genes related to SARS-
CoV-2 entry into target cells through single-cell tran-
scriptome databases in order to objectively reflect the re-
lationship between kidney cells and SARS-CoV-2.

Concise Methods

Analysis of ACE2 Expression in Human Organs and 
Cell Types
We queried the NCBI website to obtain ACE2 bulk 

expression data among human organs. We used 3 dif
ferent databases (https://www.ncbi.nlm.nih.gov/gene/ 
?term = 59272): human protein atlas RNA-seq normal 
tissue, RNA sequencing of total RNA from 20 human tis-
sues, and the Illumina BodyMap 2 transcriptome (online 
suppl. Fig. 1a–c; for all online suppl. material, see www.
karger.com/doi/10.1159/000508162). 

The human cell landscape (HCL) single-cell transcrip-
tome sequencing datasets were clustered into cell types 
using the annotation provided online [22]. The database 
is maintained by a single laboratory through the micro
well-seq experimental method that essentially covers 
most tissues and organs of the human body [23]. After 
normalization and scaling the expression data, we further 
compared the mean expression of ACE2 among the HCL 
cell types and showed the top 50 cell types (those with 
highest ACE2 expression) in the t-distributed stochastic 
neighbor embedding plot according to the organs and cell 
types (Fig. 1a). 

Gene Expression Analysis in Kidney Single-Cell 
Transcriptome Sequencing Data Sets
Using the GSE140989 database with the 10X genomic 

single-cell RNA sequencing (scRNA-seq) protocol, com-
bined processing of 24 samples, including 16 tumor ne-
phrectomy, 5 surveillance, and 3 preperfusion biopsies, 
yielded 22,268 cells (4,690 from surveillance biopsies, 
16,491 from tumor nephrectomies, and 2,834 cells from 
preperfusion biopsies) [24]. The GSE121862 database is a 
combination of data from different experiments and in-
stitutions, and studies have suggested that single-nuclear 
transcriptome sequencing technology is more suitable in 
the kidney than other methods of gene expression analy-
sis [25]. The average sequencing depth of each nucleus is 
1,082 genes, and 17,659 nuclear transcripts are divided 
into 30 different cell clusters [26]. The dataset GSE131685 
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contains a 10X genomic single-cell transcriptome se-
quencing dataset of 23,366 high-quality human kidney 
cells from 3 Chinese donors, including 20,308 PT cells 
[27].

In the standard single-cell transcriptome sequencing 
analysis pipeline, we first filtered cells with fewer than 200 
genes, and genes with fewer than 3 cells as a quality con-
trol step [28]. After normalizing and scaling the data, we 
selected highly variable genes using Seurat to find highly 
variable gene functions with default parameters [29]. For 
dataset GSE121862, we directly used the cluster annota-
tion provided in the reference article and visualized the 
result in a UMAP embedding space using 20 principal 
components in the principal component analysis (PCA) 
and UMAP function of Seurat. We performed Harmony 
for batch correction of the GSE131685 dataset and visual-
ized the result in a UMAP embedding space using 20 
principal components in PCA with a resolution 0.25 to 
find the cluster function. For the dataset GSE140989, we 
used 20 principal components and 1.2 resolution in the 
FindClusters function in order to obtain the similar clus-
ter in the reference article. The detailed cluster markers 
and annotations of datasets GSE131685 and GSE140989 
can be accessed in online supplementary Table 2. Finally, 
we visualized the expression level of the ACE2 gene in the 
embedding space and compared the ACE2 gene expres-
sion among the kidney cell types.

Differential Gene Expression Analysis in PT Cells
In order to further analyze the genetic and functional 

characteristics of ACE2-expressing cells, we divided kid-
ney cells into ACE2+ and ACE2– cells according to the 
expression level of ACE2. The differential expression test 
was performed using the Seurat FindMarkers function 
with Wilcoxon rank sum test and further visualized in a 
volcano plot. Genes with log average fold change larger 
than 1 were defined as up-regulation genes and those 
smaller than –1 as down-regulation genes. The GO en-
richment analysis of the top 100 different expression 
genes was performed using Metascape, an online gene an-
notation tool [30]. Detailed run scripts are included in the 

supplementary materials and also available from https://
github.com/JiaqiLiZju/ACE2-in-kidney.

Gene Expression Analysis in Lung and Small-Intestine 
Single-Cell Transcriptome Sequencing Datasets
The dataset GSE125970 contains a single-cell transcrip-

tome sequencing dataset of 14,537 epithelial cells from 
adult human ileum, colon, and rectum [31]. Fresh resected 
human lung tissue was obtained from a transplant donor 
and profiled using single cell RNA sequencing technology 
(GSM3489185) [32]. We used Seurat V3.0 to discriminate 
different cell types. The data were first normalized using 
the LogNormalize method. For the dataset GSE125970, the 
cluster annotation provided in the reference article is ap-
plied, and cell scatter plots were obtained using UMAP. 
For the dataset GSM3489185, seven clusters were identi-
fied using the 12 canonical correlation vectors with the res-
olution parameter set to 0.1.Marker genes for the 7 clusters 
were defined using the ROC test in the Seurat package, 
which allowed for cell types to be assigned to each cluster, 
with the intent to be similar to the reference article. 

Differential Gene Expression Analysis in Enterocytes 
and Alveolar Type 2 Cells
In addition to further analyze the genetic and func-

tional characteristics of ACE2-expressing enterocytes 
and alveolar type (AT) 2 cells, we divided cells into ACE2+ 
and ACE2– cells according to the expression level of 
ACE2. The differential expression analysis was performed 
by the function FindMarkers in Seurat using a Wilcoxon 
rank sum test on all genes in ACE2+ and ACE2– cells  
detected within a cluster. Differentially expressed genes 
with a fold change more than 0.5 (log scale) or less than 
0.5 were considered to be marker genes. Gene expression 
of selected markers was visualized in a volcano plot using 
R package. The GO enrichment analysis of differential 
expression genes was performed using Metascape, an on-
line gene annotation tool [30]. Detailed run scripts are 
included in the supplementary materials (also available 
from https://github.com/JiaqiLiZju/ACE2-in-kidney).

Results

ACE2 Expression in Human Tissue
To truly reflect the expression level of ACE2 in various 

tissues and organs, we used the recent HCL database to 
analyze the global expression of ACE2 in human tissue. 
According to this database, we found that ACE2 is main-
ly enriched in the small intestine (Fig. 1a, b). In addition, 

Fig. 1. ACE2 expression in human cell landscape (HCL). a Two-
dimensional t-distributed stochastic neighbor embedding plot dis-
playing major cell clusters in HCL. b Scatter plots showing clusters 
of cells with ACE2 expression. c Histograms of ACE2 expression 
in adult tissues in HCL. d, e Histograms represent a subgroup of 
kidney cells that significantly express ACE2 in “adult kidney-3” (d) 
and in “fetal kidney-5” (e) in HCL, respectively (reproduced from 
http://bis.zju.edu.cn/HCL/index.html).
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Fig. 3. Expression of genes associated with SARS-CoV-2 entry in 
single-nuclear transcriptome. a Dot plot of LRP2 and CUBN 
(marker genes of PT cells), ACE2, TMPRSS2, and SLC6A19; dot 
size represents the fraction of cells expressing each cell type, and 
color intensity binned count-based expression level amongst ex-

pressing cells. b Bar plot presenting significantly enriched GO 
terms obtained from GO enrichment analysis performed with dif-
ferential expression of genes between ACE2+ and ACE2– PT cells. 
c Violin plot showing ACE2, SLC6A19, and TMPRSS2 expression 
distribution among different cell clusters.
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ACE2 expression is also present in kidney cell subgroups 
(Fig. 1a, b). This result is consistent with the NCBI tran-
scriptome data (online suppl. Fig. 1) and the human pro-
tein atlas. We analyzed the top 50 subgroups of cells in the 
HCL in terms of ACE2 expression level and divided them 
into 2 groups: adult and embryo tissues (Fig. 1c). In adult 
tissues, ACE2 is mainly expressed in enterocytes of the 
duodenum, ileum, and colon, epithelial cells of the liver, 
and PT cells of the kidney, and it is also expressed in Clara 
cells of the lung (Fig. 1c, d). Moreover, in fetal tissues, 
ACE2 is significantly expressed in enterocytes, enterocyte 
progenitor cells, smooth muscle cells, proliferating cells, 
fibroblasts, and goblet cells of the fetal intestine, hepato-
cyte-like cells of the fetal adrenal gland, and PT progeni-
tor cells of the fetal kidney (Fig. 1e).

Expression of ACE2 in the Kidney
Single-cell transcription data from 3 adult kidneys and 

3 fetal kidneys from the HCL database indicate that ACE2 
is mainly concentrated in PT cells of adult kidneys 
(Fig. 1d; online suppl. Table 1) and in PT progenitor cells 
of fetal kidneys (Fig. 1e; online suppl. Table 1). The basic 
information of the 6 patients is shown in online supple-
mentary Table 1. 

Several studies have provided high-quality renal sin-
gle-cell transcription databases that allow us to analyze 
RNA information from individual cells. In the latest hu-
man kidney single-cell transcriptome database (scRNA-
seq) from the Broad Institute and the University of Mich-
igan [24], we found significant expression of ACE2 in PT 
cells, glomerular parietal epithelial cells, and descending 
thin limb cells (Fig.  2b, c; online suppl. Fig.  2). ACE2  
was significantly expressed in all 6 PT cell clusters, and 
most significantly in PT-4 (Fig.  2b; online suppl. Fig.   
2). Through the single-nuclear transcription database 
(snRNA-seq) from human adult kidneys [26], we ana-
lyzed the expression of ACE2 in 30 subgroups of kidney 
cells (online suppl. Fig. 3a). We found that variable kid-
ney cells express ACE2, including podocytes and epithe-
lial cells, but PT cells had the highest expression level 
(Fig. 3a, c). Furthermore, ACE2 was mainly expressed in 
PT-1, PT-2, and PT-5 clusters (Fig. 3c), which correspond 
to S1, S2, and S3 PT segments, respectively [26]. Mean-
while, we analyzed the kidney single-cell transcription 
database (Asian scRNA-seq) from Asian populations 
(online suppl. Fig. 4a) [27]. The results showed that con-
voluted PT (S1 and S2 segments) and straight PT (S3 seg-
ment) highly expressed ACE2 (Fig.  4a; online suppl. 
Fig. 4c, d). From the above results, all the single-cell tran-
scriptome analyses of adult kidneys from different races 

and different methods demonstrated that ACE2 is ex-
pressed in the S1, S2, and S3 segments of PT cells.

Expression of Cell Receptor-Related Genes of  
SARS-CoV-2 in the Kidney
In addition to dissecting the expression of ACE2, iden-

tifying the expression of TMPRSS2 and SLC6A19 may 
also contribute to understanding the relationship be-
tween SARS-CoV-2 and kidney cells. TMPRSS2 is widely 
expressed in several renal tubule populations extending 
from the PT cells to the collection system cell type. The 
expression of TMPRSS2 is enriched in transitioning prin-
cipal cells (PC)/intercalated cells (IC), intercalated α cells 
(IC-A), connecting tubule (CNT), and cortical CNT-
principal cells (PC-CNT) in scRNA-seq of the human 
kidney (Fig. 2b, c; online suppl. Fig. 2). In snRNA-seq of 
the human kidney, PC, IC, and the distal convoluted tu-
bule cells express TMPRSS2 more significantly than PT 
cells (Fig. 3a, c; online suppl. Fig. 3b). The expression of 
TMPRSS2 in the Asian scRNA-seq is also similar, mainly 
concentrated in IC and PC (Fig. 4a; online suppl. Fig. 4c, 
d). Unexpectedly, single-cell transcription database anal-
ysis results consistently suggest that despite the expres-
sion of various renal tubules, SLC6A19 is mainly enriched 
in PT cells, in line with ACE2 expression (Fig. 2b, 3a, 4a). 
Moreover, epithelial cells express SLC6A19 clearly in  
snRNA-seq of the human kidney (Fig. 3a).

Differential Genes and Functions of ACE2+ PT Cells
To further analyze the genetic and functional charac-

teristics of ACE2-expressing PT cells, we artificially di-
vided PT cells into PT cells with and without ACE2 ex-
pression (ACE2+ PT cells and ACE2– PT cells, respec-
tively) instead of 2 different subgroups of cells obtained 
by cluster analysis. In scRNA-seq of the human kidney, 
compared with ACE2– PT cells, up-regulated genes in 
ACE2+ PT cells were LRP2, CUBN, and SLC16A9 
(Fig. 2d). In general, these genes, considered to be mark-
er genes of PT cells, are related to cell transmembrane 
transport function. In the snRNA-seq of the human kid-
ney and the Asian scRNA-seq, there were nonsignificant 
differences in gene expression of the 2 cell types (online 
suppl. Fig. 3c, 4b). From different single-cell transcrip-
tion databases, GO analysis of differential genes between 
the 2 cell types were enriched in SLC-mediated trans-
membrane transport, amino acid metabolism, and trans-
port of bile salts and organic acids, metal ions, and amine 
compounds (Fig. 2e, 3b, 4b). The above results indicate 
that the transmembrane transport function of ACE2+ PT 
cells is more obvious.
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Expression of Cell Receptor-Related Genes of  
SARS-CoV-2 in the Lung and the Small Intestine
To compare cell receptor-related genes of SARS-

CoV-2 in different tissues, high-quality single-cell tran-
scriptome databases of the lung and small intestine were 
used for further analysis. Unsupervised cluster analysis of 
14,537 cells from the human ileum, colon, and rectum 
yielded 7 cell subgroups (Fig. 5a). Consistent with the re-
sults of HCL database analysis, enterocytes express ACE2 
significantly (Fig. 5b, c; online suppl. Fig. 5a). Unlike PT 
cells, enterocytes simultaneously express TMPRSS2 and 

SLC6A19 significantly (Fig. 5b, c; online suppl. Fig. 5b, 
5c). The expression of ACE2 and SLC6A19 is mainly con-
centrated in enterocytes, while TMPRSS2 is widely ex-
pressed in various cell subgroups. In the lung, although 
there are only a small number of AT 2 cells and increased 
ACE2 expression of ciliated cells, the number of cells ex-
pressing TMPRSS2 in these cell subgroups is greater and 
more significant (Fig. 6b, c; online suppl. Fig. 6a, 6b). Sur-
prisingly, no expression of SLC6A19 was found in all cell 
subpopulations. Considering that single-cell preparation 
and capture methods may cause errors in the number  
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Fig. 4. Expression of genes associated with SARS-CoV-2 entry in 
a single-cell transcriptome sequencing database of Asians. a Dot 
plot of LRP2 and CUBN (marker genes of PT cells), ACE2,  
TMPRSS2, and SLC6A19; dot size represents the fraction of cells 
expressing each cell type, and color intensity binned count-based 

expression level amongst expressing cells. b Bar plot presenting 
significantly enriched GO terms obtained from GO enrichment 
analysis performed with differential expression of genes between 
ACE2+ and ACE2– PT cells. 
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of rare cells, we did not compare the ratio of ACE2+/ 
TMPRSS2+ cells, which is the highest-risk cell for SARS-
CoV-2 in each tissue.

Functional Analysis of Putative Target Cells for  
SARS-CoV-2
To identify enriched pathways within the putative tar-

get cells of SARS-CoV-2, we computed differentially ex-
pressed genes between ACE2+ and ACE2– enterocytes 

and AT2 cells, respectively. Compared with ACE2– en-
terocytes, up-regulated genes in ACE2+ enterocytes were 
OAT, ENPEP, SERPINA1, MTTP, and so on (Fig. 5d). 
GO analysis of differential genes between the 2 types of 
enterocytes (ACE2+ enterocytes and ACE2– enterocytes) 
were enriched in transmembrane transport and protein 
digestion and absorption (Fig. 5e). Furthermore, GO en-
richment analysis was performed with differentially ex-
pressed genes between ACE2+/TMPRSS2+ enterocytes 

TMPRSS2
2.0
1.5

0.5
1.0

0.0

–10 0
UMAP_1

10

5

0

–5

–10

–15

UM
AP

_2

5

0

–5

–10

–15
–10 0

UMAP_1

ACE2
1.5
1.0
0.5
0.0

10

UM
AP

_2

c

5

0

AT2 cells
AT2 cells Macrophages

Monocytes
Monocytes Endothelial/

Lymphatic cells

Endothelial/
Lymphatic cells

AT1 cells

AT1 cells

Ciliated cells

Ciliated cells

Macrophages

Fibroblasts
Fibroblasts

–5

–10

-10 0
UMAP_1

UM
AP

_2

10
a

Fibroblasts

Average expression

Percent expressed

2
1
0

0
25
50
75
100

Ciliated cells

AT1 cells

Endothelial/Lymphatic cells

Monocytes

Macrophages

AT2 cells

DCN
TP

PP
3

AG
ER

VW
F

FC
N1

CD
68

SF
TP

C
TM

PR
SS

2
AC

E2

b

Fig. 6. Expression of genes associated with SARS-CoV-2 entry in 
the lung. a UMAP visualization displaying major cell clusters.  
b Dot plot of 3 marker genes for each cell type and ACE2,  
TMPRSS2, and SLC6A19; dot size represents the fraction of cells 

expressing each cell type, and color intensity binned count-based 
expression level amongst expressing cells. c UMAP projection: 
points colored by detection of ACE2 (left) and TMPRSS2 (right). 
Blue, RNA positive; gray, RNA negative.

Fig. 5. Expression of genes associated with SARS-CoV-2 entry in 
the small intestine. a UMAP visualization displaying major cell 
clusters (14,537 single cells). b Dot plot of marker genes for each 
cell type and ACE2, TMPRSS2, and SLC6A19; dot size represents 
the fraction of cells expressing each cell type, and color intensity 
binned count-based expression level amongst expressing cells.  
c UMAP projection: points colored by detection of ACE2 (left), 

TMPRSS2 (middle), and SLC6A19 (right). Blue, RNA positive; 
gray, RNA negative. d Volcano plot displaying differential expres-
sion genes between ACE2+ and ACE2– enterocytes. e Bar plot 
presenting significantly enriched GO terms obtained from GO en-
richment analysis performed with differential expression genes be-
tween ACE2+ enterocytes and all other enterocytes (Up), ACE2+/
TMPRSS2+ enterocytes, and all other enterocytes (Down).
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and all other enterocytes. Surprisingly, we discovered that 
there is a process for virus entry into the host (Fig. 5e). 
Because the number of ACE2– AT2 cells is much larger 
than ACE2+ AT2 cells, we did not find significant up- or 
down-regulated genes (logFC value of up-regulated gene 
SCGB3A1 > 0.5 and logFC value of down-regulated gene 
SCGB3A2 > 0.5) (online suppl. Fig. 6c). GO analyses of 
differential genes between the 2 types of AT2 cells were 
enriched in the PID ERBB1 downstream pathway, bind-
ing, and uptake of ligands by scavenger receptors, and 
regulation of bone resorption (online suppl. Fig. 6d). 

Discussion

Due to the key role of ACE2 as a cellular surface recep-
tor for SARS-CoV-2, and based on previous results that 
have shown that small-intestine [33], liver [34], and kid-
ney [35] cells express ACE2, we analyzed the expression 
of ACE2 in various tissues and even individual cell sub-
groups. Using the latest HCL database to analyze the 
global expression of ACE2 is the first analysis of the dis-
tribution of ACE2 in whole tissues using a single data-
base, effectively reducing the existence of false-positive 
results and making the results more credible [23, 36]. 
Compared with other tissues, our results showed that 
ACE2 is mainly expressed in enterocytes of the small in-
testine, epithelial cells of the liver, and PT cells of the kid-
ney. Obviously, although ACE2 is expressed in the lung, 
the above tissue expression is more significant. This result 
indicates that the affinity of SARS-CoV-2 cannot be pre-
dicted only by the expression of ACE2. 

The renin-angiotensin system has been classically con-
ceived as a critical hormonal signaling pathway mainly 
responsible for blood pressure control and hydroelectro-
lyte balance. Previous studies have documented that in 
severe lung injury, the expression of ACE2 would be sig-
nificantly down-regulated, and ACE2 blockage or genetic 
manipulation to delete Ace2 resulted in exacerbated lung 
injury [37–40]. The recent research has confirmed that 
clinical-grade human recombinant soluble ACE2 can  
effectively inhibit SARS-CoV-2 infection [44]. The above 
results suggest that the role of ACE2 in COVID-19 pa-
tients is complicated and diverse [41]. SARS-CoV-2 entry 
into target cells is an elegantly regulated multistep pro-
cess, of which binding to ACE2 is only the first. For the 
first time from the single-cell level analysis, our results 
demonstrate that cell receptor-related genes of SARS-
CoV-2 are differentially expressed in cell subgroups of 
different tissues. AT 2 cells in the lung significantly ex-

press ACE2 and TMPRSS2, but not SLC6A19, and all 3 
genes are significantly expressed in intestinal epithelial 
cells. Unlike other ACE2-expressing cells, PT cells in the 
kidney expressed SCL6A19 more significantly than TM-
PRSS2. These 3 types of cells have significant differences 
in the distribution of the cell receptor-related genes of 
SARS-CoV-2, which may indicate the diversity of the cell 
surface structure and the difference in the affinity be-
tween SARS-CoV-2 and cells.

In the literature, COVID-19 is characterized by symp-
toms of viral pneumonia, such as fever, cough, and lym-
phopenia [16–18, 42]. Except for causing pneumonia, 
COVID-19 may also damage other organs, such as the 
kidney [43]. A very recent study showed that SARS-
CoV-2 can replicate in kidney organoids [44]. Diao et al. 
[45] found the nucleocapsid protein of SARS-CoV-2 vi-
rus accumulated in renal tubules, which indicates that 
SARS-CoV-2 directly infected the kidney. However, the 
incidence of AKI in COVID-19 patients is heterogeneous 
in various studies. Some data showed that almost 40% of 
hospitalized patients had proteinuria and hematuria [14, 
15], while others suggested that the incidence of AKI is 
between 0.5 and 7% [16–18]. Among 116 hospitalized 
COVID-19-confirmed patients, all these patients did not 
meet the diagnostic criteria of AKI [46]. This result sug-
gested that SARS-CoV-2 infection did not cause AKI or 
aggravate CKD in the COVID-19 patients. In a study by 
Ronco and Reis [47], the prevalence of direct kidney in-
volvement in COVID-19 is low, and cytokine damage, 
organ cross talk, and systemic effects may be related to 
kidney involvement in COVID-19 patients. In addition, 
although it has been reported that SARS-CoV-2 can be 
found in the urine [19], more studies have not found its 
presence in urine [20, 21]. Our study is the first to present 
differences in the expression of cell receptor-related genes 
of SARS-CoV-2, rather than ACE2 alone, which provides 
somewhat more persuasive clues to explain kidney injury 
in COVID-19.

In this research, we computed differentially expressed 
genes between ACE2+ and ACE2– PT cells through 3 dif-
ferent single-cell transcription databases. However, con-
sidering that the different single-cell preparation and 
methods (scRNA-seq and snRNA-seq), the results of dif-
ferential gene and GO analyses are different. Compared 
with ACE2– PT cells, the transmembrane transport func-
tion of ACE2+ PT cells is more active. Due to the small 
number of PT cells and AT2 cells co-expressed with ACE2 
and TMPRSS2, we did not conduct further differential 
gene analysis. A comparison of ACE2+/TMPRSS2+ en-
terocytes with all other enterocytes revealed that there is a 
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process for virus entry into the host. The results indicated 
that enterocytes co-expressing ACE2 and TMPRSS2 may 
have a direct risk of virus infection. With the promotion 
of single-cell transcriptome sequencing technology, we 
can obtain more information about rare cells, such as 
ACE2+/TMPRSS2+ cells in different tissues, so that we 
can have a more accurate understanding of such cells.

Next-generation sequencing and bioinformatics are 
changing the way we respond to outbreaks of infectious 
diseases [48]. The widespread use of sequencing technol-
ogy has enabled humans to obtain viral gene sequences in 
the early stages of infectious disease outbreaks and to 
quickly predict virus types, transmission pathways, and 
mechanisms of infection through sequence analysis and 
structure prediction [49]. At the same time, the astonishing 
development of single-cell transcriptome sequencing tech-
nology makes it possible to predict the susceptibility not 
only of specific organs but also subgroups of cells to a virus.
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