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Abstract

Background: Mannose binding lectin (MBL) is an important host defence protein against
opportunistic fungal pathogens. This carbohydrate-binding protein, an opsonin and lectin pathway
activator, binds through multiple lectin domains to the repeating sugar arrays displayed on the
surface of a wide range of clinically relevant microbial species. We investigated the contribution of
MBL to antifungal innate immunity towards C. parapsilosis in vitro.

Results: High avidity binding was observed between MBL and C. albicans and C. parapsilosis.
Addition of MBL to MBL deficient serum increased the deposition of C4 and C3b and enhanced
the uptake of C. albicans, C. parapsilosis and acapsular C. neoformans by polymorphonuclear cells
(PMNs). Compared to other microorganisms, such as Escherichia coli, Staphylococcus aureus and
Cryptococcus neoformans, C. parapsilosis and Candida albicans were potent activators of the lectin
pathway.

Conclusion: Our results suggest that MBL plays a crucial role in the innate immunity against
infections caused by yeast by increasing uptake by PMN.

Background

Mannose binding lectin [1], a plasma protein of hepatic
origin that belongs to the family of calcium-dependent
collagenous lectins (collectin), is an important protein of
the innate immune system [1-6]. This carbohydrate-bind-
ing protein binds mannose and N-acetylglucosamine
(GlcNAC) sugars and their derivates present on the surface
of a wide range of clinically relevant microbial species and
has the ability to distinguish self from nonself [4,5,7,8].

MBL initiates the lectin pathway of complement using
attached mannose binding lectin-associated serine pro-
teases (MASP-2) in an antibody- and Clg-independent
manner [5,7,9]. MASP-2 is indistinguishable in specificity
from the convertases found in the classical and alternative
of complement activation and permits cleavage of C4 and
C2 to form a C3 convertase [3,5,7,10]. Once it has bound,
MBL is able to deploy a variety of anti-microbial activities,
such as microbial opsonization and/or microbial lysis via
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membrane attack complexes [8,11]. However, it is unclear
whether MBL acts as a direct opsonin or is merely
enhances other complement pathways and/or antibody-
mediated phagocytosis [5].

MBL deficiency, due to variation in the MBL gene, is one
of the most common immunodeficiencies [5,12] and is
associated with impaired phagocytosis by polymorpho-
nuclear leukocytes and with an increased burden of infec-
tions, especially in immunocompromised individuals
[13-15].

The clinically relevant opportunistic microorganism C.
parapsilosis is now the second or third most common cause
of systemic fungal infections after C. albicans [16-19]. It is
especially prevalent in very low birth weight neonates,
transplant patients, post-surgical patients, patients receiv-
ing intravenous hyperalimentation and patients with ind-
welling invasive devices [20-23]. Most patients at risk
have some degree of immunosuppression. MBL has been
shown to play a role in the first-line defence against C.
albicans [9]. The fungal cell wall, which consists mainly of
polymers of N-acetylglucosamine (chitin), glucose (B-glu-
can) and mannose (mannan) [15,24] is a candidate lig-
and for MBL and may be capable of activating the lectin
complement pathway.

In this study we evaluated the role of MBL in the
opsonophagocytosis of C. parapsilosis. MBL was found to
be a crucial opsonin for optimal phagocytosis of C. parap-
silosis, C. albicans and acapsular C. neoformans. Sera of
patients with MBL deficiency have decreased opsonic
capacity.

Methods

Microbial strains

A dlinical isolate of Candida parapsilosis strain 05-173
(California Institute for Medical Research, San Jose, CA),
as a reference Candida albicans strain ATCC 14053 (Amer-
ican Type Culture Collection), the thinly (<0.5 mm)
encapsulated Cryptococcus neoformans strain NIH 37
(National Institute of Health, Bethesda, MD) and an acap-
sular mutant of C. neoformans, CAP 67 (E.S. Jacobson,
Medical College of Virginia) Staphylococcus aureus Mu 50
(Japanese Collection of Staphylococcus Cultures (JCSC)),
S. aureus KV 39 and KV 68 (clinical isolates from Univer-
sity Medical Centre Utrecht), Escherichia coli ATCC 25922
and E. coli ATCC 35218 (American Type Culture Collec-
tion) were used. In addition, Saccharomyces cerevisiae was
used as a standard reference for the functional MBL test.
Isolates were stored at -80°C in 40% glycerol. Before tests
were performed, yeast strains were cultured overnight at
35°C on Sabouraud Dextrose Agar (SDA) and bacterial
strains were cultured overnight at 37 °C on blood agar and
then kept at 4°C.
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Binding of MBL

Microorganisms (2 x 107 cells/mL) were incubated with 5
pg/mL of purified human MBL (90%) (HSR 003; Staten
Serum Institut; MBL was purified in a two-step process by,
affinity chromatography and gel filtration, with selecting
for functionally active and oligomeric MBL. MASPs
remain associated and co-elute with MBL [6]) in a total
volume of 50 pL of veronal-buffered saline pH 7.4, con-
taining Ca2+and Mg2+ plus 0.05% BSA (VSB2+), on a shak-
ing plate (150 rev/min) at 37°C for 30 min. Organisms
were spun down for 5 min at 15000 rpm and the pellets
were washed with VSB2+ before suspension with mouse
anti-MBL monoclonal antibody (mAbs) (10 pg/mL in
VSB2+; HYB131-010; Antibody shop, Staten Serum Insti-
tute, Copenhagen, Denmark). After a 30-min incubation
on ice, samples were centrifuged and washed as described
above and were resuspended in FITC-labelled goat anti
mouse IgG (DakoCytomation, Glostrup, Denmark) (80
pg/mL in PBS) and incubated on ice for 30 min. Suspen-
sions were centrifuged and washed as described above.
Samples were analyzed by flow cytometry (FACSCaliber,
Becton Dickinson; Mountain View, CA) with measure-
ment of mean fluorescence intensity (MFI). Experiments
were done in duplicate and repeated at least three times.
Negative controls were established for MBL binding by
the omission of MBL. In order to evaluate whether the
binding observed by C-type lectin interactions, inhibition
experiments using a calcium chelating agent 20 mmol/L
EDTA was added to the MBL solution 5 min before the
addition of MBL to the microorganisms.

Deposition of C4, and C3b

MBL-deficient serum was obtained from a subject who
was homozygous for the LYPB haplotype of the MBL gene
and had undetectable levels of serum MBL (< 0.05 pg/
mL). Serum IgG was depleted from the MBL-deficient
serum using a HiTrap Protein G column (GE Healthcare,
Uppsala, Sweden) [25]. The freshly prepared MBL-defi-
cient serum samples were aliqouted and stored at -70°C
until use. Informed consent was obtained from the donor.

Microorganisms (2 x 106 cells/mL) were incubated in 50
pl HBS2+ (Hepes-buffered saline, 20 mM Hepes, 140 mM
NaCl, 5 mM CaCl, and 2.5 mM MgCl,) containing 10%
MBL-deficient serum supplemented with anti-Cl1q mAb
(50 pg/mL; Sanquin, Amsterdam, The Netherlands) to
inhibit the classical pathway [26] and with or without
purified human MBL (2.5 pg/mL), in a sterile 96 well
plate incubated for 2, 5, 15 and 30 minutes at a shaking
plate (150 rev/min) at 37°C. The reaction in each well
was stopped by adding 150 pL of ice-cold PBS. Suspen-
sions were washed and centrifuged for 10 min at 3500
rpm. The supernatants were removed, and the pellets were
suspended with 50 pL of a solution of murine mono-
clonal anti-human C4d (Quidel, San Diego, CA) (4 pg/
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mL in PBS). After a 30-min incubation on ice, the samples
were centrifuged and washed as described above and the
pellets were resuspended in FITC-labelled goat anti-
mouse IgG (DakoCytomation, Glostrup, Denmark) (80
pg/mL in PBS) and were incubated on ice for 30 min. Sus-
pensions were centrifuged and washed as described above
and measured by flow cytometry. C4d deposition was
evaluated in duplicate and repeated at least three times.

C3b deposition was analyzed by incubation of the organ-
isms with 10% MBL-deficient sera in HBS2+, after which
surface-bound C3b was detected with FITC-conjugated
(Fab'), anti-human C3 (Protos Immunoresearch, San
Francisco, CA) (20 pg/mL in PBS). Detection of C3b dep-
osition was the same as for deposition of C4d.

Preparation of Polymorphonuclear Leukocytes

Human polymorphonuclear (PMN) cells were isolated
from the blood of healthy volunteers using a Ficoll/Histo-
paque gradient with sodium heparin as anticoagulant
(Greiner, Alphen a/d Rijn, The Netherlands) as described
previously [27]. In brief, heparinized blood was diluted
with an equal volume of PBS (pH 7.4), layered onto a gra-
dient of Ficoll-Paque PLUS (GE Healthcare, Uppsala, Swe-
den) and Histopaque-1119 (Sigma-Aldrich, Steinheim,
Germany), and centrifuged for 20 minutes at 400 x g.
Neutrophils were collected from the Histopaque layer and
washed with RPMI 1640 containing 25 mM Hepes (N-2-
hydroxyethylpiperazine-N'-2-ethanesulfonic acid), L-
glutamine (BioWhittaker, Walkerswille, MD) and 0.05%
human serum albumin (Sanquin, Amsterdam, The Neth-
erlands) (RPMI/HSA). The neutrophils were then sub-
jected to a hypotonic shock with water for 30 s to lyse
remaining erythrocytes.

Fluorometric phagocytosis assay

Phagocytosis was performed using Fluorescein isothiocy-
anate (FITC)-labelled microorganisms, MBL-deficient
serum and freshly isolated human neutrophils. In brief,
organisms were mixed (100/100: vol/vol) with FITC
(Sigma-Aldrich, Steinheim, Germany) (1 mg/mL in 1 M
sodium carbonate buffer, pH 9.6) and incubated at 37°C
for 1 h under constant shaking at 200 rpm. Organisms
were washed with RPMI 1640 medium twice. For each
separate experiment, organisms were cultured and
labelled with FITC.

Aliquots of FITC-labelled microorganisms (50 pl of 2 x
10%cells/mL) were transferred in 96-wells microtiter
plates. The pellets were tumbled with 20% MBL-deficient
serum in the presence of 100 pg/mL anti-C1q mAb, with
or without purified human MBL (5 pg/ml, final concen-
tration) and incubated for 15 min on a shaking plate at
37°C (150 rev/min). The pellet of the pre-opsonised
organisms was suspended in 50 puL of RPMI 1640 and
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incubated with 50 pL purified PMNs. Phagocytosis was
stopped after 15 min by addition of 250 pL ice cold RPMI
1640 and the plate was centrifuged at 4°C at 1200 rpm for
10 min. Allophycocyanin (APC)-conjugated CD11b MAb
(Becton Dickinson, San Jose, CA) served as a marker for
human PMN [28] for the phagocytosis of yeast. The pellet
from each well was suspended in 5 pL (250 pg/ml in PBS)
and was incubated at 4°C for 30 min, followed by the
addition of 250 uL of RPMI 1640 to each well and centrif-
ugation at 4°C at 1200 rpm for 10 min. The cell pellet was
suspended in 250 uL RPMI 1640 supplemented with 1%
paraformaldehyde solution (PFA) and stored on ice for 30
min. Analysis of the samples was performed with a flow
cytometer. Phagocytosis of the FITC-labelled microorgan-
isms was evaluated by determining the proportion of
labelled PMNss expressed as a percentage of the total pop-
ulation of PMNs. The maximum percentages, obtained
within an experiment were assigned a value of 100% with
all other percentages within the same experiment
expressed as a relative percentage of this maximum. Neg-
ative controls for opsonophagocytosis were established by
incubating organisms in RPMI 1640 containing neither
serum nor purified human MBL in the opsonization step.

Haemolytic MBL assay

A haemolytic MBL assay was used to study MBL activation
by different microorganisms. This assay was previously
described by Kuipers et al [3] and makes use of micro-
organism-induced MBL activation in a dilution series of
pooled human serum, followed by subsequent C5b-6-
mediated bystander haemolysis of chicken erythrocytes.
As a surplus of all down stream components of the lectin
pathway are provided by a standardized concentration of
MBL-deficient serum in this assay, the complement activa-
tion by bound MBL is the rate limiting step.

In brief, different microbial concentrations were added in
50 ul per well in a 96 well microtiter plate, and serially
diluted in vertical rows (two-fold dilutions). As the source
of MBL, human pooled serum (HPS, stored in aliquots as
previously described) from healthy workers of our labora-
tory was diluted 1:32 in VSB2* and 50 pg/mL anti-Clq
mADb [26], incubated on ice for 15 minutes, and then seri-
ally diluted (10-9-5) in VSB2+ (final concentration of 1/100
HPS). Samples (50 pL) of each dilution were tested for
haemolytic activity, using chicken erythrocytes (50 pL of a
mixture of MBL-deficient serum and 10 chicken erythro-
cytes in VSB2+). The microtiter plates were placed in a
water bath at 37°C for 1 h and then centrifuged for 10
min, 2500 rpm. Supernatant of each sample was trans-
ferred to a flat-bottom plate containing 200 pL Super Q
per well. Haemoglobin release was measured in an ELISA
reader at 405 nm. Percentages of haemolysis were calcu-
lated using controls for 100% (water lysed) and 0%
(buffer incubated) haemolysis. After incubation, the
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degree of bystander erythrocyte lysis was translated into
the number of active sites per erythrocyte (Z-value) using
the equation of Borsos and Rapp [29]. Titters were read at
Z = 0.300. To measure the alternative pathway activation
by the different microorganisms, the experiment s
described above was performed with HPS in EGTA-VB (8
mM ethylene glycol bis-(B-aminoethyl ether)-N,N,N',N"-
tetraacetic acit with 2.5 mM Mg 2+) preventing classical
and lectin pathway activation by removing Ca2+. Direct
haemolysis of the erythrocytes by microbial products was
excluded by incubating microorganisms and erythrocytes
together with MBL-deficient serum only. All experiments
were repeated at least three times

Statistical analysis

Statistical significance was determined by unpaired Stu-
dent's ¢ test, using GraphPad Software program (Prism 5;
GraphPad Software, Inc., San Diego, Calif.). P values of <
0.05 were considered to be statistically significant.

Results

3.1. Binding of MBL to different pathogens

A striking difference in binding patterns of MBL to the dif-
ferent microorganisms was found (Figure 1). Binding of
MBL to C. albicans, C. parapsilosis and in a lesser extend to
acapsular C. neoformans was found. Almost no binding of
MBL was observed to S. aureus, E. coli and encapsulated C.
neoformans. No binding was observed in the absence of
Ca?+ (data not shown) and when purified MBL was not
added.

C4 and C3b deposition on the various pathogens

With C. albicans, C. parapsilosis and of acapsular C. neofor-
mans deposition of the cleavages product C4 was detected
after 2 min of incubation in MBL-deficient serum and was
significantly enhanced by the addition of MBL at 2 min up
to 10 min (P < 0.005 or P < 0.05, unpaired Student' t test
of MFI) (Figure 2). Deposition of C4 was maximal at 5
min, whereas in the absence of MBL C4 deposition
attained its maximal amount slowly over the time course
measured. In contrast, addition of purified MBL to MBL-
deficient serum did not increase C4 deposition signifi-
cantly to the capsulated strains of C. neoformans, S. aureus
and E. coli.

Experiments with antibody to C3b (anti-C3b) showed
that the addition of purified human MBL enhanced the
deposition of C3b on Candida species and, to a lesser
degree, C3b deposition on acapsular, encapsulated C. neo-
formans and S. aureus (Figure 3). With Candida species,
acapsular C. neoformans and S. aureus, C3b deposition was
detected after 2 min of incubation in serum, with
enhancement of deposition in the presence of MBL, reach-
ing significance at 5 up to 30 min for C. albicans (P < 0.05
unpaired Student' ¢ test) and at 15 and 30 min for C. par-
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apsilosis, acapsular C. neoformans and S. aureus (P < 0.005
or P < 0.05 unpaired Student' ¢ test). An increase in C3b
deposition was observed for capsulated C. neoformans,
reaching significance only at 30 min (P < 0.05 unpaired
Student' t test).

Opsonophagocytosis of different pathogens
Opsonophagocytosis of C. albicans and C. parapsilosis was
enhanced by preincubation in the presence with purified
MBL compared to preincubation with MBL-deficient
serum alone, reaching significance at 2.5% up to 20%
serum for C. albicans (P < 0.05, unpaired Student' ¢ test of
% gated) and at 2.5% and 5% serum for C. parapsilosis (P
< 0.05, unpaired Student' ¢ test of % gated) (Figure 4).

We noted less opsonophagocytosis in the presence with
purified human MBL and the acapsular strain of C. neofor-
mans compared to Candida spp., although significance was
reached at 10% and 20% serum (P < 0.05, unpaired Stu-
dent' t test of % gated). The capsulated strain of C. neofor-
mans showed no opsonophagocytosis with or without
adding purified human MBL. S. aureus and E. coli showed
no opsonophagocytosis in the lowest concentration with
or without adding purified human MBL. But MBL appears
to play a role in the higher serum concentrations, reaching
a significance at 20% serum for S. aureus (P < 0.005,
unpaired Student' ¢ test of % gated). When downstream
complement components were inactivated by heating at
56°C, opsonophagocytosis was eliminated under all con-
ditions tested (data not shown).

Haemolytic assessment of complement activity via the
lectin pathway

The haemolytic assay was used to characterize the differ-
ent microorganisms as a weak or potent activator of the
MBL arm of the complement system at a 1/32 dilution of
HPS, since no activation of the alternative pathway was
observed with this dilution (data not shown). In this
assay, the number of microbes and the MBL concentration
were varied. Addition of the inhibitory antibody directed
against C1q eliminated the contribution of the classical
pathway. The following organisms were ranked, in order
of decreasing MBL-activating ability, S. cerevisiae, C. albi-
cans, C. parapsilosis, encapsulated, and acapsular strain of
C. neoformans and S. aureus and E. coli (Table 1). The C.
neoformans strains, S. aureus strains, E. coli strains did not
activate MBL at this serum concentration.

Discussion

Mannose binding lectin (MBL), is a calcium-dependent
plasma lectin that binds a wide range of microorganisms
[5]. In the present study, we evaluated the role of binding
of MBL at the subsequent deposition of C4 and C3b on
the microbial cell wall. Also the role of MBL in
opsonophagocytosis by PMN was studied. Well-character-
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Time-dependent C4 deposition on C. parapsilosis and reference strains C. albicans, C. neoformans, S. aureus and
E. coli in MBL-deficient serum supplemented with exogenous purified human MBL. Microorganisms were incu-
bated with 10% MBL-deficient serum with or without 2.5 pg/mL purified human MBL, at 37°C over a time course of 10 min.
Results are expressed as median fluorescence (MFl). Data are the mean + SEM of 3 separate experiments. *P < 0.05 and ** P<

0.005 unpaired Student's t test of MFI.

ized C. parapsilosis strain, C. albicans, E. coli, S. aureus and
C. neoformans were used. These data demonstrate that
MBL binds to C. parapsilosis, C. albicans and acapsular C.
neoformans. MBL binding leads to activation of the lectin
pathway of complement, demonstrated by deposition of
C4 and C3 fragments and to enhanced opsonophagocyto-
sis by PMNs. MBL is an important opsonin for phagocyto-
sis of Candida species and acapsular C. neoformans. It lacks
the function as an opsonin for phagocytosis of encapsu-
lated C. neoformans. Indeed, MBL plays a much less impor-
tant role in the process of opsonisation of the S. aureus
and E coli strains used. The lack of MBL activation of S.
aureus, E. coli and C. neoformans could be advantageous to
the organism in allowing it to remain hidden from the
MBL arm of the complement system (i.e., protected from
lectin pathway-induced complement activation). Serum
MBL levels would be unlikely to influence these organ-
isms colonization/infection, compared to the yeast, which
are strong activators of the MBL arm of the complement
system. These data suggest the importance of MBL in the

first-line defence against Candida species and acapsular C.
neoformans.

Previously, studies have shown that MBL binds with high
avidity to C. albicans and C. parapsilosis as well as to encap-
sulated C. neoformans, through mannan, a major compo-
nent of fungal cell walls [4,30,31]. Microorganisms, as
observed in the present study, fall into three groups. S.
aureus, E. coli and encapsulated C. neoformans did not bind
to MBL, acapsular C. neoformans bound MBL only weakly
and both Candida species showed strong MBL binding.
MBL has recently been shown to bind to C. albicans via its
lectin domain, resulting in fungi agglutination on their
hyphea outgrowths [9].

Capsules have an important role in protecting organisms
in vivo against complement attack, by making them resist-
ant to phagocytosis [13,32]. The acapsular form of C. neo-
formans has exposed carbohydrate residues on its surface
that are suitable for interaction with lectin-like receptors
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Time-dependent C3b deposition on C. parapsilosis and reference strains C. albicans, C. neoformans, S. aureus
and E. coli in MBL-deficient serum supplemented with exogenous purified human MBL. Microorganisms were
incubated with 10% MBL-deficient serum with or without 2.5 pug/mL purified human MBL, at 37°C for 30 min. Results are
expressed as median fluorescence (MFI). Data are the mean + SEM of 3 separate experiments. *P < 0.05 and ** P< 0.005

unpaired Student's t test of MFI.

[30]. Thus, the levels of MBL required for opsonophago-
cytosis may depend on the availability of binding
epitopes on the infectious agents.

The opsonophagocytosis assay and the complement-defi-
cient sera used in these experiments allowed us to meas-
ure MBL dependent opsonization, because the classical
pathway was blocked with anti-Clq [7]. MBL increased
the uptake of C. albicans, C. parapsilosis andacapsular C.
neoformans by PMNs in serum. Since phagocytosis was not
observed by binding of MBL in the absence of down-
stream complement factors (data not shown), phagocyto-
sis was enhanced via C3b-dependent opsonization recog-
nized by complement receptors on PMNs. Thus, MBL is
an opsonin only in the presence of complement.

In contrast to our results, Ip and Lau [9], using dendritic
cells, reported that MBL binding does not lead to
opsonophagocytosis, possibly due to the interference of
MBL with the recognition of C. albicans by C-type recep-
tors on dendritic cells, which mediate phagocytosis. Neth

et al. [33] demonstrated that an MBL-mediated increases
in opsonic C3 fragments enhanced opsonophagocytosis
of S. aureus by neutrophils. However, Cunnion et al. [34]
showed similar to us, that MBL-mediated complement
activation, did not enhance S. aureus phagocytosis. They
used hypo-y-globulin serum, which had been affinity-
depleted of MBL, whereas Neth et al. [33] used serum
from adult individuals who were genetically deficient in
MBL, but which could contain immunoglobulins. Bacte-
rial strain differences could account for the differences
find in these reports [4]. Comparable to our results with
E. coli, previous experiments also have shown that MBL
contributed little to opsonophagocytosis of gram-negative
microorganisms [35-37]. Recently, Brouwer et al. [38]
reported MBL binding on the surface of S. pneumoniae, S.
aureus and E. coli, but did not observe any significant con-
tribution of MBL to opsonophagocytosis of these organ-
isms. Comparable to our results, Brouwer et al. [38]
indicates that the lectin pathway of complement activa-
tion did not contribute to a large extent of the
opsonophagocytosis of these bacteria.
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Opsonophagocytosis of C. parapsilosis and reference strains C. albicans, C. neoformans, S. aureus and E. coli by
human polymorphonuclear (PMN) cells. Microorganisms were labelled with fluorescein isothiocyanate (FITC) and prein-
cubated in the absence (control) or presence of 20% mannose-binding lectin (MBL)-deficient serum supplemented with 5 g/
mL human purified MBL, for 20 min. The yeast:phagocyte ratio was 2:1. Phagocytosis was analyzed by the use of flow cytome-
try and expressed as percentage of microorganisms-ingested PMN. Data are the mean + SEM of 3 separate experiments. *P <
0.05 and ** P< 0.005 unpaired Student's t test of phagocytosis % gated.

Also it was shown that in MBL transgenic mice MBL plays
an important role in the innate immunity [39]. In contrast
to our observations, Shi et al. [40] reported that MBL-ini-
tiated opsonophagocytosis by both neutrophils and mac-
rophages is an important first-line host defence against S.
aureus in mice. Mice that do not have a functional MBL
complement pathway are highly susceptible to infection
with S. aureus. In that study, decreased phagocytosis of S.
aureus by peritoneal macrophages in MBL-null mice was
reported [40]. However, we only did in wvitro studies,
which may or may not explain the susceptibilities of MBL
deficient individuals to these organisms. Further studies
are needed to define the role of MBL in the defence against
these bacteria.

Previously, it has shown, that Neisseria meningitidis, the
causative agent of meningococcal disease, is a strong acti-
vator of MBL [3]. This is in line with clinical studies, which
showed that MBL is associated with an increased risk of

mucosal acquired infections including meningococcal
disease [41]. However, the role of MBL as an opsonin may
thus critically depend on the microbial species involved,
interspecies variation and the type of phagocytes present.

A number of clinical studies have reported that MBL defi-
ciency predisposes to Candida infections. Recently, Till et
al. [42] described that patients with peritonitis with an
early abdominal yeast infection, most commonly caused
by C. albicans and C. parapsilosis [43], had lower MBL
plasma levels than patients without such abdominal yeast
infections. The incidence of abdominal yeast infections in
patient with MBL variant genotype was significantly
higher to those with no MBL variant genotype [42].

MBL present in the vaginal cavity has been found to act as
recognition molecules for C. albicans that colonize the cer-
vicovaginal mucosa, which suggest that the lectin pathway
plays an important role against Candida infection [44].
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Table I: Differential lectin pathway activating properties of S. cerevisiae, C. albicans, C. parapsilosis, C. neoformans, E. coli and S. aureus

via MBL

Microbial strain

Concentration at Z = 0.3 (CFU/well)

S. cerevisiae 3.39 x 105
C. albicans 4.0 x |05
C. parapsilosis 4.9 x |06
C. neoformans encapsulated > x 107
C. neoformans acapsular > | x 107
E. coli > %108
S. aureus > 1 %108

Z value stands for the amount of haemolysis in the haemolytic assay, a measure of the mean number of MBL activating sites per chicken

erythrocyte. CFU: Colony-forming units

Low levels of vaginal MBL in patients with recurrent vul-
vovaginal candidiasis (VVC) might predispose to Candida
infections [45]. It has been proposed that MBL activity is
critical in early life, when maternally acquired protection
is decreasing and actively acquired immunity is still low
[5,39,46]. MBL plasma concentrations at birth may be low
due to both gene-polymorphisms and younger gesta-
tional age [47-49]. Thus MBL activity may play an impor-
tant role in innate defence of C. parapsilosis in premature
babies.

Conclusion

In conclusion, the present study demonstrated the impor-
tant role of MBL-mediated complement activation in
opsonophagocytosis of C. parapsilosis, C. albicans and
acapsular C. neoformans. MBL enhances opsonization of
C. parapsilosis, C. albicans and acapsular C. neoformans, via
the lectin pathway, which depends on the presence and
availability of MBL binding epitopes. The binding of MBL
by these yeasts and subsequent complement activation
and opsonophagocytosis observed in our study may
explain the observed increased risk of infections caused by
these microorganisms in MBL-deficient individuals.
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