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Abstract 

Background:  The rhomboids are a family of multi-transmembrane proteins, many of which have been implicated 
in facilitating tumor progression. Little is yet known, however, about rhomboid-associated biomarkers in cancers. An 
analysis of such biomarkers could yield important insights into the role of the rhomboids in cancer pathology.

Methods:  In this study, we carried out the univariate Cox regression analysis and compared gene expression patterns 
of several rhomboid genes in 30 types of cancers by using The Cancer Genome Atlas (TCGA) database and the meth‑
ods delineated in Gene Expression Profiling Interactive Analysis (GEPIA). We then used datasets GSE47032, GSE126964, 
GSE68417 and 75 paired pathological specimens to verify the influences of the rhomboid genes in cancer progres‑
sion. Moreover, we carried out Weighted Gene Correlation Network Analysis (WGCNA) to investigate gene-related 
functions and we exploited potential correlations between rhomboid genes expression and immune cell infiltration 
in cancer tissues. Furthermore, we constructed gene-knockdown cancer cell lines to investigate rhomboid gene 
functions.

Results:  We find that kidney renal clear cell carcinoma (KIRC) disease progression is affected by fluctuations in the 
expression of a number of the rhomboid family of genes and, more specifically, high levels of RHBDF2 gene expres‑
sion are a good indicator of poor prognosis of the disease, as patients with high RHBDF2 expression levels exhibit less 
favorable survival rates compared to those with low RHBDF2 levels. Silencing of the RHBDF2 gene in KIRC cell lines 
leads to significantly diminished cell proliferation and migration; this is in good agreement with the identification 
of an enhanced presence of a number of cell growth and migration promoting signaling molecules in KIRC tumors. 
We found that, although high level of RHBDF2 correlated with increased infiltration of lymphocytes in cancer tissues, 
artificially overexpressed RHBDF2 led to an inhibition of the activity of the infiltrated immune cells through sustaining 
PD-L1 protein level. Furthermore, we show that RHBDF2 related cell migration and PD-L1 regulation were potentially 
mediated by EGFR signaling pathway.

Conclusions:  RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression and may 
serve as a critical prognostic biomarker for the disease.
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Background
Members of the rhomboid superfamily are six- or seven-
transmembrane proteins, which have been shown to 
be widely present and may take part in a variety of 
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important biological processes, including cytokine secre-
tion [1–5], protein quality control [6–9], epithelial cell 
polarity [10], subcellular transport [11], and mitochon-
drial function regulation [12]. They are also shown to be 
associated with disease development such as in cancers 
[13–17] and autoimmune diseases [18–20]. Rhomboid 
proteins may be categorized in two groups, namely the 
proteolytically active or inactive [21]. The proteolytically 
active rhomboids include RHBDD1, RHBDL1, RHBDL2, 
RHBDL3 and PARL [22], that are capable of catalyzing 
the cleavage of their substrates and regulating related 
pathways. For example, they cleavage the pro-ligands of 
epidermal growth factor receptor (EGFR) and activate 
the EGFR signaling pathway [4, 16, 23]. The proteolyti-
cally inactive group includes RHBDF1, RHBDF2 (also 
known as iRhom1 and iRhom2, respectively) [24] were 
also able to activate the EGFR pathway through activa-
tion of EGFR ligands. RHBDF1 participates in GPCR-
mediated transactivation of EGFR growth signals and 
RHBDF2 drives EGFR activation through an enhance-
ment of the secretion of EGFR ligands [5, 13, 14]. The 
role of rhomboids in cancer progression is an important 
but under-explored subject in cancer research. We there-
fore set out to explore the gene expression patterns of 
rhomboids in a variety of cancers and their relationships 
to cancer progression, with a specific attention to associ-
ated biomarkers.

Kidney cancers account for approximately 2% of adult 
malignancies and is among the most prevalent cancers 
worldwide [25]. About 80% of kidney cancer cases are 
renal clear cell carcinoma (KIRC) [26]. In addition, symp-
toms of KIRC are often insidious in the early stage, which 
could explain why many patients are diagnosed when 
the disease is already in the advanced stages [27, 28]. 
The five-year overall survival (OS) rate of KIRC patients 
at early stage is up to 90%, whereas the disease becomes 
almost incurable in advanced stages[29]. Chemotherapy 
or partial resection are the main methods of treatment, 
yet local recurrence or distant metastasis often occurs 
[30].  In recent years, immune checkpoint inhibitors 
(ICI) which can block the PD-1/PD-L1 or CTLA-4 T cell 
inhibitory receptor, have been shown to be encouragingly 
effective in advanced renal-cell carcinoma [31, 32]. But 
some effects of immunotherapy are not durable. Discov-
ery of new biomarker for disease progression or treat-
ment option will undoubtedly facilitate the diagnosis and 
treatment of the disease [33].

In this study we determined the gene expression pat-
terns of rhomboids in 30 types of cancers by using The 
Cancer Genome Atlas (TCGA) and the Gene Expres-
sion Profiling Interactive Analysis (GEPIA) databases. 

We then focused on RHBDF2 expression in KIRC and 
analyzed lymphocyte infiltration, immune checkpoints, 
and their relationships to disease progression. Our find-
ings indicate that RHBDF2 gene functions significantly 
contribute to the immunosuppressive microenvironment 
in KIRC. These data are consistent with the view that 
increased RHBDF2 may serve as a critical biomarker of 
poor prognosis of renal clear cell carcinoma as well as a 
potential therapeutic target.

Methods
Data source
Gene expression data of 30 types of cancers in TCGA 
database (https://​portal.​gdc.​cancer.​gov/) was down-
loaded from GDC API, and all sequencing data was nor-
malized to TPM. Essential pathologic information and 
survival data of each individual cancer case were from 
TCGA database and TCGA Pan-Cancer Clinical Data 
Resource [34]. Gene expression datasets, GSE68417, 
GSE126964, GSE47032 and GSE167093, were down-
loaded from Gene Expression Omnibus (GEO) databases 
(https://​www.​ncbi.​nlm.​nih.​gov/​gds/). The GSE68417 
[35] series on the platform GPL6422 (Affymetrix Human 
Gene 1.0 ST Array) includes 14 normal samples, 6 tumor 
benign samples, 13 low grade samples and 16 high grade 
samples of KIRC. The GSE126964 [36] series on the 
platform GPL20795 (HiSeq X Ten) contains 55 tumor 
samples and 11 matched normal samples from Chinese 
KIRC patients. The GSE47032 [37] series on the plat-
form GPL5175 (Affymetrix Human Exon 1.0 ST Array) 
contains 10 KIRC tumor samples and their matched 
non-tumor samples. The GSE167093 on the platform 
GPL10558 (Illumina HumanHT-12 V4.0 expression 
beadchip) contains 609 renal tumors and 256 non-tumor 
renal tissues [38].

Gene expression analysis in GEPIA
Rhomboid genes expression difference between tumor 
and normal tissues of adrenocortical carcinoma (ACC), 
KIRC and brain lower grade glioma (LGG) was ana-
lyzed by GEPIA [39] with the datasets in TCGA and The 
Genotype-Tissue Expression projects (GTEx). GEPIA, a 
web-based tool, (http://​gepia.​cancer-​pku.​cn/​index.​html) 
provides multiple interactive functions including differ-
ential expression analysis.

Immune infiltration related analysis
We first analyzed the infiltration of immune cells in 
KIRC and GSE68417 with the ESTIMATE algorithm [40] 
(https://​bioin​forma​tics.​mdand​erson.​org/​estim​ate/​rpack​

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
http://gepia.cancer-pku.cn/index.html
https://bioinformatics.mdanderson.org/estimate/rpackage.html
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age.​html). Then we calculated the Pearson correlation 
coefficient of immune infiltration scores and RHBDF2 
expression and drew the scatter plot with “ggstatsplot” R 
package (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggsta​
tsplot/​index.​html). The infiltrating immune cell types 
analysis was performed by TIMER2.0 (http://​timer.​cistr​
ome.​org/) which is an online analysis tool for scoring 
immune infiltrates across diverse cancer types by multi-
ple immune deconvolution methods, including TIMER, 
CIBERSORT, quanTIseq, xCell, MCP-counter and EPIC 
algorithm [41–43]. Gene expression data in KIRC-TCGA 
was analyzed by TIMER algorithm, and patients were 
grouped according to the median of CD8+ T cell infiltra-
tion scores or macrophage infiltration scores for further 
survival analysis. Survival curve drawing was completed 
by R package, “survminer” (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​survm​iner/​index.​html).

Functional enrichment analysis
Weighted Gene Correlation Network Analysis 
(WGCNA) was performed with R package “WGCNA” 
(https://​cran.r-​proje​ct.​org/​web/​packa​ges/​WGCNA/​
index.​html) to identify significant functional modules 
based on RHBDF2 expression in KIRC. The appropriate 
soft threshold and co-expression modules were obtained 
first, and then we acquired the Pearson correlation coef-
ficient between each module and RHBDF2 expression. 
Three modules related to RHBDF2 expression were 
determined at last. The annotation of gene functions 
and gene-interactive networks in the RHBDF2-related 
modules were carried out by Network Analyst [44–48] 
(https://​www.​netwo​rkana​lyst.​ca/) and GeneMANIA 
[49] (http://​genem​ania.​org). The functional enriched 
pathways, depicted in Sankey diagram, was completed 
by R package “ggalluvial” [50]. Gene Set Enrichment 
Analysis (GSEA) was also performed by grouping the 
TCGA-KIRC with the median of RHBDF2, which was 
accomplished through locally downloaded GSEA soft-
ware (https://​www.​gsea-​msigdb.​org) [51, 52].

Materials
The human KIRC cell lines, 786-O and 769-P, were pur-
chased from Cell Bank of the Chinese Academy of Sci-
ences (Shanghai, China). The cells were cultured in 
RPMI1640 medium supplemented with 10% FBS. The 
pathological  specimens of human renal clear cell carci-
noma, including 75 paired tumor and adjacent tissues, 
were purchased from Shanghai Outdo Biotech Co., Ltd. 
RHBDF2 antibody (Proteintech, #23181-1-AP) was used 
for immunohistochemical staining and Western blotting. 

PD-L1 antibody (Boster, #BA1683-2), EGFR antibody 
(BBI, #D160292), phospho-EGFR antibody (Boster, #BM-
4676) were used for Western blotting. BeyoClick™ EdU 
Cell Proliferation Kit with Alexa Fluor 488 (Beyotime, 
C0071S) was used to detect cell proliferation accord-
ing to the method described in the product manual. 
Cell total RNA extraction was accomplished by Eas-
repTM total RNA extraction kit (Progmega, LS1040) and 
Hifair® III 1st Strand cDNA Synthesis SuperMix (Yeasen, 
11120ES60) was used for reverse transcription. UltraS-
YBR mixture (CWBIO, CW0957M) was use to real-time 
quantitative PCR. Matrigel (Corning #354248) was used 
to build the subcutaneous graft model. Gefitinib (Topsci-
ence #T1181) was used to block EGFR activation.

Real‑time quantitative PCR (RT‑qPCR)
Hub genes of the WGCNA red module and immune 
checkpoints were detected by RT-qPCR. Total RNA 
extraction from the 786-O and 769-P cells were accom-
plished according to the manual of RNA extraction kit. 
Then we took 1μg RNA for cDNA synthesized and tar-
geted genes detection. The thermal cycle program was as 
follows: denaturing for 15 s at 95 ℃, annealing and exten-
sion for 30 s at 60 ℃. Relative expression of the targeted 
genes was normalized to the ACTB by calculating the 
delta-Ct. Primers for RT-qPCR were as follows:

ITGB1-F: CAA​GAG​AGC​TGA​AGA​CTA​TCCCA,
ITGB1-R: TGA​AGT​CCG​AAG​TAA​TCC​TCCT,
MAPK3-F: ATG​TCA​TCG​GCA​TCC​GAG​AC,
MAPK3-R: GGA​TCT​GGT​AGA​GGA​AGT​AGCA,
PTK2-F: TGG​TGC​AAT​GGA​GCG​AGT​ATT,
PTK2-R: CAG​TGA​ACC​TCC​TCT​GAC​CG,
CD273-F: ACC​GTG​AAA​GAG​CCA​CTT​TG
CD273-R: GCG​ACC​CCA​TAG​ATG​ATT​ATGC​
CD276-F: GTC​CCT​GAG​TCC​CAG​AGT​CG
CD276-R: ACG​CAG​CAT​CTT​CCT​GTG​AG
LGALS9-F: TCT​GGG​ACT​ATT​CAA​GGA​GGTC​
LGALS9-R: CCA​TCT​TCA​AAC​CGA​GGG​TTG​
ACTB-F: CAT​GTA​CGT​TGC​TAT​CCA​GGC,
ACTB-R: CTC​CTT​AAT​GTC​ACG​CAC​GAT,

RHBDF2 knocked‑down cell lines construction
Two independent shRNAs against RHBDF2 mRNA were 
synthesized by Genweiz, the sequences of which were 
(forward):

#1: GTG​AAG​CAC​TTT​GCC​TTT​GAT​CTC​GAG​ATC​
AAA​GGC​AAA​GTG​CTT​CAC​

#2: CAC​GGC​TAT​TTC​CAT​GAG​GAA​CTC​GAG​TTC​
CTC​ATG​GAA​ATA​GCC​GTG​.

https://bioinformatics.mdanderson.org/estimate/rpackage.html
https://cran.r-project.org/web/packages/ggstatsplot/index.html
https://cran.r-project.org/web/packages/ggstatsplot/index.html
http://timer.cistrome.org/
http://timer.cistrome.org/
https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://www.networkanalyst.ca/
http://genemania.org
https://www.gsea-msigdb.org
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RHBDF2-shRNA sequences were constructed into 
pLKO.1 plasmid, and then transfected into 293T cells at a 
ratio of pLKO.1: psPAX2: pMD2.G = 4:2:1. The superna-
tant of culture medium was collected after 48 hours and 
filtered by a 0.45 μm filter to obtain the virus crude solu-
tion. The virus solution was used to infect 786-O cells and 
769-P cells with the addition of 10 μg/mL of Polybrene. 
The control group of 786-O and 769-P were infected with 
empty vector virus. Cell culture media was changed after 
24 hours, and puromycin was used to screen the infected 
cells with a 2 μg/mL concentration. Three days later, 
786-O cells and 769-P cells with RHBDF2 knocked-down 
were obtained.

Scratch healing assay
1×105 tumor cells were seeded in 12-well plate and cul-
tured with 10% FBS-RPMI1640 medium under 37℃ 
and 5% CO2 overnight. Then we draw a straight line in 
the middle of each well to create the wound and washed 
every well twice with PBS and change the medium to 2% 
FBS-RPMI1640. The microscopic images were taken by 
Nikon ECLIPSE Ts2 after 12 and 24 hours.

Trans‑well assay
3.5×104  cells were seeded into the upper chamber sus-
pending in 2% FBS RPMI1640 medium, while in the 
lower chamber the concentration of FBS was 20%. After 
cultured for 24 hours, cells were fixed with 4% paraform-
aldehyde for 15 mins at room temperature. Cells at the 
upper side were then erased and those at the bottom side 
were stained by 0.1% crystal violet solution. After washed 
with PBS, the bottom of the chamber was photographed 
and analyzed.

Mouse model
We used 786-O cells and five-week-old nude mice to 
build the subcutaneous xenograft model. 786-O cells 
infected with empty virus or RHBDF2-shRNA virus were 
cultured in vitro and seeded into the abdominal subcuta-
neous tissue of mice. We mixed Matrigel and RPMI1640 
medium at a 1:1 ratio, and then used the mixed medium 
to inject 1×107 cells per mouse.

Statistical analysis
For the computerized analyses, we used the data of 
TCGA to carry out the univariate Cox regression and 
survival analyses, and the log-rank test was used for the 
significance test. WGCNA and GSEA were performed 
for RHBDF2 related functions and signaling pathways. 
Correlations between RHBDF2 expression and other 

factors mentioned in the study were mainly determined 
by the Pearson correlation coefficient. All the experi-
ments in  vitro in the study have been repeated at least 
3 times. Data were subjected to student t-test, one-way 
ANOVA or two-way ANOVA for the statistical signifi-
cance analyses. P-values of the differences smaller than 
0.05 were of significance. For detail, the statistical analy-
ses of each experiment were depicted in the relevant fig-
ure legends.

Results
Assessment of the prognostic value of rhomboid proteins 
in cancers
In order to begin to explore potential correlation between 
rhomboid functions and cancers, we carried out the uni-
variate Cox regression analysis of the rhomboids family 
of genes in 30 cancers from TCGA database. The value of 
Hazard Ratio (HR) was used to describe the influence of 
the gene expression on tumors (Fig. 1). We found that the 
expression of rhomboids was most significantly corre-
lated with three types of cancers, namely ACC, LGG and 
KIRC. The results of HR (Fig. 2); (more details are given 
in Additional file  1: Table  S1) and gene expression pat-
terns analyzed by GEPIA (Additional file 2: Fig.S1) dem-
onstrated that four genes, RHBDD3, RHBDL2, RHBDF1 
and RHBDF2, exhibited prognostic value in KIRC. Addi-
tionally, high levels of RHBDD1 and RHBDF2 are corre-
lated to poor prognosis of LGG, whereas RHBDD2 and 
PARL are markedly correlated to ACC disease progres-
sion. More importantly, most members of the rhomboid 
family displayed negative effect on KIRC prognosis. It is 
worthwhile to point out that RHBDF2 expression is sig-
nificantly up-regulated in KIRC, in comparison to other 
rhomboids, suggesting a potential prognostic value.

Validation the prognostic role of RHBDF2 in KIRC
We then focused on the prognostic value of RHBDF2 for 
KIRC (Fig.  3a–c). We found that patients in RHBDF2-
high group exhibited markedly shorter overall survival 
(OS), disease-specific survival (DSS), and progression-
free survival (PFS) rate. Additionally, we analyzed the 
relationship between RHBDF2 and clinical param-
eters recorded in TCGA database. The diagnosed ages 
and T, N, M stages showed two distinctive differences 
in RHBDF2-high and low groups. Larger proportion 
of patients younger than 60-year-old or patients with 
advanced cancers had higher expression level of RHBDF2 
(Table 1). Meanwhile, RHBDF2 had an increased expres-
sion in tumor tissue, which was validated in datasets 
GSE47032, GSE68417, and GSE126964 (Fig.  3d–f) and 
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that high RHBDF2 levels were positively correlated with 
tumor grades (Fig.  3g, h). We performed immunohis-
tochemical staining in the specimens of KIRC patients 
with different stages and tumor grades, and found that 
the RHBDF2 protein was substantially more abundant in 
high-grade tumors (Fig. 4).

RHBDF2 overexpression in KIRC correlates 
with an immunosuppressive microenvironment
Since KIRC has a character of high lymphocytes infil-
tration (31), we analyzed the immune infiltration lev-
els in the KIRC samples with gene expression data 
in TCGA database and GSE68417 using R package 
“ESTIMATE”. And the results of correlation analysis 
showed that RHBDF2 was positively correlated with 
enhanced immune infiltration (Fig.  5a, b). We then 
divided the KIRC samples into immune infiltration 
score-high (IMS-high) and -low (IMS-low) groups, 
and carried out survival analysis. We found that KIRC 
patients in the IMS-high group exhibited a shorter 
survival period compared to those in the IMS-low 
group (Fig.  5c). We further divided the KIRC sam-
ples into four groups: immune infiltration-high and 

RHBDF2 expression-high (IMS-high/R2-high), IMS-
high/R2-low, IMS-low/R2-high and IMS-low/R2-low. 
Disease specific survival analysis of these specimens 
indicated that patients in IMS-high/R2-high group had 
the shortest survival time (Fig. 5d).

It was reported previously that KIRC patients with 
high macrophage and CD8+ T cell infiltration survived 
poorly [53]. We scored the infiltrated lymphocytes 
by TIMER 2.0 with data in KIRC-TCGA and con-
ducted survival analyses based on immune infiltration 
scores and RHBDF2 expression levels. We found that 
patients with both high level of macrophages infiltra-
tion and RHBDF2 expression suffered shorter survival 
time than those in other groups (Fig.  5e). Addition-
ally, patients with higher CD8+ T cell infiltration and 
lower RHBDF2 expression exhibited favorable progno-
sis, whereas patients in higher CD8+ T cell infiltration 
and higher RHBDF2 expression group exhibited the 
poorest prognosis (Fig. 5f ). These findings suggest that 
high levels of RHBDF2 prominently affect the anti-
cancer activities of macrophages and CD8+ T cells.

Fig. 1  Hazard analysis of rhomboid superfamily in different types of cancers. Heatmap depicted the risk of rhomboid proteins in cancers. (Overall 
survival data of cancers in TCGA datasets were analyzed, P-values were from the log-rank test). Columns at the right side of figure show proportion 
of poor roles for each gene
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RHBDF2 gene‑silencing leads to reduction of PD‑L1 level 
in renal cancer cells
Overexpressed RHBDF2 inhibited the function of infil-
trated immune cells, which suggests us to analyze the 
expression of immune checkpoints molecules. We 
evaluated immunosuppressive checkpoints expression 
in tumor tissues and normal tissue. CD274, CD273, 
VTCN1, CD276, LGALS9 and CMTM4 were up-reg-
ulated in KIRC tissues (Additional file  3: Fig. S2). Then 
we analyzed the Pearson correlation between those 
checkpoints and RHBDF2 in TCGA and GEO data-
sets. The expression of CD273, CD276 and LGALS9 had 
stronger positive correlation with RHBDF2. The correla-
tion of RHBDF2 between CD274 and CMTM6 were also 
light. However, VTCN1 and CMTM4 were negatively 

correlated to RHBDF2 (Additional file 4: Fig. S3a). Posi-
tive correlation of CD273 and CD276 with the expression 
of RHBDF2 was detected in 786-O and 769-P cells by RT-
qPCR (Additional file 4: Fig. S3b).

PD-L1, the product of the CD274 gene, is an immune 
checkpoint protein highly expressed in renal carcinoma 
[54]. We measured the transcription relevance between 
RHBDF2 and CD274 in the databases but found no sig-
nificant correlations (Fig.  6a–d). We then prepared 
shRNA lentivirus to artificially knockdown RHBDF2 in 
renal cancer cell-lines (786-O and 769-P). We found that 
protein level of PD-L1 decreased in RHBDF2 knocked-
down cells (Fig.  6e–h). These findings suggested that 
RHBDF2 may have a potentially important role in the 

Fig. 2  Univariate Cox regression analysis of rhomboid proteins in ACC, KIRC and LGG. Forest plots illustrate the HR, 95% confidence interval and 
P-value of rhomboid proteins in ACC, KIRC and LGG
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Fig. 3  Association between RHBDF2 expression and tumor malignancy in KIRC. Survival analysis of RHBDF2 in KIRC was performed with data 
in TCGA database. a Overall survival analysis. b Disease-specific survival analysis. c Progression-free interval analysis were present between 
RHBDF2-high and -low expression groups (P-value was from the log-rank test). d–f RHBDF2 expression between normal and tumor tissues in 
datasets GSE47032, GSE68417 and GSE126964 respectively (GSE47032, n = 20; GSE126964, n = 66; GSE68417, n = 49; P-value was from the paired 
t-test). g, h RHBDF2 expression with different tumor grades in GSE126964 and GSE68417 (P-value was from one-way ANOVA; * p < 0.05, ** p < 0.01, 
*** p < 0.005, **** p < 0.001)
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maintenance of immune checkpoints level in renal can-
cer cells, which could make RHBDF2 a valuable target in 
assisting immunotherapy.

Key modules identification and functional annotation 
analysis
In order to further investigate the biological character-
istics of renal clear cell carcinoma that are associated 
with various levels of RHBDF2 expression, we carried 
out WGCNA. Messenger RNA profiles of the specimens 
with similar patterns were grouped into several func-
tional modules based on WGCNA calculation. These 
operations revealed a total of 53 modules (Additional 
file  5: Fig. S4a). The transcription level of RHBDF2 was 
used as a characteristic trait for grouping. We deter-
mined the relevance between each functional module 
and grouping trait by Pearson correlation analysis, and 
identified the top three modules correlated with RHBDF2 
level and marked them, respectively, in green, red and 
orange (Fig.  7a, Additional file  5: Fig. S4b-c, Additional 

file  6: Table  S2). We determined the hub genes in the 
green, red and orange modules by using Network Ana-
lyst (Additional file  7: Table  S3). The hub genes in each 
module were used to carry out the gene-interactive net-
work analysis and annotate the module-related functions 
by GeneMANIA. The results of gene network analyses 
were shown in Additional file 8: Fig. S5, Additional file 9: 
Fig. S6, Additional file  10: Fig. S7. Functional annota-
tion of hub module genes was shown in a bubble dia-
gram (Additional file 11: Fig. S8). The function of orange 
module genes was related to the cell morphology and cell 
cytoskeleton, the function of green module genes was 
related to mRNA processing, membrane fusion and cell 
cycle, and the genes in red module mostly show connec-
tions with cell junction, cell migration and growth factor 
receptor signaling pathways (Fig. 7b).

RHBDF2 gene‑silencing restricts renal clear cell cancer cell 
proliferation and migration
To verify the results from bioinformatics analysis that 
the genes and pathways related to RHBDF2 functions 
may contribute to cancer cell migration and signal 
transduction, we silenced the RHBDF2 gene by using 
shRNA in renal clear cell carcinoma cell line 786-O 
and 769-P. The cell-cycle was measured by Edu-incor-
poration in which all cell nuclei were stained blue 
with Hoechst33342 and the nuclei of cells in S-phase 
were labeled with green fluorescence. We found 
that the proportion of green fluorescence decreased 
in RHBDF2 gene knocked-down cells, indicating a 
decreased proliferation rate (Fig.  8a, b). The decrease 
of cell proliferation rate as a result of RHBDF2 knock-
down was verified by MTT assay (Fig.  8c). Moreover, 
we carried out trans-well and scratch healing assays, 
and found that RHBDF2 knockdown gave rise to sig-
nificantly reduced cell motility in 786-O cells and 
769-P cells in comparison with the scramble shRNA 
treated cells (Fig.  8d–g). Furthermore, we used quan-
titative real-time PCR to detect migration related hub 
genes obtained by enrichment analysis, and found that 
the transcription of ITGB1, MAPK3 and PTK2 were 
significantly decreased in RHBDF2 knocked-down 
cells (Fig. 8h).

Table 1  Clinical characteristics of patients according to RHBDF2 
expression in KIRC-TCGA​

P-value was from a Chi-square test

Characteristics Total number RHBDF2 Expression in 
Groups

P-value

Low (%) High (%)

Laterality

 Left 249 117 (44.15%) 132 (50.00%) ns

 Right 280 148 (55.85%) 132 (50.00%)

Age

 ≤ 60 261 113 (42.64%) 148 (55.85%)  < 0.01

 > 60 269 152 (57.36%) 117 (44.19%)

Pathologic T

 T1–2 350 186 (67.64%) 164 (61.89%)  < 0.001

 T3–4 190 89 (32.36%) 101 (38.11%)

Pathologic N

 M0 420 225 (87.89%) 195 (80.58%)  < 0.02

 M1 78 31 (12.11%) 47 (19.42%)

Pathologic stage

 Stage I 265 143 (54.17%) 122 (46.39%)  < 0.05

 Stage II–IV 265 121 (45.83%) 141 (53.61%)

(See figure on next page.)
Fig. 4  Immunohistochemical staining of RHBDF2 in KIRC tumors with different clinical parameters. a H&E and RHBDF2 staining in KIRC tumors 
with different grades. b H&E and RHBDF2 staining in KIRC patients with different pathological stages. c Statistics of RHBDF2 staining in tumor and 
adjacent tissues (n = 75, P-value was from the paired t-test). d, e Statistics of RHBDF2 staining in patients with different tumor grades or pathological 
stages (n = 70, P-value was calculated by one-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001)
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Fig. 4  (See legend on previous page.)
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To investigate the function of RHBDF2 in  vivo, we 
constructed a xenograft model based on the KIRC cell 
line 786-O in nude mice. As shown in Fig.  9c, d, the 
tumor growth rate in the RHBDF2-knockdown group 
was significantly slower than that in the control group. 
At the same time, we also observed a delay in the early 
stage of tumor formation in RHBDF2-knockdown 
group.

RHBDF2 related functions were mediated by EGFR 
signaling pathway
We then focus on the signaling that RHBDF2 mediated. 
We used the data of KIRC-TCGA to carry out the GSEA, 
combined the results with WGCNA and obtained the 
functional enrichment results of RHBDF2 in both analy-
sis (Additional file 12: Table S4). We found the enrichment 
results of the red module in WGCNA were more similar to 
those of GSEA (Additional file 13: Fig. S9). Also, as shown 
in Fig. 7b, we presented the pathways that RHBDF2 possi-
bly regulated, the enriched ones of which contained EGFR, 
ERBB and FGFR. In Fig. S5, the hub genes of the red mod-
ule, like PTK2, MAPK3, were also connected to the EGFR 
pathway, as a role of the downstream of signaling or inter-
action, which suggested the correlation of RHBDF2 and 
EGFR. Meanwhile, we detected the reduction of phospho-
EGFR in RHBDF2 knockdown cells (Fig.  9a, b), and the 
phenomenon was also remarkable in the tumor sections 
of 786-O xenografts (Fig. 9e, f ). We used EGFR inhibitor 
Gefitinib to significantly reduce the migration ability of 
786-O and 769-P cells (Fig.  9g, h), which was consistent 
with the effect of RHBDF2-knockdown treatment. Based 
on the above results, we speculate that the EGFR signaling 
pathway may be the main mediator of RHBDF2’s regula-
tion on cell invasion and migration.

EGFR pathway was also reported to regulate PD-L1 level 
[55]. When we used Gefitinib to block EGFR signaling, the 
protein level of PD-L1 showed a reduction (Fig.  9i, j). In 
view of RHBDF2 knockdown significantly reduced EGFR 

activation, it’s plausible that EGFR pathway was an impor-
tant signaling pathway by which RHBDF2 regulates PD-L1.

Discussion
The primary goal of this study is to gain initial insights into 
the role of the rhomboid family of genes in cancer progres-
sion in general, and that of the inactive rhomboids more 
specifically. The challenge from this study is the need to 
integrate a large amount of prognostic information of 30 
cancers and the expression abundance of rhomboids in 
different cancers. The approach leads us to a more holistic 
understanding of the role of rhomboids in cancer. Our find-
ings indicate that KIRC disease progression is highly likely 
to be affected by fluctuations of rhomboids gene expres-
sions and, more specifically, by high levels of RHBDF2 
gene expression. And RHBDF2 is a good indicator of poor 
prognosis of the disease. Advanced analyses of KIRC, like 
WGCNA, GO/KEGG pathways annotation pointed to the 
regulatory role of RHBDF2 in cell proliferation and migra-
tion, implicating its potential as a target for cancer therapy.

The result of immune infiltration analysis is interest-
ing, high levels of RHBDF2 positively correlates with 
infiltration of lymphocytes in cancer tissues but is not 
conductive to the survival of patients. By analyzing the 
immune suppressive checkpoints level, we confirmed 
that RHBDF2 show positive correlation with check-
points, like CD273 and CD276. Moreover, we found that 
RHBDF2 functions may be critically required in estab-
lishing high PD-L1 protein levels in cancer cells, which 
suggests that RHBDF2 be a valuable therapeutic target in 
line with PD-L1-focused immunotherapy, in addition to 
being of diagnostic and prognostic factor for renal clear 
cell cancer. The question of enhanced immune infiltra-
tion into the tumors is particularly interesting. A previ-
ous report of KIRC tumors [56] identified three distinct 
groups, namely immune silencing, immune activation 
and immune regulation, based on the infiltration of 
CD8+ T cells. T cells in the immune-regulated group are 

Fig. 5  Immune cell infiltration and RHBDF2 expression in survival analysis. Scatter diagram depicted the correlation between immune infiltration 
scores and RHBDF2 expression with a KIRC samples in TCGA database and b in GSE68417. c Survival analysis for patients with high or low immune 
infiltration. d Survival analysis grouping with immune infiltration scores and RHBDF2 expression. e Survival analysis based on the macrophage 
infiltration scores and RHBDF2 expression (MHRH: macrophage-high infiltration and RHBDF2-high expression; MHRL: macrophage-high infiltration 
and RHBDF2-low expression; MLRH: macrophage-low infiltration and RHBDF2-high expression; MLRL: macrophage-low infiltration and RHBDF2-low 
expression). f Disease specific survival analysis were present, which grouped with CD8+ T cell infiltration and RHBDF2 expression (THRH: CD8+ T 
cell-high infiltration and RHBDF2-high expression; THRL: CD8+ T cell-high infiltration and RHBDF2-low expression; TLRH: CD8+ T cell-low infiltration 
and RHBDF2-high expression; TLRL: CD8+ T cell-low infiltration and RHBDF2-low expression). P-values were from log-rank tests. Data in figure c-f 
were derived from TCGA​

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Fig. 6  Immune checkpoints analysis. a Pearson correlation between CD274 and RHBDF2 expression in renal clear cell carcinoma in TCGA database 
and in b GSE68417 datasets. c RNA sequencing dada of CD274 expressing in renal clear cell carcinoma in TCGA database (RHBDF2-low, n = 269; 
RHBDF2-high, n = 269; unpaired t-test) and in d GSE68417 datasets (RHBDF2-low, n = 24; RHBDF2-high, n = 25; unpaired t-test). e, f Protein levels of 
PD-L1 in RHBDF2-knockdown cell lines, 786-O and 769-P (P-values were from one-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001)
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less clonal and less cytotoxic than those in the immune-
activated group. It is plausible that RHBDF2 over-expres-
sion encourages the formation of an immunosuppressive 
environment. In a recent study [57], we also found that 
RHBDF1, another member of the proteolytically inac-
tive rhomboid, affected tumor immune microenviron-
ment, through a promotion of endothelial-mesenchymal 
transition and tumor fibrotic stroma growth. Targeting 
RHBDF2 either at gene expression or protein function 
could lead to a release of immunosuppression in tumors 
and thereby a possible enhancement of the cytotoxicity of 
immune cells such as macrophages and T-cells.

In future studies, mechanisms underlying the role of 
RHBDF2 in the modulation of renal clear cell tumor pro-
gression and potential impact on the microenvironment 
are of particular interest. Additionally, in-depth under-
standing of the plausible linkage between RHBDF2 and 
PD-L1 is worthy exploration. Such studies may include 
evaluating the responses to PD-L1 treatment in patients 
with various levels of RHBDF2. Moreover, RHBDF2 as a 

relatively large protein molecule and the possibility that it 
may interact with a number of proteins with critical func-
tions make it an excellent target for therapy development.

Conclusions
In summary, we found that RHBDF2 is positively cor-
related with the severity of the malignancy of renal 
clear cell carcinoma. High expression of RHBDF2 in 
KIRC is associated with an activation of a number of 
genes involved in tumor growth and metastasis. Silenc-
ing the RHBDF2 gene in renal cancer cells leads to 
down-regulation of the immunosuppressive check-
point protein PD-L1, even though there is an increase 
of lymphocyte infiltration into the tumors with high 
levels of RHBDF2. These findings are consistent with 
the view that RHBDF2 not only has potential diagnos-
tic and prognostic values as biomarker, it may also be 
of important value as a therapeutic target in assisting 
immunotherapy.

Fig. 7  RHBDF2-related function enrichment. a Relationships between modules and trait analyzed by WGCNA. RHBDF2 expression level was set as a 
trait, genes in green, red and orange modules had stronger correlation with RHBDF2 expression. b Functional annotation of genes in green, red and 
orange modules
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Fig. 8  RHBDF2 knockdown restricted renal clear cell tumor proliferation and migration. a Cell proliferation detection by Edu incorporation assay in 
786-O cells and 769-P cells with or without RHBDF2 knockdown. (Blue: nuclei; green: nuclei of S-phase cells.) b Statistics of EDU incorporation rate 
(t-test). c Statistics of Cell growth speed (one-way ANOVA was used for significance test). d Cells with or without RHBDF2 knockout were used to 
evaluate migration ability by Transwell assay. The statistical results were shown on the right side (one-way ANONA). e Cell healing results of 786-O 
cells and f 769-P cells, with or without RHBDF2 knockdown at 0, 12, 24 h after scratching. g Statistics of scratching healing (two-way ANOVA). h 
mRNA expression of hub genes in 786-O cells and 769-P cells with or without RHBDF2 knockdown (one-way ANOVA). All the results were repeated 
three times, * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001
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Fig. 9  RHBDF2 related functions were mediated by EGFR signaling pathway. a, b Phosphorylation of EGFR and PD-L1 protein level in 786-O and 
769-P cells were detected by western blot. Significance testing of gray statistics was analyzed by two-way ANOVA. c Growth rate of the transplanted 
tumor in the control group and RHBDF2 knockdown group (data were presented as the mean ± SEM and subjected to two-way ANOVA for 
significance test). d Representative images of xenografts in nude mice. e Immunofluorescent staining of phosphorylation of EGFR in the graft 
sections (The horizontal line at the bottom right represents 50 microns). f The mean fluorescence intensity of the phosphorylation staining of EGFR 
in the graft sections (t-test). g The migratory ability testing of 786-O cells and 769-P cells after Gefitinib treatment. h Statistics of the cell migratory 
ability after Gefitinib treatment (two-way ANOVA). i The detection of pEGFR and PD-L1 level in 786-O and 769-P cells after Gefitinib treatment. j Gray 
statistics of pEGFR and PD-L1 level in 786-O and 769-P cells (two-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.005, **** p < 0.001)
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