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Abstract: Background: The prognosis of diffuse midline glioma (DMG) patients with H3K27M
(H3K27M-DMG) alterations is poor; however, a model that encourages accurate prediction of progno-
sis for such lesions on an individual basis remains elusive. We aimed to construct an H3K27M-DMG
survival model based on DeepSurv to predict patient prognosis. Methods: Patients recruited from a
single center were used for model training, and patients recruited from another center were used for
external validation. Univariate and multivariate Cox regression analyses were used to select features.
Four machine learning models were constructed, and the consistency index (C-index) and integrated
Brier score (IBS) were calculated. We used the receiver operating characteristic curve (ROC) and
area under the receiver operating characteristic (AUC) curve to assess the accuracy of predicting
6-month, 12-month, 18-month and 24-month survival rates. A heatmap of feature importance was
used to explain the results of the four models. Results: We recruited 113 patients in the training set
and 23 patients in the test set. We included tumor size, tumor location, Karnofsky Performance Scale
(KPS) score, enhancement, radiotherapy, and chemotherapy for model training. The accuracy of
DeepSurv prediction is highest among the four models, with C-indexes of 0.862 and 0.811 in the train-
ing and external test sets, respectively. The DeepSurv model had the highest AUC values at 6 months,
12 months, 18 months and 24 months, which were 0.970 (0.919–1), 0.950 (0.877–1), 0.939 (0.845–1),
and 0.875 (0.690–1), respectively. We designed an interactive interface to more intuitively display
the survival probability prediction results provided by the DeepSurv model. Conclusion: The Deep-
Surv model outperforms traditional machine learning models in terms of prediction accuracy and
robustness, and it can also provide personalized treatment recommendations for patients. The Deep-
Surv model may provide decision-making assistance for patients in formulating treatment plans in
the future.

Keywords: diffuse midline glioma; H3K27M alteration; machine learning; DeepSurv; survival model

1. Introduction

H3K27M-mutant diffuse midline glioma (H3K27M-DMG) is a new class in the 2016
WHO classification of central nervous system (CNS) [1], and H3K27M mutation was
replaced by H3K27M alteration in the 2021 WHO classification of CNS tumors (fifth edi-
tion) [2]. Molecular analyses of biological tissue have revealed that the vast majority of
these tumors possess a histone H3 gene mutation that most commonly occurs at either
H3.1 (HIST1H3B/C) or H3.3 (H3F3A) and results in a H3K27M mutation (histone 3 ly-
sine substitution for methionine at site 27 (H3K27M)) [3,4]. It behaves like a much more
aggressive tumor if H3K27M is mutated and is classified as WHO Grade IV irrespective
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of histology [5]. This type of tumor not only grows in the brainstem, but also originates
in other midline structures, such as the thalamus, gangliocapsular region, cerebellum,
cerebellar peduncles, third ventricle, hypothalamus, and pineal region, as well as in the
spinal cord [6]. H3K27M-DMG is the second most common childhood malignant brain
tumor, with an incidence of 200–300 cases annually in the United States [7].

The prognosis of DMG patients with H3K27M alterations is poor, with a median
survival period reported in the literature between 8.76 and 22.8 months [8–10]. The 2-year
survival rate is less than 10% for patients receiving standard treatment, including surgery
and adjuvant chemoradiation [11]. Currently, studies have shown that ATRX gene mu-
tation, age, and radiation therapy are independent prognostic factors for H3K27M-DMG
patients [12,13]. To date, however, a model that encourages accurate prediction of prognosis
for such lesions on an individual basis remains elusive.

Traditional machine learning and deep learning constitute artificial intelligence, which
is currently widely used in the medical field [14,15]. Zhou et al. [16] conducted survival
analysis on intrahepatic cholangiocarcinoma using multicenter data based on machine
learning modeling and prediction and achieved good results. In 2018, Katzman et al. [17]
proposed DeepSurv, which is a survival prediction method based on neural networks. It can
discover nonlinear relationships between different factors that traditional machine learning
has difficulty detecting, and they further proved that the DeepSurv model is superior
to traditional machine learning models in fitting patient survival and recommending
treatment and has better predictive performance for complex survival data. Adeoye
et al. [18] constructed machine learning models and a DeepSurv model to predict the
malignant transformation-free survival of oral potentially malignant disorders. They
found that, compared to traditional survival models, the DeepSurv model has the highest
prediction accuracy and robustness. Individualized survival prediction for diseases can
provide assistance for patients in making subsequent treatment decisions. However, there
is currently no survival prediction based on deep learning for H3K27M-DMGs. Therefore,
we aimed to construct an H3K27M-DMG survival model based on DeepSurv to predict
patient prognosis, with the hope of guiding the individualized treatment of patients in
clinical practice.

2. Materials and Methods
2.1. Patients and Definitions

We retrospectively enrolled diffuse midline glioma (DMG) patients from February 2016 to
April 2022 at West China Hospital of Sichuan University. Patients who met the following
inclusion and exclusion criteria were collected as a training set in this study. The inclusion
criteria were as follows: craniotomy or biopsy surgery was performed at West China
Hospital of Sichuan University from February 2016 to April 2022, and the postoperative
pathological results showed H3K27M alteration. The exclusion criteria were as follows:
(1) previous history of other craniocerebral operations; (2) the tumor was located in the
spinal cord; (3) the tumor was located in the nonmidline region; and (4) loss at follow-up.
H3K27M status was determined in patients by pyrosequencing analysis for H3F3A or
HIST1H3B mutations. Patients meeting the same inclusion and exclusion criteria from
Chengdu Shangjin Nanfu Hospital from February 2016 to April 2022 were selected as the
external test set. All operations were performed by senior neurosurgery professors. This
study was approved by the West China Hospital Ethics Committee, and written informed
consent was exempt from the present study as a retrospective clinical study. We started
accessing data for research purposes on 1 August 2022.

We collected the following information from patients based on medical history, surgi-
cal records, imaging records, pathological reports, telephone calls and outpatient follow-up
for model training: age at diagnosis (0–100), sex (male or female), preoperative Karnof-
sky Performance Scale (KPS) score (0–100), tumor location (thalamus, midbrain, pontine,
medulla, and basal ganglia), enhancement (enhancement in the T1 enhanced sequence
of magnetic resonance imaging), tumor size (≥1 mm, ≥2 mm, ≥3 mm, ≥4 mm), and the
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extent of resection (resections were defined as gross total resection/GTR when 100% of
the tumor was removed; subtotal resection/STR and partial resection/PR designate the
tumoral remnant as <10% and <50%, respectively), adjuvant therapy (radiotherapy or
chemotherapy treatment), ATRX expression (lost or intact), p53 positivity (positive or
negative), Ki-67 level, MGMT status (unmethylated or methylated), survival/follow-up
time in months, and survival status (dead or survived).

2.2. Feature Selection

We used univariate Cox regression analysis to screen for significant prognostic factors
and included these characteristics in the multivariate Cox regression survival analysis. We
use the cor function in R software to calculate the interrelationships between these features
and test whether there is collinearity between them. When Pearson’s correlation value is
≥0.7, it means that these factors have a high degree of collinearity.

2.3. Model Construction of Machine Learning

We constructed four machine learning prediction models, including two traditional
machine learning survival prediction models and two deep learning neural network models,
and compared which of the four prediction models best fit the survival state of H3K27M-
DMG. Traditional machine learning models include the Cox proportional hazard (CoxPH)
model and Random Survival Forest (RSF) model. The deep neural network model in-
cludes the Neural Multi-Task Logistic Regression (N-MTLR) and DeepSurv [17] models
(Figure 1). Research [19] has shown that the N-MTLR model is significantly better than
that of the traditional survival prediction model in survival prediction. DeepSurv is a deep
feedforward neural network that can predict the survival state of patients by using patient
covariates. It includes an input layer, an intermediate hidden layer, and an output layer.
We input the patient’s covariates into the neural network as input layers, with the middle
layer consisting of fully connected neural nodes followed by a dropout layer. The model
constantly automatically adjusts the feature weight and outputs the patient’s survival
probability from the final output layer. We normalized KPS and one-hot encoded locations
and then fed those covariables into the neural network.
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Figure 1. Diagram of DeepSurv. The input to the network is the baseline data x. The network
propagates the inputs through a number of hidden layers with weights θ. The hidden layers consist
of fully connected nonlinear activation functions followed by dropout. The final layer is a single node
which performs a linear combination of the hidden features.
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2.4. Model Training

In the training of the model, we divided the data into a training set and a validation
set according to the ratio of 75% to 25%; that is, all the training of the model was carried
out in 75% of the datasets, and all the validation of the model was carried out in 25% of the
dataset. All models were trained with 600 epochs and verified by 5-fold cross-validation,
and their performance was tested by external test sets after training. When training the
DeepSurv and N-MTLR models, we used a random hyperparameter search to optimize the
model’s hidden layer number, neural nodes, activation function, dropout, optimizer, and
iteration times.

2.5. Model Performance Measures

We calculated the consistency index (C-index) of the model in the training and testing
sets. Time dependent areas under the receiver operating characteristic (ROC) curve (AUCs)
were also calculated to evaluate machine learning models at 6, 12, 18, and 24 months. The
closer the ROC curve is to the upper left corner, the better the predictive performance of
the model (the larger the AUC value is, the higher the prediction accuracy of the model).
Brier scores represent the mean square deviation between the observed patient status and
the predicted survival probability. Its value is always between 0 and 1, and the closer the
score is to 0, the better. Conversely, the higher the score is, the worse the prediction result
and the worse the calibration level. Models with Brier scores less than 0.25 are considered
useful in practice. To determine the overall performance of the model over all periods, we
also calculated the integrated Brier score (IBS). We use the streamlit package (1.20.0) to
create an app that can directly use the trained model to output the survival probability of
patients at different times using patient information.

2.6. Statistical Analysis

SPSS software version 25.0 (IBM Corp., Armonk, NY, USA) was used for data analysis.
Classified variables are described by percentages, and continuous variables are described by
means ± standard deviations. Categorical variables were compared with the chi-squared
test. Continuous variables were compared with independent-samples t tests or rank-sum
tests. During this analysis process, all statistical tests were 2-sided, and a p value < 0.05
was considered statistically significant. The PySurvival package (version 0.2.1) in Python
software (version 3.7.16) was used to build models. We used R version 4.1.0 for plotting.
Kaplan–Meier analysis and log-rank testing were then performed using the Python lifelines
survival analysis module.

3. Results
3.1. Patient Characteristics

We recruited 113 patients in the training set and 23 patients in the test set (Figure 2).
The comparison of clinical information between the two groups is shown in Table S1. After
statistical comparison, patients in the training set were younger than those in the test set,
with a significant difference (23.04 ± 16.84 years vs. 34.39 ± 17.27 years, p = 0.004). In terms
of postoperative adjuvant radiotherapy, patients in the test set were more active than those
in the training set. A total of 52.2% of patients chose radiotherapy, while only 27.4% chose
radiotherapy in the training set, showing a statistically significant difference (p = 0.020).
However, in terms of chemotherapy, there was no significant differences between the test
set and training set (39.1% vs. 28.3%, p = 0.303). ATRT expression in the training set was
significantly higher than that in the test set (68.1% vs. 52.1%, p = 0.022). The survival curves
of the two groups are shown in Figure S1, and the results show no significant difference
(p = 0.49). There were no statistically significant differences in sex, tumor location, surgical
resection scope, preoperative KPS, or survival status between the two groups.



Brain Sci. 2023, 13, 1483 5 of 12Brain Sci. 2023, 13, x 5 of 12 
 

 

Figure 2. Workflow of the study population. 

3.2. Feature Screening Results 

Univariate Cox analysis (Table 1) showed a significant negative correlation between 

tumor size, enhancement, Ki67 expression, and patient survival time. The location of the 

tumor in the midbrain (HR; 0.733, 95% CI; 0.103–0.723) was a protective factor compared to 

the location of the tumor in the medulla. KPS (HR; 0.964, 95% CI; 0.952–0.975, p < 0.05), ra-

diotherapy (HR; 0.203, 95% CI; 0.121–0.342, p < 0.05) and chemotherapy (HR; 0.240, 95% CI; 

0.146–0.395, p < 0.05) showed a significant positive correlation with patient survival time. 

After multivariate Cox analysis, Ki67 expression lost significance (HR; 2.533, 95% CI; 0.511–

12.565, p = 0.255). The results of collinearity analysis showed that the highest correlation 

coefficient was between radiotherapy and chemotherapy (Figure 3), with a value of 0.54 < 

0.70. Finally, we included tumor size, tumor location, KPS, enhancement, radiotherapy, and 

chemotherapy for model training. Loss convergence graphs for the N-MTLR and DeepSurv 

models are shown in Figure S2. 

 

Figure 3. Correlogram illustrating the correlation between all variables. The correlation coefficient 

is distributed in the range of −1 to +1. They are represented by color depth, and the closer the num-

bers are to the final value, the stronger their negative or positive correlation. 

Figure 2. Workflow of the study population.

3.2. Feature Screening Results

Univariate Cox analysis (Table 1) showed a significant negative correlation between
tumor size, enhancement, Ki67 expression, and patient survival time. The location of the
tumor in the midbrain (HR; 0.733, 95% CI; 0.103–0.723) was a protective factor compared to
the location of the tumor in the medulla. KPS (HR; 0.964, 95% CI; 0.952–0.975, p < 0.05),
radiotherapy (HR; 0.203, 95% CI; 0.121–0.342, p < 0.05) and chemotherapy (HR; 0.240,
95% CI; 0.146–0.395, p < 0.05) showed a significant positive correlation with patient survival
time. After multivariate Cox analysis, Ki67 expression lost significance (HR; 2.533, 95% CI;
0.511–12.565, p = 0.255). The results of collinearity analysis showed that the highest
correlation coefficient was between radiotherapy and chemotherapy (Figure 3), with a
value of 0.54 < 0.70. Finally, we included tumor size, tumor location, KPS, enhancement,
radiotherapy, and chemotherapy for model training. Loss convergence graphs for the
N-MTLR and DeepSurv models are shown in Figure S2.
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distributed in the range of −1 to +1. They are represented by color depth, and the closer the numbers
are to the final value, the stronger their negative or positive correlation.
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Table 1. Univariate and multivariate Cox proportional hazard regression analyses to determine
prognostic factors for patients with H3K27M-DMG.

Variable Univariate Analysis (HR, 95% CI) p Multivariate Analysis (HR, 95% CI) p

Age 0.988 (0.976–1.000) 0.059 0.994 (0.940–0.970) 0.434
Gender 0.674 0.890

Female 1 [Reference] 1 [Reference]
Male 0.919 (0.620–1.362) 1.036 (0.627–1.713)

Tumor size 0.000 0.035
≥1 mm 1 [Reference] 1 [Reference]
≥2 mm 2.027 (0.728–5.644) 4.069 (1.038–15.958)
≥3 mm 4.946 (2.069–11.825) 4.848 (1.413–16.637)
≥4 mm 8.536 (3.504–20.793) 6.771 (1.875–24.457)

Tumor location 0.037 0.010
Medulla 1 [Reference] 1 [Reference]
Pontine 0.981 (0.641–5.161) 0.959 (0.145–6.347)
Midbrain 0.733 (0.103–0.723) 0.050 (0.03–0.718)
Thalamus 0.801 (0.457–3.715) 0.527 (0.082–3.402)
Basal ganglia 0.942 (0.445–6.867) 0.801 (0.117–5.487)

Extent of resection 0.432 0.245
Biopsy 1 [Reference] 1 [Reference]
PR 1.035 (0.488–2.196) 0.489 (0.200–1.191)
STR 0.694 (0.308–1.562) 0.404 (0.158–1.038)
GTR 1.031 (0.455–2.336) 0.598 (0.217–1.651)

Pre-op KPS 0.964 (0.952–0.975) 0.000 0.955 (0.940–0.970) 0.000
Enhancement 0.000 0.031

No 1 [Reference] 1 [Reference]
Yes 2.212 (1.462–3.347) 1.733 (1.051–2.859)

Radiotherapy 0.000 0.000
No 1 [Reference] 1 [Reference]
Yes 0.203 (0.121–0.342) 0.178 (0.089–0.355)

Chemotherapy 0.000 0.002
No 1 [Reference] 1 [Reference]
Yes 0.240 (0.146–0.395) 0.345 (0.175–0.681)

ATRX expression 0.845 0.112
No 1 [Reference] 1 [Reference]
Yes 1.044 (0.674–1.617) 1.586 (0.897–2.805)

P53 positive 0.572 0.066
No 1 [Reference] 1 [Reference]
Yes 0.858 (0.508–1.448) 0.567 (0.309–1.039)

Ki67 expression 10.186 (2.735–37.942) 0.001 2.533 (0.511–12.565) 0.255
MGMT promoter methylation 0.193 0.564

Unmethylated 1 [Reference] 1 [Reference]
Methylated 0.713 (0.421–1.208) 1.200 (0.647–2.225)

3.3. Model Performance

The performance of the models in the two datasets is summarized in Table 2. The
results show that the model can effectively fit and predict the survival status of patients
in both the training and testing sets. The hyperparameter search results of the models are
shown in Tables S2 and S3. In the training set, the DeepSurv model had the highest accuracy,
with a c-index of 0.862, while the other three models had c-indexes of 0.819 (CoxPH),
0.824 (N-MTLR), and 0.845 (RSF). The prediction accuracy of the DeepSurv model in the
test set decreased by only 0.051 compared to the training set, which is the least reduction
among the four models. We plotted the IBS curves for each model, as shown in Figure S3.
The IBS of all four models is less than 0.25, with the DeepSurv model having the lowest IBS
of 0.093 among the four models. The ROC curves and AUC values of the four models at 6
months, 12 months, 18 months, and 24 months are shown in Figure 4. The AUC values of
the four models gradually decrease with increasing time. The possible reason is that the
number of patients who die increases over time, resulting in less data for subsequent model
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training, resulting in a decline in the performance of the model. The DeepSurv model has
the highest AUC values at the four time nodes, which are 0.970 (0.919–1), 0.950 (0.877–1),
0.939 (0.845–1), and 0.875 (0.690–1). The best performance in the test set is still the DeepSurv
model, which has a C-index and IBS of 0.811 and 0.147, respectively. The AUC values of this
model at the four time points are 0.893 (0.827–0.972), 0.869 (0.782–0.961), 0.866 (0.776–0.962),
and 0.803 (0.667–1), respectively.

Table 2. The performance of the models in the two datasets.

Models C-Index IBS 6 Months AUC 12 Months AUC 18 Months AUC 24 Months AUC

CoxPH
Training set 0.819 0.126 0.914 (0.803–1) 0.906 (0.794–1) 0.898 (0.775–1) 0.837 (0.647–1)
Test set 0.751 0.162 0.853 (0.781–0.952) 0.836 (0.725–0.947) 0.829 (0.711–0.924) 0.773 (0.607–0.891)

N-MTLR
Training set 0.824 0.104 0.909 (0.788–1) 0.922 (0.822–1) 0.912 (0.799–1) 0.865 (0.680–1)
Test set 0.763 0.159 0.849 (0.742–0.957) 0.853 (0.765–0.972) 0.849 (0.762–0.974) 0.807 (0.653–1)

RSF
Training set 0.845 0.112 0.960 (0.899–1) 0.922 (0.827–1) 0.898 (0.782–1) 0.861 (0.674–1)
Test set 0.786 0.150 0.871 (0.805–0.962) 0.853 (0.761–0.985) 0.821 (0.726–0.947) 0.780 (0.637–1)

DeepSurv Training set 0.862 0.093 0.970 (0.919–1) 0.950 (0.877–1) 0.939 (0.845–1) 0.875 (0.690–1)
Test set 0.811 0.147 0.893 (0.827–0.972) 0.869 (0.782–0.961) 0.866 (0.776–0.962) 0.803 (0.667–1)

Note: Bolded values indicate that the value is the best of the four groups. Abbreviations: IBS, Integrated Brier
Score. CoxPH, Cox proportional hazard model. N-MTLR, NeuralMultiTask Logistic Regression model. RSF,
Random Survival Forest model.
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3.4. Model Visualization

A heatmap of feature importance (Figure 5) shows the degree to which these features
have an impact on the model when predicting patient prognosis. The results showed
that the features that had the greatest impact on the DeepSurv, N-MTLR, and RSF models
were KPS, tumor size, and KPS, respectively. We designed an interactive interface to more
intuitively display the survival probability prediction results provided by the DeepSurv
model. The surgeon inputs the prognosis information of the patient on the left side, and the
survival probability of the patient at different times is automatically predicted immediately
on the right side. This program can also visually compare the survival curves of patients
after using different combinations of adjuvant radiotherapy and chemotherapy methods to
select the treatment method that can most prolong the patient’s life. The visualization of
the application’s functionality and output is shown in Figure S4.
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the C index. Higher values indicate greater importance to the predictive accuracy of the respective
deep learning model.

4. Discussion

Survival analysis of the statistical model finds its application widely in clinical oncol-
ogy in providing the prognosis of the disease to the patients by finding the probability that
a patient would survive more than a particular time [20]. In the past, many studies have
used traditional machine learning models to fit the survival of patients with certain diseases.
These machine learning models can play a role in predicting patient prognosis, but they
are linear models. In real life, the relationship between disease characteristics and patient
prognosis may be nonlinear. Deep learning algorithms are constructed using a sequence
of layers, each consisting of a nonlinear activation function that depends on an unknown
vector of weights that is estimated by minimizing a loss function often subject to some
regularization [21]. It can discover the nonlinear relationship between features and disease
prognosis. The DeepSurv model can also provide personalized treatment recommendations
for patients, and based on the recommendations, it can maximize the patient’s lifespan. For
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H3K27M-DMG, there is currently no deep learning model to predict its prognosis. In this
study, we constructed a model to predict the survival of H3K27M-DMG patients through
deep learning and recommend individualized treatment. After comparison in this study,
the prediction accuracy of the deep survey model is higher than that of traditional machine
learning prediction models.

In this study, there were significant differences in age, radiotherapy and ATRT expres-
sion between the training and testing sets, as the patients came from two different hospitals.
In the presence of these differences, the DeepSurv model demonstrated strong general-
ization performance with a prediction accuracy of 81.1% in the test set. In our study, the
average survival times of patients in the training and testing sets were 9.41 ± 12.11 years
and 10.37 ± 8.78 years, respectively, which is consistent with the previously reported
overall survival time of approximately 12 months [22,23]. The disease progression is rapid,
so treatment should be carried out as early as possible.

In our study, it was found that the extent of surgical resection was not a significant
prognostic factor. Previous studies on glioma survival believed that the more tumors
are removed, the longer the overall survival of patients [24–26]. The reason why our
results differ from theirs may be that they studied low-grade gliomas with low malignancy,
whereas H3K27M-DMG is highly aggressive. Taking DIPG as an example, autopsy case
statistics show that although the tumor originates in the pons, it can extensively invade
areas such as the midbrain and medulla oblongata, forming subclinical infiltrating lesions
composed of tumor cells in these areas [27]. However, the extent of surgical resection often
does not include this area, and the remaining tumor cells are prone to rapid recurrence.

In our study, KPS played the most important role in the DeepSurv and RSF models.
The lower the KPS was, the higher the risk of death for patients, as a lower KPS often
indicates that the tumor has progressed to advanced stages. The association of KPS with
the risk of death in glioma patients has been demonstrated in numerous studies. Haley
et al. [28] plotted a nomogram of low-grade gliomas, which showed that a lower KPS was
associated with a higher risk of death in patients. Bai et al. [29] also found that a lower KPS
was associated with a higher mortality risk in patients. In this study, tumor size, tumor
location, enhancement, radiotherapy, and chemotherapy were also significant prognostic
factors. Previous studies have found that tumor location [30,31], radiotherapy [12,31], and
chemotherapy [32] are significant prognostic factors for H3K27M-DMG. In the future, larger
cohort studies are needed to explore whether tumor size and enhancement are significant
prognostic factors for H3K27M-DMG.

Koji et al. [33] compared the survival outcome prediction of the Cox model and deep
learning model in clinical cancer. They found that deep learning models outperformed COX
models in predicting progression-free survival and overall survival, and as input features
increased, the predictive performance of deep learning models further increased. Shreyesh
et al. [34] used deep learning to predict the survival of lung cancer patients and found that
the deep learning models outperformed traditional machine learning models across both
classification and regression approaches. However, there is currently no research using
deep learning algorithms to predict the survival of H3K27M-DMG. A previous study used
Cox proportional hazard regression for survival analysis of H3K27M-DMG and produced
a nomogram [35]. Compared to their study, the advantage of our study is that it adopted
deep learning algorithms, included more patients, and additionally collected tumor size
information. Therefore, in terms of model performance, our prediction accuracy is higher
(c-index, 81.1% vs. 78.5%). In our research, the deep survey model not only outperformed
traditional machine learning models in both training and validation sets, but also had
the ability to provide personalized recommendations for the postoperative treatment of
patients. Not every H3K27M-DMG patient can benefit from adjuvant radiotherapy and
chemotherapy after surgery [36]. Therefore, with increasing emphasis on individualized
treatment, our model may provide a reference for patients in deciding whether to choose
adjuvant radiotherapy and chemotherapy after surgery.
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There are some limitations to this study. First, the number of patients in this study
was relatively small, and the performance of the model may be improved in future training
with a larger number of patients. Second, this study is a retrospective study, and some
clinical data of patients are already missing. Third, the failure to incorporate more modal
data into the survival model, such as omics, might improve its performance. It is expected
that future studies can improve the number of patients and types of input characteristics to
further improve the performance of the model.

5. Conclusions

We constructed traditional machine learning survival models and the DeepSurv sur-
vival prediction model for H3K27M-DMG. The c-indexes of the DeepSurv model in the
training and testing sets were 86.2% and 81.1%, respectively. After comparison, the Deep-
Surv model outperforms traditional machine learning models in terms of prediction ac-
curacy and robustness. The DeepSurv model may provide decision-making assistance
for patients in establishing clinic treatment programs in the future. Due to the rarity of
H3K27M-DMG, multicentric studies with larger sample size are needed to validate and
optimize the model in future work.
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