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Simple Summary: Cytokines are important molecular players in cancer development, progression,
and potential targets for treatment. Despite being small and overlooked, research has revealed that
cytokines influence cancer biology in multiple ways. Cytokines are often found to contribute to
immune function, cell damage, inflammation, angiogenesis, metastasis, and several other cellular
processes important to tumor survival. Cytokines have also proven to have powerful effects on
complex tumor microenvironment molecular biology and microbiology. Due to their heavy involve-
ment in critical cancer-related processes, cytokines have also become attractive therapeutic targets for
cancer treatment. In this review, we describe the relationship between several cytokines and crucial
cancer-promoting processes and their therapeutic potential.

Abstract: Cytokines are small molecular messengers that have profound effects on cancer develop-
ment. Increasing evidence shows that cytokines are heavily involved in regulating both pro- and
antitumor activities, such as immune activation and suppression, inflammation, cell damage, an-
giogenesis, cancer stem-cell-like cell maintenance, invasion, and metastasis. Cytokines are often
required to drive these cancer-related processes and, therefore, represent an important research
area for understanding cancer development and the potential identification of novel therapeutic
targets. Interestingly, some cytokines are reported to be related to both pro- and anti-tumorigenicity,
indicating that cytokines may play several complex roles relating to cancer pathogenesis. In this
review, we discuss some major cancer-related processes and their relationship with several cytokines.
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1. Introduction

In 2020, an estimated 19.3 million new cancer cases and nearly 10 million cancer
deaths occurred worldwide [1]. Due to cancer’s increasing global impact, understanding
factors that drive cancer development has never been more critical. Cancer is characterized
by improper regulation of cell differentiation, proliferation, apoptosis avoidance, growth
suppressor evasion, increased vasculature, invasion, metastasis, reprogrammed cellular
metabolism, and immune evasion [2]. Many of these cancer-promoting processes are highly
regulated by cytokines, small protein molecular messengers produced by both normal cells
and cancer cells. Cytokines facilitate various interactions between cancer cells, immune
cells, and non-immune cells [3,4]. In normal immune activation, cytokines regulate T-cell
activation, priming, and CD4+ differentiation and, therefore, play an important role in
anticancer immunity [5]. In addition to T cells, cytokines are secreted by other immune cells.
For example, tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs),
and myeloid-derived suppressor cells (MDSCs) secrete chemokines C–C motif chemokine
ligand 2 (CCL2), CCL4, and CCL5 and inflammatory cytokines tumor necrosis factor α

(TNF-α), transforming growth factor β (TGF-β), interleukin-1β (IL-1β), IL-6, and IL-23
to activate T helper 17 (Th17) cell expansion [6]. Generally, pro-inflammatory cytokines
mediate key immune interactions to promote antitumor activity. In contrast, cytokines
secreted by cells in the tumor microenvironment (TME) and some normal cells promote
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various cancer processes, such as angiogenesis, epithelial to mesenchymal transition (EMT),
invasion, tumor progression, and maintain cancer stem-cell-like (CSCs) cells [7]. There are
several cytokines involved in these processes. Some cytokines even have complex dual
roles and may be involved in both immune activation and cancer development, while
others are undergoing investigation to become novel therapeutic targets to treat cancer by
disrupting cancer processes. Overall, cytokines are heavily involved in multiple aspects
of cancer development and may drive carcinogenesis or promote antitumorigenic effects.
Here, we discuss the complex relationship between cytokines and various cancer-related
cellular processes, such as immune activation and suppression, inflammation, cell damage,
angiogenesis, CSC maintenance, invasion, and metastasis.

2. Cytokines Regulate Key Immune Players

Macrophages are members of the innate immune response and are responsible for
phagocytosis of foreign materials, engulfment of dead, injured, or infected cells, extra-
cellular matrix formation, angiogenesis, and antigen presentation [8]. Macrophages can
be divided into two functional classes: Macrophages 1 (M1) and Macrophages 2 (M2).
M1 macrophages can switch to become M2-type macrophages, or vice versa, depending
on environmental conditions, such as inflammation, infection, hypoxia, injury, or cytokine
secretion [8]. However, the distinction between M1 and M2 macrophages is a simplified
view of macrophage polarization and is better represented as a continuum of macrophage
functional states [9]. Macrophages alter their behavior to address environmental stres-
sors. TNF-α, IFN-γ, IL-12, IL-23, Toll-like receptor (TLR) ligands, and LPS promote the
M1 phenotype, while IL-14 and IL-13 induce the M2 phenotype [8,10,11]. Simply, M1-type
macrophages are generally pro-inflammatory, activate Th1 cell responses, and inhibit cell
proliferation via tissue damage caused by the secretion of pro-inflammatory cytokines.
In contrast, M2 macrophages favor immunosuppressive behavior, poor antigen presen-
tation, wound healing, angiogenesis, cell proliferation, promote Th2 cell activity, and
suppress Th1 activity (Figure 1) [8]. M2 macrophages secrete C–X–C motif chemokine lig-
and 13 (CXCL13), which promotes cell proliferation, invasion, migration, and EMT in renal
cell carcinoma (ccRCC) cells by interacting with CXCR5 receptors [12]. TAMs generally
have M2 functions and promote immunosuppression by releasing CCL18 to attract naïve
T cells lacking cytotoxicity to the TME. CCL18 from TAMs is associated with increased
breast cancer metastasis and poor prognosis [13]. CCL17 and CCL22 are additional TAM
chemokines that interact with CCR4 receptors displayed on regulatory T cells (Treg) and
Th2 cells, which are T-cell subsets devoid of antitumor activity [9]. TAMs represent over
50% of tumor-infiltrating immune cells and, therefore, may act as prominent players in
regulating cancer development [14].

Th17 cells represent one T-cell subset reported to have both anti- and pro-tumor effects.
Depending on tumor type and conditions, Th17 cells may drive chronic inflammation,
which is associated with several tumor types, or enhance the recruitment of CD8+ T cells,
neutrophils, and natural killer (NK) cells to the tumor and activate tumor killing [15]. Th17
cell clonal expansion and differentiation require a wide variety of cytokines, such as TGF-β,
IL-1β, IL-6, IL-21, and IL-23 [16–18]. Th17 cells were first distinguished as different from
other CD4+ T cells when retinoic acid receptor-related orphan receptor gamma t (RORγt)
was identified as a transcriptional factor required for Th17 cell differentiation [19]. Type
3 cytokines IL-17A, IL-17F, IL-22, and IL-26 are secreted by Th17 cells [20]. The IL-17
superfamily comprises cytokines IL-17A-F and receptors IL-17RA-RE. Little is known
about the functions of IL-17B, -C, and -D; however, IL-17A and IL-17F are highly involved
in inflammation and autoimmunity. IL-17E, also known as IL-25, promotes Th2 cell-
specific cytokines while inhibiting Th17 cell development [21]. Th17 cells secrete IL-17 to
guide neutrophils and macrophages to the tumor site and promote anticancer activity [6].
IL-17 also stimulates production of inflammatory cytokines IL-6, colony-stimulating factors
(G-CSF and GM-CSF), IL-1β, and chemokines CXCL2 and CXCL8 to promote granulocyte
recruitment in response to inflammation [22].
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Figure 1. Macrophage polarization is highly regulated by cytokines. Generally, inflammatory
cytokines promote M1-type macrophage functions that lead to enhanced Th1 activation, tumor
killing, tissue damage, and antigen presentation. In contrast, anti-inflammatory cytokines induce
macrophages to become more M2-like, leading to increased tumor-promoting and immunosuppres-
sive responses, such as Th2 activation, angiogenesis, wound healing, and cell proliferation.

Foxp3-expressing Tregs play key roles in preventing autoimmunity via self-tolerance;
however, evidence suggests that they facilitate cancer progression by suppressing immune
cells and regulating immune surveillance [23]. Increased Treg activity is associated with
cancer progression in multiple tumor types in humans [24]. A recent study observed Treg
increases with lymph node invasion in breast cancer [25]. Another study revealed that
lymph nodes containing metastatic breast cancer have increased Treg frequency, effector
T-cell exhaustion, and suppressed TCR signaling, compared with non-metastatic lymph
nodes [26]. Cytokines and environmental cues direct Treg responses to inhibit inflamma-
tion [27]. Tregs may secrete TGF-β, IL-10, and IL-35 to inhibit immune activation [28]. One
study showed that CD8+ T-cell suppression is linked to TGF-β signaling [29]. Interestingly,
TGF-β drives Treg cell differentiation; however, when IL-6 or IL-21 is also present, Treg
cell differentiation is inhibited, while Th17 cell differentiation is promoted, demonstrating
cytokine-dependent Treg/Th17 plasticity [30]. In breast cancer, Tregs are reported to up-
regulate chemokine receptor CCR8 [24]. Elevated CCR8 discriminates highly suppressive
tumor Tregs from systemic lymphoid tissue Tregs. Interestingly, CCR8 is not required for
Treg-driven immunosuppression and Treg cell accumulation in mouse models [31]. Kidani
et al. showed that administering anti-CCR8 monoclonal antibodies (mAb) to tumor-bearing
mice results in CD8+ effector T-cell expansion, less T-cell exhaustion, and tumor immunity
when mice were rechallenged with the same tumor cell line. Results also indicated that anti-
CCR8 mAbs promote minimal autoimmunity compared to systemic Treg depletion [32].
Therefore, CCR8 is a potential therapeutic target to selectively remove tumor Tregs and
avoid systemic Treg removal and autoimmunity

3. Cytokines in Inflammation and Cellular Damage

Inflammation, rather than a singular event, is a process involving cells of innate and
adaptive immunity being activated, recruited, and put into action. Inflammation is essential
for host defense against pathogens, as well as tissue repair and regeneration [33,34]. During
the early onset of an inflammatory response, neutrophils migrate to the inflamed site,
followed by leukocytes, lymphocytes, and other activated inflammatory cells, which are
attracted by a signaling network of cytokines, chemokines, and growth factors [35].

Cytokines are largely involved in inflammation and have specific effects on the commu-
nications and interactions between cells. Through autocrine, paracrine, or endocrine action,
cytokines may act on the cells that secrete them, neighboring cells, or distant cells [36].
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By elaborate biological mechanisms, the production and action of cytokines are closely
regulated. Under normal healthy conditions, cytokines are produced and consumed at
the site of tissue damage or invasion [37]. Various pro-inflammatory cytokines, such as
IL-1β, IL-6, and TNF-α are shown to influence the process of pathological pain as well as
the upregulation of inflammatory reactions [36]. While modest systemic levels of these
cytokines may bring benefits in promoting mild fever, mobilization of hemopoietic progen-
itors, and protein production, marked elevation of IL-1β, IL-6, and TNF-α in severe disease
can contribute to tissue damage and organ failure [37–39]. Inflammation appears to be an
important factor in the ability of tumor cells to metastasize. The presence of inflammatory
cells and mediators in the TME is a hallmark of cancer-related inflammation [40]. TAMs are
a major source of cytokines in the TME. The nutrient-depleted and hypoxic TME provokes
M2-type macrophage activation, which, in turn, aids tumor progression and suppresses
antitumor activity. Hypoxia also induces increased IL-10 production in macrophages,
supporting alternate activation [41]. Through the secretion of pro-inflammatory cytokines
such as IL-6, IL-1β, and TNF-α, macrophages can contribute to tumor-promoting inflamma-
tion [42]. Due to this, it is crucial that cytokines are regulated to ensure that they stimulate
their proper target cells and inhibit excessive inflammation [37]. Self-limiting characteristics
of an acute inflammatory response allow for inflammation to resolve under normal circum-
stances. Various anti-inflammatory mediators are involved in the negative regulation of
inflammation, including cytokines IL-10 and TGF-β. A balance between inflammatory and
anti-inflammatory cytokines is necessary for maintaining normal physiology.

IL-10 is a potent anti-inflammatory cytokine needed for the suppression of pro-
inflammatory IL-17 expressing Th17 cells, as well as the regulation of anti-inflammatory
Tregs. Evidence that IL-10 controls tumor-promoting inflammation is reported in several
studies. One study showed that IL-10 knockout mice develop colon cancer. Other studies
indicated that IL-10 deficiency in humans correlates with lymphoma development [43–45].
Early clinical trials focused on the anti-inflammatory functions of IL-10. Patients with
various inflammatory diseases received injections of IL-10. Results showed significantly
reduced levels of disease-associated pro-inflammatory cytokines, such as TNF-α, IL-1β,
IL-12, and IL-17; however, this reduction was dependent on the continuous elevation of
IL-10 [43,46,47].

Nitrative and oxidative DNA damage from reactive oxygen species (ROS) and reactive
nitrogen species (RNS), such as nitric oxide (NO), is also related to various inflamma-
tory conditions and a precursor to carcinogenesis. Infection and inflammation trigger
NO generation by inducible nitric oxide synthase (iNOS) [48]. iNOS induction is closely
associated with cytokines TNF-α, IL-1β, and IL-6, which are mediators of innate immu-
nity. While iNOS induction by cytokines represents a rapid mechanism of host defense
against some pathogens, it is less antigen-specific than the adaptive immune response [49].
Hypoxia-inducible factor-1α (HIF-1α) mediates transcription of iNOS. To adapt to an hy-
poxic environment, tumor cells increase the synthesis of HIF-1α. One study explored the
relationship between iNOS and HIF-1α and their correlation with nitrative and oxidative
DNA damage, such as 8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG).
The results of the study showed that iNOS expression is mediated by the expression of HIF-
1α and results in DNA damage [50]. Increased expression of HIF-1α is shown to result from
sustained exposure to inflammatory cytokines, such as IL-1β, IL-6, and TNF-α [51]. Further,
8-oxodG damage leads to G→T transversions [52], which are frequently found in several
tumor-relevant genes. These damage events activate DNA damage response (DDR) signal-
ing, including lesion repair and cell death. The activation of DDR-driven pro-inflammatory
signals, such as NF-κB or various interleukins, can lead to chronic inflammation [53].

Uncontrolled forms of inflammation, such as chronic inflammation and cytokine
storm, may influence the development of disease and disorders. When tissue inflammation
becomes chronic, a greater risk arises for the development of malignancies. This correlation
between inflammation and cancer was suggested in 1863 by Rudolph Virchow, who dis-
covered leukocytes in human breast carcinomas [34,40]. Since then, epidemiological data
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have accumulated supporting Virchow’s original hypothesis of inflammation-mediated
oncogenesis. Such evidence suggests that chronic inflammation and infection are associated
with approximately 25% of all human cancers worldwide [34].

4. Cytokines Drive Angiogenesis

Angiogenesis, also termed neovascularization, is blood vessel development from pre-
existing vasculature. It is regulated by a careful balance of pro- and anti-angiogenic factors.
Normal wound healing, tissue regeneration, and physiological growth are associated
with angiogenesis; however, unbalanced angiogenesis is a prerequisite for solid tumor
development and, therefore, an important research area [54,55]. Tumor vasculature is
characterized by an abnormal basement membrane, discontinuous and irregularly shaped
endothelium, and tortuous hyperpermeable blood vessels that leak nutrients to support
cancer growth, development, and resistance [56]. Tumor blood vessels are disorganized
and difficult to identify as arterioles, venules, or capillaries [57]. A diverse group of
cells, including endothelial cells, cancer cells, cancer-associated adipocytes, fibroblasts,
neutrophils, and macrophages influence tumor vasculature morphology and functionality
(Figure 2) [58–61]. For example, TAMs promote angiogenesis by secreting various pro-
angiogenic factors, such as vascular endothelial growth factor (VEGF), metalloproteinases
(MMPs), TGF-β, platelet-derived growth factor (PDGF), and adrenomedullin (ADM) [11].
Overall, angiogenesis is a complicated process that involves a diverse group of cells that
secrete various angiogenic factors and cytokines. Here, we discuss some major cytokines
that are specifically involved in angiogenesis.
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4.1. Angiogenesis and the VEGF Family

The VEGF family includes VEGF-A, -B, -C, -D, and placental growth factor (PIGF).
VEGF-A is known to bind VEGF receptors 1 and 2, while VEGF-B and PIGF bind VEGF
receptor 1 only [62]. Under oxygen-deprived conditions, hypoxia-inducible factors (HIF-1α
and HIF-2α) induce TAMs to increase VEGF-A secretion and, thus, promote angiogene-
sis [63]. CAFs are major stromal resident cells that secrete several aggressive angiogenic
factors, including FGF2, FGF7, IL-6, and VEGF-A [64]. Several studies indicate that VEGF
regulates angiogenesis in several cancer types. For example, VEGF serum levels are cor-
related with vascular invasion, metastases, tumor stage, and tumor grade of bladder
cancer [65]. One study indicated that TAMs overexpressing VEGF-C promoted lymphovas-
cularization in Merkel cell carcinoma [66,67]. As mentioned previously, MMPs also play
a major role in driving angiogenesis and may be related to VEGF levels. Early chicken
chorioallantoic membrane models and mouse models demonstrated that MMP-2 down-
regulation and deficiencies are associated with tumor angiogenesis [68,69]. Interestingly,
MMP-9- and MT1-MMP-deficient mice present decreased angiogenesis, compared with
wild type [70–72]. One study proposed that MMP-2 may modify VEGF expression after ob-
serving reduced VEGF expression in A549 lung cancer xenograft tissue samples from mice
treated with MMP-2 siRNA [73]. Several studies demonstrate that MMPs enhance VEGF
production; however, the exact mechanism is unknown [74]. In addition to angiogenesis
in solid tumors, VEGF may be associated with hematological malignancies [75]. Recently,
Filipiak et al. used an enzyme-linked immunosorbent assay (ELISA) to measure VEGF-A
levels in 42 Hodgkin’s lymphoma patients and found that VEGF-A concentration was
significantly elevated compared to healthy patient levels [76]. Another study showed that
treating Raji cells with oxacetaxine and curcumin, which have antiproliferative effects on
lymphoma cells, results in suppressed VEGF-A levels in exosomes derived from Raji cells,
and decreases phosphorylated VEGF receptor 2 (p-VEGFR2) levels [77]. VEGF may also be
used to predict the prognosis of diffuse large B cell lymphoma (DLBCL) patients. Sang et al.
performed a retrospective study and discovered that upregulated VEGF was related to poor
therapeutic response and survival of DLBCL patients [78]. In summary, extensive research
has identified VEGF as an angiogenesis biomarker and potential therapeutic target.

A recent preclinical study showed that propofol, a common intravenous anesthetic,
could inhibit VEGF/VEGFR2- and mTOR/eIF4E-mediated signaling pathways to induce
anti-angiogenic activity [79]. However, the relationship between propofol and angiogenesis
will require further investigation because both anti-angiogenic and pro-angiogenic effects
are reported [80,81]. Anti-VEGF antibodies may target VEGF and inhibit angiogenesis. For
example, humanized mAb bevacizumab targets VEGF-A isoforms and was approved in the
US in 2004 to be used in combination with chemotherapy for colorectal cancer treatment.
Today, it is also approved to treat ovarian, cervical, glioblastoma, and renal cancers [65].
Bevacizumab is also being tested as a potential treatment option for other cancers (Table 1).
In one case study, a 21-year-old female with central nervous system (CNS) acute myeloid
leukemia (AML) relapse was treated with bevacizumab and intrathecal (IT) chemotherapy.
As a result, she remained in complete remission for nearly 1 year. Results suggest that
bevacizumab may prove to be a good combination treatment for AML patients [82].

PIGF is a potential prognostic cancer biomarker, like other VEGF family members,
and is involved in endothelial stimulation, bone marrow-derived cell activation, and
angiogenesis [83]. In one study, the serum levels of PIGF from 49 clear cell ccRCC patients
were tested before surgery and 3 months post-surgery. Before surgery, patients with primary
metastatic ccRCC had significantly elevated PIGF levels, compared with localized, without-
relapse ccRCC patients [84]. Phage-display technology identified PIGF-specific nanobodies
in the nM range that demonstrate anti-angiogenic activity [85,86]. Humanized anti-PIGF
antibody TB-403 was tested in patients with advanced solid tumors in phase I clinical trial
and pediatric patients with relapsed or refractory medulloblastoma (NCT02748135) [87].
Results are expected to be released in 2022 [88].



Cancers 2022, 14, 2178 7 of 17

Table 1. Representative clinical trials: cytokine targeted immunotherapy strategies in monotherapy
or combination (as of April 2022) may prove promising for the treatment of various cancers.

Cytokine Intervention/Treatment Phase Clinical Trial

TGF-β

Galunisertib + nivolumab
Galunisertib + durvalumab

Bintrafusp alfa + radiation therapy
Fresolimumab + radiotherapy

Phase 1, 2
Phase 1
Phase 1

Phase 1, 2

NCT02423343
NCT02734160
NCT03524170
NCT02581787

TNF-α Nivolumab + ipilimumab + certolizumab or infliximab
L19 TNF-α + doxorubicin

Phase 1
Phase 1

NCT03293784
NCT02076620

IL-2

NKTR-214 + pembrolizumab
NKTR-214 + nivolumab

NKTR-214 + nivolumab + ipilimumab
aldesleukin

Aldesleukin + bevacizumab
Atezolizumab + cergutuzumab amunaleukin

RO6874281 + trastuzumab + cetuximab

Phase 1, 2
Phase 1
Phase 2
Phase 2
Phase 4
Phase 2
Phase 1
Phase 1

NCT03138889
NCT02983045
NCT03282344
NCT00006864
NCT00853021
NCT02350673
NCT02627274

IL-10 Pegilodecakin + FOLFOX Phase 3 NCT02923921

IL-15
N-803

rhIL-15 + NK cell infusion
N-803 + aNK (NK-92)

Phase 2
Phase 1
Phase 2

NCT02989844
NCT01875601
NCT02465957

IL-12 Electroporated plasmid + IL-12p DNA
Pembrolizumab + pIL-12

n/a
Phase 2
Phase 2

NCT00323206
NCT02345330
NCT02493361

IL-8 BMS-986253 + nivolumab or nivolumab + ipilimumab Phase 1, 2 NCT03400332

VEGF Bevacizumab + atezolizumab or sunitinib Phase 2 NCT01984242

CSF-1
APX005M + cabiralizumab + nivolumab

pexidartinib + durvalumab
LY3022855 + durvalumab or tremelimumab

Phase 1
Phase 1
Phase 1

NCT03502330
NCT02777710
NCT02718911

GM-CSF Docetaxel and GM-CSF Phase 2 NCT00488982

PIGF TB-403 Phase 1 NCT02748135

4.2. Angiogenesis and Other Major Cytokines

Hepatocyte growth factor (HGF) is a scatter factor that promotes EMT, by activating
metalloproteinases, and potently binds to heparin-binding angiogenic factor [89]. HGF
is a stromal-cell-derived cytokine and the natural endogenous ligand for mesenchymal–
epithelial transition (MET) receptor tyrosine kinase (RTK), which is encoded by the MET
proto-oncogene on human chromosome 7 [90]. HGF/MET signaling activation drives
angiogenesis, cell proliferation, and tumor aggressiveness [91]. Elevated levels are asso-
ciated with poor colorectal and lung cancer survival [92,93]. Recently, Katayama et al.
revealed that high HGF serum levels in muscle-invasive bladder cancer (MIBC) patients
are associated with worse cancer-specific survival, recurrence-free survival, and overall
survival [94]. Another study found that patients with gastric cancer have elevated plasma
HGF levels, compared with patients with normal gastric mucosa or gastric ulcers [95].
Developing novel treatments targeting both HGF-dependent and HGF-independent MET
activation will be important for future treatments targeting the oncogenic-driving MET
pathway [96].

Interleukins are involved in multiple cancer processes, including angiogenesis. The
IL-1 family comprises IL-1α, IL-1β, and IL-1 receptor antagonist (IL-1RA). IL-1α and IL-1β
are cancer-promoting and drive angiogenesis, tumor progression, and tumor aggressive-
ness [97]. CAFs and adipocytes are known to promote these processes through IL-1β
secretion [98]. Early studies of B16 melanoma mouse models showed that IL-1β is required
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for angiogenesis via lymphotoxin and VEGF-A induction, while IL-1α promoted a similar
but weaker phenotype [99,100]. Endothelial cells act as both direct and indirect targets of
IL-1 signaling and produce VEGF upon activation (Figure 3). IL-1 and VEGF may synergize
to enhance angiogenesis [98]. IL-1β/IL-1R1 signaling induces additional IL-1β transcrip-
tion in macrophages, which promotes fibroblasts and endothelial cells to also contribute to
angiogenesis [101]. Recently, Machelke et al. found that epidermal growth factor receptor
(EGFR) inhibition in A549 lung cancer cells leads to reduced IL-1β-induced tissue factor
(TF) expression, which normally promotes tumor progression and angiogenesis [102]. The
Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) trial evaluated
anti-IL-1β to treat atherosclerosis, and results indicated that treatment significantly reduced
lung cancer incidence [97,103].
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Other interleukins, such as IL-6 and IL-8, may also mediate angiogenesis. Early studies
showed that serum IL-6 and VEGF levels are related. IL-6 may induce VEGF expression
to increase vasculature [104]. IL-6 is known to transmit signals through several signal-
ing pathways, including JAK/STAT, RAS/MAPK, PI3K/Akt, and NF-κB, to drive tumor
progression [105]. IL-6 binds to the IL-6 receptor (IL-6R), which results in the release of
its associated Janus kinase (JAK) to phosphorylate transcription 3 (STAT3) and initiates
downstream signals to promote angiogenesis, proliferation, and prevent apoptosis [106].
Li et al. demonstrated that IL-6 increases angiogenesis via the STAT5/P-STAT5 signaling
pathway and that 6-phosphofrutcto-2-kinase/fructose-2, 6-bisphosphatase 4 (PFKFB4)
expression elicits IL-6 upregulation via NF-κB signaling to increase breast cancer angio-
genesis [107]. Several potential treatment strategies to target IL-6 are currently undergoing
investigation. Examples include (1) small molecule Madindoline A to inhibit dimerization
of IL-6/IL-6R/gp130 complexes, (2) siltuximab and CNTO-136 to inhibit IL-6 activity, and
(3) mAb tocilizumab to block IL-6R [106]. IL-8 is a chemokine that binds C–X–C motif
chemokine receptor 1 (CXCR1) and CXCR2, which are G-protein coupled receptors dis-
played on granulocytes, monocytes, and endothelial cells to increase angiogenesis, recruit
immunosuppressive cells to the tumor site, and worsen prognosis [108]. IL-8 was demon-
strated to be the primary cytokine involved in increasing endothelial cell permeability and
cell junction disruption in glioblastoma [109]. In human colorectal cancer mouse models, IL-
8 induces significant increases in CD31+ peritumoral vasculature, while CXCR2 knockout
results in significantly reduced tumor growth, potentially due to lack of IL-8 signaling [110].
Interestingly, gastric cancer cells treated with nicotine, an alkaloid found in tobacco, show
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enhanced angiogenesis and proliferation in the TME by stimulating IL-8 expression via
ROS/NF-κB and ROS/MAPK (Erk1/2, p38)/AP-1 pathways [111]. Like other interleukins,
IL-8 may also be targeted for cancer treatment. Recently, escin, a pentacyclic triterpenoid
derived from horse chestnut, demonstrated antitumor activity against pancreatic cancer
cells by influencing IL-8 expression. Results indicated that escin-treated pancreatic cancer
cells had significantly reduced NF-κB activity and IL-8 and VEGF secretion, resulting in
inhibited angiogenesis [112].

The angiopoietin family consists of four members that bind to Tie-2 receptors on
endothelial cells [89]. Generally, Ang-1 is described as a strong Tie-2 agonist, while Ang-
2 is a Tie-2 antagonist that competes with Ang-1. However, recent studies characterize
Ang-2 as capable of acting as a Tie-2 agonist or antagonist [113]. In colorectal cancer,
Ang-2 expression is negatively associated with patient overall survival [114]. One study
demonstrated that glucocorticoid-treated colon cancer-derived myofibroblasts reduce Ang-
2 levels and inhibit endothelial cell angiogenesis and cell migration [115]. Ang-4 and
Ang-3, a mouse orthologue, are both Tie-2 agonists, but their effect on angiogenesis is
not well characterized [116]. A recent study showed that Ang-3 was elevated in cervical
cancer cells, compared with normal cervical cells, and Ang-3 silencing inhibited human
umbilical vein endothelial cell angiogenesis and integrin alpha v beta 3 (αvβ3). Results
also showed that upregulated αvβ3 expression increases VEGF and VEGFR2 secretion
and blood vessel formation, suggesting Ang-3 as a potential novel therapeutic target for
treating cervical cancer [117]. In another study, Ang-4 was discovered to be overexpressed
in ovarian cancer cells. Immunoprecipitation results suggested that Ang-4 suppression
leads to VEGFR2/VE-cadherin/Src complex dissociation and phosphorylation of VEGFR2
in A2780 and CAOV3 ovarian cancer cell lines. Researchers concluded that Ang-4 silencing
significantly inhibits tumor angiogenesis and progression [118].

5. Cancer Stem Cells, Cellular Plasticity, and Cytokines

CSCs represent a small population of cells within a tumor that have unlimited pro-
liferation, differentiation, and self-renewal abilities. Generally, CSCs are believed to be
highly responsible for treatment failure because they are progenitor cells that may survive
conventional treatment and replenish the tumor. They divide into heterogeneous cancer
cell types that promote treatment resistance and cancer recurrence [119]. Cellular plasticity
allows cancer cells to dynamically shift between a differentiated state and an undifferen-
tiated or CSC state. Examples of cancer cell plasticity in action are EMT, invasion, and
metastasis (Figure 4) [120]. Cytokines derived from stromal cells or immune cells are known
to activate stemness and promote immune evasion and, consequentially, drive non-CSCs to
become more CSC-like [121]. Macrophages that infiltrate the TME secrete cytokines, such
as IL-6, IL-10, TNF-α, and TGF-β, which may enhance cancer cell stemness and EMT [122].
Wan et al. observed that TAMs cocultured with HCC stem cells secrete IL-6 to activate
STAT3 signaling, promote sphere formation, and increase CD44+ HCC cells [123]. TNF-α
is a pro-inflammatory cytokine released by activated immune cells to elicit antitumor
activity; however, some recent studies have discovered that TNF-α may play a dual role
and also promote tumor progression [122]. TNF-α is reported to increase EMT and CSC
transition in various tumor cell types and increase cancer transformation, proliferation, and
angiogenesis [124–126]. In colon cancer, TNF-α activates PI3K/Akt and p38 MAPK parallel
signaling pathways to induce CXCL10 transcription, a pro-inflammatory cytokine that
binds to CXCR3, which further leads to EMT increase [127]. In ccRCC, TNF-α promotes
stemness and EMT through MMP-9 activation and the PI3K/AKT/GSK-3β signaling path-
way. Inhibiting PI3K/AKT reactivates GSK-3β and prevents ccRCC cells from undergoing
EMT by suppressing TNF-α [128]. TNF-α antagonists may be used to neutralize TNF-α
and reprogram the TME to become more antitumor-like [129,130].
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Other pro-inflammatory cytokines may also regulate CSCs. One study showed that
colon cancer CSCs increase when myofibroblasts secrete IL-6 and IL-8 and activate the
Notch pathway through STAT3 [131]. Notch signaling is highly upregulated in colon cancer
CSCs, and regulates the self-renewal abilities of a cell, prevents apoptosis, and suppresses
cell lineage differentiation genes [132]. In liver cancer, Liu et al. showed that IL-6, TGF-β,
and monocyte chemoattractant protein 1 (MCP-1) levels are upregulated. Further investiga-
tion revealed that inhibiting these pro-inflammatory cytokines significantly suppresses liver
cancer growth and promotes apoptosis. The study also indicated that liver cancer stem cells
markers, CD90 and CD133, were positively correlated with pro-inflammatory factors [133].
Recently, magnolol, a bioactive polyphenolic component that exhibits anticancer properties,
was administered to oral squamous cell carcinoma CSCs. Results indicated that magnolol
targets CSCs and suppresses stemness, self-renewal, and cell viability by downregulating
IL-6/STAT3 signaling [134]. Overall, CSCs are an important tumor component and are
highly regulated by cytokines.

6. Cytokines in Cancer Invasion and Metastasis

Metastasis involves complex processes that endow malignant cells with the ability
to survive and grow within the primary TME, migrate to and invade other tissues, and
colonize target organs through establishing disseminated cells at and around the target
site [135,136]. Chronic deregulation of cytokine activity and expression is associated with
the risk of disease. Literature suggests that several cytokines are involved in signaling
to cancer cells and supporting the growth and survival of tumor cells, as well as the
enhancement of other metastatic properties [137].

IL-1 expression is elevated in breast cancer and is suggested to be involved in metas-
tasis. Specifically, it is thought that IL-1β is secreted into the tumor microenvironment,
activating inflammation and promoting invasion [138]. A study by Soria et al. suggests that
coordinated expression of TNF-α and IL-1β promotes invasion and disease relapse. TNF-α
mainly induces EMT, a process essential for tissue repair but also associated with invasion
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and metastasis. The upregulation of both TNF-α and IL-1β was observed in breast cancer
patients with reoccurring disease [139]. IL-6 is another cytokine involved in metastatic
dissemination. While IL-6 plays an important role in multiple physiological processes
including cell proliferation, acute inflammation, and metabolism, active IL-6/JAK/STAT3
signaling drives cancer cell proliferation and invasiveness and suppresses apoptosis. IL-6 is
often detected at increased levels in breast cancer patients [140]. Various other cytokines are
believed to be involved in the metastasis and progression of several cancer types through
similar pro-inflammatory activity, including IL-4, IL-8, IL-10, and TGF-β [137,138,141].

A critical step in the metastatic cascade is the development of enhanced cell motility,
allowing tumor cells to invade adjacent tissue [136]. Initially, a breach in the basement
membrane barrier and dissociation of tumor cells from the primary tumor occurs. Adjacent
tissue is invaded, and intravasation and extravasation from vasculature carry tumor cells
to a secondary anatomical site where the colonization of a target organ occurs [135,136].
Normally, displaced cells are efficiently removed by anoikis, which causes apoptotic death
due to loss of adhesion [142]. For cancer to successfully metastasize, it is important that the
anoikis be inhibited [143]. Once EMT is initiated, several epithelial proteins are lost, includ-
ing E-cadherin, β-catenin, and γ-catenin, and an increase in mesenchymal proteins, such as
N-cadherin, vimentin, and fibronectin, occurs. Upregulation of transcriptional repressors
of E-cadherin is one of the hallmarks of E-cadherin loss and EMT. TGF-β induces EMT,
upregulates these transcriptional factors, and promotes metastasis by inducing anoikis
resistance due to a loss of E-cadherin and increasing the N-cadherin expression. Anoikis
resistance is stimulated by several cytokines through the activation of survival pathways,
including the IL-6/STAT3 pathway [144,145]. There are several other mechanisms for
anoikis resistance that contribute to metastasis [146].

Metastasis and inflammation are also regulated by death ligands such as tumor necro-
sis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and corresponding death
receptors. The TRAIL/death receptor signaling pathway plays both negative and posi-
tive roles in regulating cancer invasion and metastasis. In humans, there are two TRAIL
death receptors: death receptor 5 (DR5; also called TRAIL-R2 or Killer/DR5) and death
receptor 4 (DR4; also called TRAIL-R1). Under normal conditions, TRAIL ligation with
its death receptors (DR4 and DR5) on the surface of cancer cells induces the formation
of the death-inducing signaling complex (DISC) involving Fas-associated death domain
(FADD) recruitment of pro-caspase-8 via its death effector domain, resulting in caspase-8
or -10 activation, followed by cleavage and activation of caspase-3, -6, and -7, and eventual
execution of apoptosis or anoikis. Inhibition of TRAIL/death receptors causes available
FADD and caspase-8 to recruit and stabilize TNF-receptor-associated factor (TRAF) 2,
resulting in enhanced TRAF2 polyubiquitination and activation. This leads to activation
of ERK/JNK/AP-1 signaling and NF-κB activation, subsequently activating MMPs and
enhancing the release of inflammatory cytokines that promote invasion and metastasis of
cancer cells [147]. Through many complex mechanisms and signaling pathways, chronic
dysregulation of cytokine activity contributes to cancer invasion and metastasis.

7. Conclusions

Due to cancer’s global impact, understanding how cancer develops and progresses
is critical. Cytokines are heavily involved in regulating cancer developmental processes.
Immune activation and suppression, inflammation, cellular damage, angiogenesis, CSCs,
invasion, and metastasis are all related to cancer and controlled by cytokines. Cytokines
have profound effects on cells and may lead to pro- or antitumor activity, depending
on environmental conditions and the presence of other cytokines. Overall, studies have
shown that cytokines are small messengers that are often overlooked as powerful molecular
players in the TME. The impact and therapeutic potential of cytokines are beginning to be
uncovered through already existing and developing cytokine-targeted therapies. In this
review, we highlighted only a few cytokines and cancer-related processes. Further research
focusing on the intricate relationship between cancer and cytokines will be required to
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increase our understanding of how cancer behaves. Cytokine research will continue to
play a key role in revealing the molecular mechanisms behind cancer development and
identifying novel therapeutic targets.
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