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ABSTRACT

The study and manipulation of T cell receptors
(TCRs) is central to multiple fields across basic
and translational immunology research. Produced
by V(D)J recombination, TCRs are often only
recorded in the literature and data repositories as
a combination of their V and J gene symbols,
plus their hypervariable CDR3 amino acid sequence.
However, numerous applications require full-length
coding nucleotide sequences. Here we present
Stitchr, a software tool developed to specifically
address this limitation. Given minimal V/J/CDR3
information, Stitchr produces complete coding
sequences representing a fully spliced TCR cDNA.
Due to its modular design, Stitchr can be used for
TCR engineering using either published germline
or novel/modified variable and constant region
sequences. Sequences produced by Stitchr were
validated by synthesizing and transducing TCR
sequences into Jurkat cells, recapitulating the
expected antigen specificity of the parental TCR.
Using a companion script, Thimble, we demonstrate
that Stitchr can process a million TCRs in under
ten minutes using a standard desktop personal
computer. By systematizing the production and
modification of TCR sequences, we propose that
Stitchr will increase the speed, repeatability, and
reproducibility of TCR research. Stitchr is available
on GitHub.

INTRODUCTION

Alongside immunoglobulins, T cell receptors (TCRs)
underly adaptive immunity in jawed vertebrates. They
are the basis through which T cells initiate their major
functions – detecting and responding to pathogens, cancers,
and other threats – via recognition of peptides and other

molecules displayed by MHC proteins. If congenitally
absent, either from a lack of production of the proteins
themselves or of the T cells that bear them, untreated
individuals face high mortality risk during early infancy
due to uncontrolled microbial infections (1,2). Conversely,
inappropriate recognition of molecules by TCRs can lead
to autoimmunity or allergies (3). A lack of sufficient
TCR-based responses to neoantigens and other tumor
antigens contributes to the development and progression
of malignancies, as illustrated by the clinical success of
checkpoint blockade therapies in recent years (4,5). It is
hard to overstate the importance of T cell receptors within
and beyond the field of immunology.

TCRs are produced through a process of somatic DNA
recombination of multiple gene segments arrayed at the
different TCR loci, named ‘V(D)J recombination’ after
the variable (V), diversity (D), and joining (J) genes
which constitute the different varieties of genes. During
recombination, the intervening DNA between a single
segment of each of the different types being recombined
is imprecisely excised, and the once-separate coding
portions are joined together (6). There are two conserved
types of heterodimeric TCRs: alpha/beta (TRA/TRB)
and gamma/delta (TRG/TRD) TCRs, with alpha/beta
predominating in human T cells. Distinct TCR loci contain
different types of genes: alpha and gamma chain TCRs
consist of just V and J genes, while beta and delta chains
are composed of V, D, and J genes, recombined together.

This process is capable of producing an incredible
diversity of TCRs. Combinatorial diversity is generated
both by merit of TCRs being heterodimers of two
polypeptides, with each polypeptide chain produced
through this process, and by there being multiple V(D)J
genes to be selected from at each TCR locus. Even greater
diversity is introduced by the non-templated deletion
and addition of nucleotides at the rearranged junctions.
Ultimately, this process produces the region of the TCR
gene that encodes the complementarity determining region
3 (CDR3) (containing the entirety of the short D gene for
beta and delta chains), the hypervariable section of the

*To whom correspondence should be addressed. Tel: +1 617 724 0104; Email: jheather@mgh.harvard.edu
Correspondence may also be addressed to Aaron N. Hata. Tel: +1 617 724 3442; Email: ahata@mgh.harvard.edu

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-1783-5181
https://orcid.org/0000-0001-8030-6007
https://orcid.org/0000-0002-0104-9303
https://orcid.org/0000-0002-6127-318X


e68 Nucleic Acids Research, 2022, Vol. 50, No. 12 PAGE 2 OF 13

TCR which contacts the antigen. Cumulatively, this system
is estimated to be capable of producing ∼ 1 × 1015 unique
alpha/beta TCRs in humans (7,8), orders of magnitude
greater than the number of T cells that an individual
body could contain (9). Even though this ‘TCR space’
is not evenly utilized, there is still tremendous inter- and
intra-individual receptor diversity, providing a substantial
barrier to study. Investigation of the functional behavior of
TCRs is additionally complicated by the diversity of their
ligands. Alpha/beta TCRs bind to short peptide fragments
(derived from potentially any protein that finds its way
into the body) presented in the groove of other cells’ MHC
proteins, which are among the most polymorphic genes in
vertebrate genomes (10), while gamma/delta TCR ligands
can include both non-MHC and non-presented antigens
(when they are known at all) (11). Mechanistic studies
on TCRs are therefore both extremely important, yet
complicated due to the molecular diversity of the system.

TCR chains are frequently only reported as annotated
rearrangements, consisting of the involved V and J genes
plus the CDR3 sequence spanning the hypervariable region.
In principle, assuming that the TCR has been correctly
annotated, this contains all of the necessary information
to reproduce the entire coding sequence (with the D gene
sequence being contained within the CDR3 for beta and
delta chains). In order to perform experiments that require
TCR expression, there is a need to reliably convert these
concise TCR descriptions into full-length coding nucleotide
sequences. To the best of our knowledge, no computational
tool exists to do this. Instead, the traditional approach
requires manual assembly of the V/J/CDR3 combinations
of interest using germline TCR database repositories (such
as IMGT-GENE/DB (12)) and a text editor or DNA
software tool. While this approach produces valid results,
it is (1) slow and labor intensive, thus scaling poorly; (2)
vulnerable to human error, leading to (3) poor repeatability
(by one user) and reproducibility (by others) (13).

To overcome these limitations we developed Stitchr, the
first software capable of automatic generation of full-length
coding TCR nucleotide sequences from minimally reported
V/J/CDR3 information. Stitchr produces a nucleotide
sequence encoding the CDR3 inserted in-frame between
the provided V and J genes segments, adding properly
spliced upstream leader and downstream constant region
sequences. Stitchr can be used to produce TCRs of any of
the four conserved loci – alpha, beta, gamma, and delta
– across all species for which IMGT-GENE/DB stores
sufficient data. The modularity of its approach also allows
users to substitute in different, even non-natural, TCR gene
segments, resulting in rapid sequence generation for protein
expression and engineering experiments. We demonstrate
that Stitchr produces the expected TCR sequences and
verify the approach by synthesizing expression vectors for
TCRs of known specificity and demonstrating their activity
in Jurkat cells. We also report Thimble, a companion script
which allows users to run Stitchr on single or paired-chain
TCR repertoires, capable of processing a million TCRs
in under ten minutes using a standard desktop personal
computer. Finally, we illustrate case examples where high-
throughput TCR datasets can be accurately converted to
full-length coding equivalents. We propose that Stitchr and

related tools will accelerate the pace of TCR research at
the interface between experimental validation and high-
throughput bioinformatic analysis.

MATERIALS AND METHODS

Stitchr implementation

Stitchr was written in Python, tested exhaustively on
Python 3.6.9 on Ubuntu and Python 3.7.7 on Mac OS.
The only non-standard package needed for its operation
is PySimpleGUI (version ≥4.45.0), if users elect to use
the graphical user interface script. It is also provided
with Thimble, a companion wrapper script which allows
users to supply TCRs in a tab separated spreadsheet
file, for the simultaneous stitching of multiple receptors
(which, when retained alongside the germline data used
for TCR generation, provide full documentation for good
data provenance practices). All scripts and data necessary
to run Stitchr can be found on the GitHub repository: https:
//github.com/JamieHeather/stitchr.

By default, Stitchr uses germline sequences downloaded
from IMGT/GENE-DB (12) (last updated on 2022-02-
09, from IMGT release number 20225-7). It takes as
input a TCR rearrangement described by the V and J
genes used, plus the CDR3 junction sequence, which
can be provided as a nucleotide or amino acid sequence
(running inclusively from the cysteine to the phenylalanine
or equivalent residue) or as a longer nucleotide sequence
extending further into the V/J genes.

The exact mode of determining the CDR3 junction
depends on the input format. If an amino acid CDR3 is
provided, Stitchr looks for sequence matches between its
N terminus and the C terminus of the translated relevant
V gene, incrementally deleting germline V gene residues
until it finds a match. The non-V portion of the CDR3 is
then used to similarly search the translated J gene until the
minimal CDR3 contribution is met, leaving the portion of
the CDR3 junction which is not feasibly encoded by either
germline gene (which will include any remaining residues
from the D gene in the case of beta and delta chains). The
nucleotide sequences for the wholly-germline encodable
V/J residues are then produced by trimming the provided
reference sequences, and the intervening non-templated
sequence is generated by selecting the most common
codon for that residue from a species-specific frequency
table. Users can also provide exact CDR3 junctions as
nucleotides, which are first translated and then processed
in a similar manner up until the non-templated region
is determined, at which point the corresponding segment
of the provided nucleotide sequence is used in place of a
codon-optimized selection.

If users have additional nucleotide context beyond the
junction, they can also use the ‘seamless’ nucleotide
stitching option (abbreviated ‘SL-NT’ in the figures) for
more faithful replication of the nucleotide sequence. In
this mode the overlap detection occurs at the nucleotide
level: the 5′ of the provided junctional sequence is searched
against the incrementally deleted 3′ of the V gene, and the 3′
of the non-V portion is searched against the 5′ of the J. Once
the sites of overlap between the V, the junction, and the
J are determined, the extraneous sections of the germline
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V/J genes are removed, and the sequences are joined. The
leader and constant regions necessary for expression are
then added. By default, these sequences will be inferred
from the V and J genes chosen respectively, defaulting to
the prototypical allele’s (*01) leader sequence if IMGT
does not record one for the specified allele, and taking
the relevant TRBC gene per TRBJ cluster (although both
values can be optionally overridden). Note that for non-
human/non-mouse species (which may differ in their TCR
loci architecture) the constant region to be used must also be
specified. Users can also specify any additional sequences to
the 5′ and 3′ of the total rearrangement (e.g. to add Kozak
sequences, stop codons, restriction enzyme sites, or primer
binding sites, if TCRs are to be synthesized). If Thimble or
the graphical user interface script is used, the individually
stitched chains of a heterodimer can be linked together
with any desired sequence (e.g. a 2A self-cleaving peptide
sequence) for bicistronic vector expression.

Benchmarking Thimble

Large TCR V/J/CDR3 datasets were obtained by
randomly picking five samples from the Emerson
et al. Adaptive Biotechnologies’ dataset (DOI:
10.21417/B7001Z, samples HIP02873, HIP02805,
HIP02811, HIP02820, and HIP02855) (14) with the
Python random.choice function, and downloading the
entire VDJdb database (using the ‘vdjdb slim’ file, accessed
on 2021-02-02) (15). The Adaptive Biotechnologies data are
beta chain sequences produced with a unified experimental
and analytical pipeline from healthy donor peripheral blood
mononuclear cell (PBMC) gDNA, while the VDJdb TCRs
have been extracted and annotated from the literature and
thus represent a diverse array of input cell sources and
TCR identification processes, featuring both alpha and
beta chains. Adaptive Biotechnologies uses custom non-
standard identifiers to refer to TCR genes, so these were first
converted to standard IMGT nomenclature and Adaptive
Immune Receptor Repertoire Community (AIRR-C)
format (16) with the Python script immunoseq2airr
(version 1.2.0, DOI: 10.5281/zenodo.5224597). This was
run with the following non-default parameters to account
for input file formats and filter non-productive and non-
interpretable rearrangements: -nd, -a, -or, -pf, -mf, and
-p (pointing to the Emerson parameter conversion file
provided in the repository). Rearrangements from both
datasets were filtered to keep only in-frame potentially
productive chains with both a V and J gene call. For
ambiguous cases with >1 V gene call the first gene
provided was used. Non-human TCRs were discarded
from VDJdb. Note that Thimble successfully produces
stitched sequences for >99% of all input V/J/CDR3
combinations, with the vast majority of those that fail
lacking complete CDR3 junctions (i.e. they do not run
from the conserved C to F residues, inclusively). In order
to establish a wide dynamic range, variable numbers
of TCRs were randomly drawn from these datasets
(pooling all of the Adaptive samples into a single file)
using the Python random.choices function, up- or down-
sampling to 1e2, 1e3, 1e4, 1e5, or 1e6 rows, three times per
dataset.

Generating simulated TCR data with immuneSIM

50,000 AIRR-C compliant human TCR alpha and beta
recombinations were simulated using the R package
immuneSIM (17) (version 0.8.7), with a minimum CDR3
length of eight residues (and all other settings default).
Rearrangements with CDR3 junctions not ending in one of
the three conserved terminating residues found in human
predicted-functional TRAJ/TRBJ genes (phenylalanine,
tryptophan, or cysteine) were filtered and removed.

High-quality long read TCR-seq dataset generation and
analysis

In order to obtain ‘real’ full-length V domain TCR
repertoire sequences, we leveraged published datasets
produced in part by one of the authors previously, in which
�� TCR-seq was performed on RNA extracted from whole
blood taken from 16 healthy volunteers (18,19). These data
were produced using a ligation-based 5′RACE strategy, in
which random unique molecular identifier (UMI) barcodes
were added to TCR cDNA prior to amplification, allowing
for error-correction downstream. However, in contrast
to previous studies, in which TCR rearrangements were
annotated using only the constant region-proximal read of
the paired-end sequencing (R1) prior to error correction,
raw FASTQ were first merged using FLASH (version
1.2.11, default parameters) (20). This identifies paired end
reads with 3′ overlap and combines them into a FASTQ
with longer complete amplicons. Merged reads which
share UMIs were then collapsed and error-corrected using
stringent criteria: each UMI had to contain at least three
reads, and the calls of those reads must all have quality
scores ≥Q25. The consensus base at each position was
then determined, with the abundance of a given consensus
reported by counting the number of associated barcodes,
and output as FASTA files. While this greatly reduces
the number of available reads in a repertoire file, the
remaining reads are more likely to cover the entire variable
domain and much less likely to contain PCR or sequencing
errors. For the purposes of testing Stitchr/Thimble, these
donor/locus specific FASTA files were combined into one
large repertoire file.

Extended reads were then analyzed using a modified
version of the TCR annotation software Decombinator
(21,22), called autoDCR. Like Decombinator, autoDCR
uses short (20 nt) ‘tag’ sequences to populate an Aho-
Corasick trie (or search tree) for efficient string-matching
based V/J gene identification. However, unlike the original
Decombinator implementation in which single CDR3-
proximal tags are selected for their unique occurrence in
single genes, autoDCR tiles 20-mer tags overlapping 10 nt
across the entirety of every allele of every gene, making
V and J gene calls based on the presence of multiple tag
matches. While the much larger trie takes longer to search
each read, it outputs V and J gene calls with allele-level
accuracy. This allows determination of sequence across the
length of the rearrangement, enabling selection of reads
which include the start of the V gene. Technically, this is
achieved by using the ‘-jv’ flag, which outputs the ‘jump’
values indicating the furthest positions of V/J tag matches:
filtering on v jump values = 0 selects reads where the first
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tag match corresponds to the start of the V-REGION.
Additionally, TCRs with ambiguous gene calls (>1 allele),
or those using alleles for which only partial nucleotide
information is available in IMGT, were filtered out.

This feature of detecting overlapping tags was also
utilized to perform rudimentary detection of novel TCR
alleles, inspired by earlier studies in TCRs (23) and
immunoglobulins (24), guided by the hypothesis that (a)
individuals with alleles not present in IMGT will exist in our
cohort and (b) most of these are likely just single nucleotide
variants (SNV). TCRs with fully sequenced variable
domains from each donor were screened for potential
novel alleles, indicated by multiple rearrangements using
the same V gene but which all share a two-tag mismatch
with the reference (as a SNV relative to a recorded
germline gene will result in two consecutive overlapping
tags failing to match), with the same sequence spanning
the break. To distinguish potential novel allele variants
from PCR/sequencing errors, sequences had to meet the
following criteria: (i) be present in a V gene with ≥10
distinct recombinations with unambiguous gene calls; (ii)
account for ≥5% of the reads belonging to that V gene;
(iii) be found in ≥3 unique recombinations; (iv) account
for ≥10% of reads for that V gene which contain a break
of two tag matches. As an additional check, we called
potential novel alleles only if they occurred in the top two
most abundant sequences for that gene, which would then
constitute the genotype for that gene in that donor. Inferred
potential novel alleles were assigned an identifier indicating
their variant suffixed to their original reference allele match
(e.g. TRAV27*01 A233G) and output as FASTA reads in
IMGT format, and then either appended to the IMGT
database to re-generate tags for autoDCR, or supplied to
Stitchr by including them in the ‘additional-genes.fasta’ file.

In vitro TCR validation

Full-length TCR� and TCR� coding regions generated by
Stitchr were used to generate TCR�� lentiviral expression
constructs with the BioXp 3200 system (Codex DNA)
as previously described (25). In brief, the TCR� and
TCR� sequences were generated with Stitchr (using the
same TRBC2 constant region and TRAV21/TRBV6-
5 leader sequences for reliable expression) and cloned
into a pReceiver-based lentiviral vector (GeneCopoeia)
that contained an EF1� promoter and puromycin
resistance gene. The bicistronic TCR�-TCR� coding
region incorporated a P2A ribosomal skip motif (26) to
generate independent TCR polypeptide chains. Lentivirus
was packaged into VSV-G pseudotyped particles using
the third-generation ViraSafe Lentiviral Packaging System
(Cell Biolabs) and Lenti-Pac 293Ta cells (GeneCopoeia)
(27). Fresh lentiviral supernatant was used to transduce
TCR�-deficient (�TCR�) Jurkat cells (J.RT3-T3.5; ATCC
TIB-153), which were previously engineered to stably
express human CD8 (lentiviral construct layout: PGK
promoter − CD8A-P2A-CD8B(M-1) − IRES-blasticidin
resistance gene) (28,29). Transduced �TCR� Jurkat cells
were selected with puromycin for 14 days and introduced
TCR surface expression confirmed by antibody staining
for CD3 and TCR�� surface expression.

TCR-engineered Jurkat cells and target cell lines
(Supplementary Tables S1 and S2) were cultured in RPMI
1640 supplemented with 10% FBS, 2 mM glutamine,
and penicillin/streptomycin. Target cell line HLA type
information was obtained from the TRON Cell Line Portal
(30). PBS-washed target cells were stained with 1 �M CFSE
(eBioscience) for 10 min at RT, before being quenched with
5× volumes of complete media, incubated on ice for 10
min, and repeatedly washed in media. Stained cells were
then peptide pulsed with 10, 1, or 0 �g/ml of the relevant
peptide epitope (GenScript, ≥85% purity) for 1 hour
at RT in complete media, washed twice, and co-cultured
overnight (18–22 h) with Jurkat cells expressing the relevant
TCR at an effector-to-target ratio of 2:1. Experiments were
set up in round-bottomed 96-well plates, with 2e5 Jurkats
and/or 1e5 target cells per well, with each experimental
condition in triplicate. Plates contained additional no
target cell negative control and anti-CD3 antibody (CD3-2,
Mabtech) positive control wells. Following co-incubation,
cells were washed in PBS and then FACS buffer (PBS
with 2% FBS and 1 mM EDTA). Cells were then stained
in the dark on ice for 30 min with 0.5 �l anti-CD62L
and anti-CD69 antibodies conjugated to PE and APC
respectively (BioLegend, clones DREG-56 and FN50) in
100 �l FACS buffer per well. After washing twice, cells were
resuspended in 100 �l of FACS buffer with 2 �l 7AAD
(BioLegend) and incubated in the dark on ice for a further
5 min. Antibody staining was quantified on an Accuri C6
Plus flow cytometer (BD Biosciences) with a CSampler.
FCS data were analyzed with FlowJo version 10.7.1.

Data analysis and visualization

All non-FCS analysis and data visualization was carried
out in Python ≥3.6.9, using a combination of matplotlib
(version 3.3.2) (31), pandas (1.1.2) (32) and seaborn
(0.11.0) (33). PDB TCR amino acid sequences were aligned
using Clustal Omega (34) version 1.2.4, accessed via the
web portal in April 2021. Low-throughput V/J/CDR3
annotation for all non-human and/or non-TRA/TRB
analysis (including immunoglobulins) was performed using
IMGT/V-QUEST version 3.5.28, using default parameters
(35).

RESULTS

We designed Stitchr to take the minimal V gene, J gene,
and CDR3 junction sequences typically used to report
TCR chains and generate a complete functional coding
nucleotide sequence (Figure 1A). Stitchr accommodates
multiple CDR3 formats: the junction sequence (running
inclusively between the conserved V gene cysteine and
J gene phenylalanine) can be supplied in either amino
acid or nucleotide form. Stitchr determines which residues
of the translated CDR3 can be encoded wholly by
germline sequences, and then all ‘non-templated’ nucleotide
sequences between those portions (which also contains D
gene contributions for the beta and delta chains) will either
be generated from a species-specific codon frequency table
(for amino acid ‘AA’ input – Figure 1B) or will be cropped
out of the provided nucleotide sequence (for nucleotide
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Figure 1. Schematic of Stitchr algorithm. (A) Overview of Stitchr modules. Stitchr first obtains germline V gene, J gene, constant region (C), and leader
(L) sequences from IMGT/GENE-DB. Next, the junction-spanning sequence is determined, depending on input mode (see B–D), and the complete TCR
sequence is assembled. Complete single chain rearrangements can subsequently have arbitrary user-provided sequences appended to the 5′ or 3′ of the
TCR, and finally paired chains can be combined (e.g. via a 2A self-cleaving peptide sequence) into a bicistronic single expression sequence. (B) When
an amino acid (AA) CDR3 junction sequence is provided, the V and J genes are translated (I), aligned, and ‘deleted’ back from the CDR3-proximal
edge until the longest possible overlap with the appropriate side of the junction is found (II), i.e. the longest suffix of the V that matches the prefix of the
CDR3, or vice versa for the J. The remaining residues which cannot be encoded by the germline genes are then ‘reverse translated’ using a codon frequency
table (III), and the trimmed germline genes and non-templated residues are concatenated. Vertical dotted lines show codons. (C) If provided a nucleotide
(NT) CDR3 junction sequence (depicted by bold/capitalized font), the germline genes are again translated (I), as well as the CDR3 sequence (IIa). The
amino acid sequences are aligned and the germline contributions to the CDR3 are determined (IIb). The AA sequence is then converted to NT, however
instead of assigning codons for the non-templated residues based on a codon usage table, the nucleotides in the provided CDR3 are used (III, bold text
indicates retained original NT sequence). (D) If the provided junction sequence includes additional nucleotide sequence context that extends beyond the
CDR3 (depicted by lowercase text), the ‘seamless’ (SL) option can be used. In this mode, V and J germline genes are again deleted to the edge of the
overlapping NT sequence (vertical dotted lines), allowing Stitchr to seamlessly combine germline V and J with the provided CDR3-spanning sequence (II).
(E) Examples of actual Stitchr commands used to run the examples shown in B (AA), C (NT), and D (NT-SL). Note that Stitchr defaults to human TCRs,
thus the species flag doesn’t need to be set here. All three options produce a full-length TCR sequence (F) that encodes the same amino acid sequence, with
the seamless option reproducing the identical nucleotide sequence (assuming the correct V and J alleles were provided).

‘NT’ input – Figure 1C). Alternatively, if a nucleotide
sequence that extends beyond the edges of the CDR3
junction is supplied, Stitchr seamlessly (‘SL-NT’) integrates
it into the germline V and J genes after computationally
‘deleting’ from the germline genes and looking for
overlapping sequences (Figure 1D). Example code used
to generate the illustrated TCRs is shown in Figure 1E.
Complete TCR nucleotide sequences (Figure 1F) are output

after splicing on 5′ leader and 3′ constant region sequences,
with the option to add arbitrary sequences to either side of
a gene (e.g. for gene regulatory or PCR/cloning purposes).
Stitchr can be run as a command line tool for a single chain
recombination, or via a wrapper script (discussed below)
for larger numbers of sequences, which also supports the
production of bicistronic sequences for paired �� or ��
chains (e.g. for making expression vectors). Alternatively,
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we designed a graphical user interface that can be used to
generate single or paired chain receptors (Supplementary
Figure S1).

To test the capabilities of Stitchr, we used the command
line interface to generate full-length human alpha/beta
TCR sequences from four published receptors that have
rigorous data demonstrating epitope recognition, including
solved structures of the TCR–peptide–MHC complex, and
which cover a range of V/J gene combinations and HLA
restrictions (Figure 2A, Supplementary Tables S1 and S2)
(36–39). We then downloaded amino acid sequences for
each of these alpha-beta TCRs from the Protein Data
Bank (PDB) (40) and aligned them against translations
of the Stitchr-generated sequences (Figure 2B). With one
exception, the variable domain sequences produced by
Stitchr aligned perfectly with the PDB TCR structures.
The exception – in the alpha chain V gene segment of
the MAG-IC3 TCR – is explained by that TCR having
been engineered to include a non-germline modification
in order to increase affinity (39). As Stitchr makes use of
a modular approach in its selection of genes, alternative
and additional sequences can be added to expand the
types of TCRs that can be produced. When we supplied
Stitchr with a suitable reference for this altered V gene, it
accurately reproduced the PDB amino acid sequence. Thus,
Stitchr faithfully replicates TCR sequences, at least when
the templated sections are present in the ‘germline’ genes
supplied to it.

As the process through which TCRs are produced
is conserved between alpha/beta and gamma/delta
TCRs, Stitchr readily applies to gamma/delta chain
sequences as well (Supplementary Figure S2A). Indeed,
as long as Stitchr can be provided sufficient, suitably
formatted sequence data (i.e. at least one each of leader,
variable, joining, and constant region sequences in IMGT
format) it can generate TCRs for any locus from any
species. Including the four shown already for humans,
there are currently 42 eligible loci across 14 species
available in IMGT-GENE/DB (Supplementary Table
S3). We validated an additional 19 of those, covering as
many species/loci combinations for which we could find
annotated rearranged mRNA sequences in GenBank
(Supplementary Figure S2B). Furthermore, the process
can even be extended to immunoglobulins, demonstrated
in Supplementary Figure S3 with example human heavy
and light chain recombinations.

Stitchr’s potential for rational protein design was further
explored by generating the beta chain of the anti-
MART1 TCR DMF5 (41) in combination with different
constant regions. Stitchr generated appropriate coding
sequences correctly spliced onto human TRBC1, TRAC,
TRDC, and TRGC1, and mouse TRBC1 constant regions
(Supplementary Figure S4), thus supporting the use of
Stitchr for generating even non-natural TCR sequences.

To test whether TCRs produced by Stitchr are functional,
we generated expression constructs for the four TCRs
from Figure 2B, plus an additional published TCR
which expanded the range of TCR genes and HLA
alleles covered (but which lacked structural data) (42)
(Supplementary Tables S1 and S2). P2A-linked bicistronic
TCR constructs were stably expressed in �TCR� Jurkat

cells and co-cultured with cognate peptide-pulsed cancer
cell lines that express the relevant HLA allele. Jurkat
activation (CD69+/CD62L-negative) was assayed by flow
cytometry (Supplementary Figure S5). We observed dose-
dependent peptide-induced activation of TCR-Jurkat cells
when cultured with target cells bearing the appropriate
HLA allele, but not with HLA-mismatched target cells
(Figure 2C). These results confirm that Stitchr generates
functional TCRs that reproduce the antigen specificity of
the rearrangements they replicate.

With the rise of high-throughput TCR sequencing
technologies, large TCR datasets are increasingly available.
However, many such studies do not sequence the entire
variable domain, and an even smaller fraction sequence
the entire transcript. Even when the entire chain is
sequenced, it is not often reported nor sufficient raw data
provided to extract it, which can limit usefulness for certain
applications. To overcome this limitation, we developed
Thimble, a companion wrapper script which allows Stitchr
to be applied to multiple TCRs in a single command. We
benchmarked Thimble using large, published datasets (see
Materials and Methods), focusing on human alpha/beta
sequences as these have the most data available. This
revealed that run-time scales linearly with number of input
TCRs, taking under ten minutes to process a million TCRs
on a standard desktop personal computer when provided
with amino acid CDR3s (Figure 3A), successfully stitching
≥99.9% of all input rearrangements (Supplementary Figure
S6A). The Emerson et al. data (14) also contained the
original TCR-seq reads used for TCR gene annotation,
which extend 20-40 nucleotides beyond the CDR3 into the
V gene: when used as input for seamless mode stitching
this resulted in ∼10× times slower run-time relative to the
amino acid sequence input (Supplementary Figure S6B).

While these published datasets allowed us to benchmark
basic run results, they do not contain complete variable
domains, and were thus unable to confirm that Stitchr and
Thimble were generating the correct nucleotide sequences.
To generate gold-standard TCR sequences spanning the
entirety of the variable domain necessary to rigorously
assess this, we used the immuneSIM tool (17) to simulate
V(D)J recombination, creating known TCR sequences from
the IMGT germline reference database and predetermined
generation probabilities (Figure 3B). This produces a
repertoire with a normal distribution of variable domain
lengths (Supplementary Figure S7A). These were then
converted to Thimble input files, submitting the CDR3
junction as either amino acids (AA), nucleotides (NT), or
as nucleotides with different 5′ and 3′ lengths (10/10, 20/20,
30/30, or 200/30 nt) for seamless (SL) integration. As
expected, the seamless options took longer to run, scaling
with longer nucleotide contexts (Figure 3C), but all options
were completely ‘stitchable’ (Supplementary Figure S7B).
By comparing the nucleotide and translated sequences
produced by Stitchr to the original sequences generated
by immuneSIM, we observed that Stitchr’s accuracy was
very high, perfectly recapitulating AA sequences in all
modes, NT sequences in all seamless modes, and almost
99% correct NT residues even when supplying CDR3s
as AA input (Figure 3D and Supplementary Figure
S7C). Examination of the distribution of these mismatches
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Figure 2. Validation of Stitchr-generated TCR sequences. Amino acid CDR3 sequences of four TCR heterodimers were used as Stitchr input (A) and
stitched output sequences were aligned (B) to the rearranged sequences extracted from the corresponding PDB structures (using ‘ATG’ in place of leaders
omitted from the crystallized structures), showing the correct incorporation of junction sequence and constant region. MAG-IC3 ‘�†’ sequence indicates
Stitchr output using a modified TRAV21*02 gene to replicate the engineered amino acid sequence used in the PDB structure. (C) Functional validation
of Stitchr-produced TCR sequences using a Jurkat activation assay. CD8-positive, TCRb-negative Jurkat cells were transduced with one of five different
TCRs and co-cultured with peptide pulsed (10, 1, or 0 �g/ml) HLA-matched or mis-matched target cell lines. Data shown are triplicate technical replicates
from one experiment and are representative of at least two independent biological repeats.

between input and output sequences revealed that they
were all confined around the relative positions 0.8–0.9
along the variable domain, corresponding to the expected
location of the CDR3 where Stitchr generates codon-
optimized sequences to fill in non-templated regions (Figure
3E). Note that providing the junction as a NT sequence
still infrequently produces differences, as sometimes V(D)J
recombination will delete only part of the codon(s) at the
recombining edges before adding alternate nucleotides that
still encode the same amino acid, while Stitchr defaults to
using the germline-encoded sequence (e.g. Figure 1C, where

the last residue of the ‘CASS’ motif was encoded by ‘AGT’
in the rearrangement but the ‘AGC’ found in the germline
gene gets used).

Synthetic sequences do not necessarily reflect the
true complexity of empirically sequenced repertoires. We
therefore leveraged a published TCR-seq dataset generated
with a unique molecular index (UMI)-barcoded 5′ RACE
protocol, allowing production and allele-level annotation of
stringently error-corrected TCR rearrangements, running
from the start of the V gene region to the end of the
J (see Materials and Methods). This produced ∼365,000
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Figure 3. Application of Stitchr to high-throughput TCR datasets using the companion script Thimble. (A) To benchmark the speed of Thimble, large TCR
datasets with amino acid CDR3s provided were downloaded either from bulk beta chain TCR-seq datasets (14), or from the curated antigen-associated
TCR database VDJdb (15) (processed both all together and by each chain individually). Thimble, the high-throughput interface to Stitchr, was run on
these original files (triangle markers), and from files containing 100–1,000,000 TCRs generated by randomly re-sampling these files (dot markers), with
each repertoire size randomly produced 3 times. Connecting lines indicate bootstrapped locally weighted linear regressions. (B) Overview of sequence-
level Stitchr validation. TCRs with known V/J/CDR3 information and nucleotide sequence were produced by in silico recombination of IMGT-stored
germline genes using immuneSIM (I). V/J genes and CDR3 information (taken as exact junctions in nucleotide or amino acid forms, or as nucleotides
with additional padding sequences for seamless mode) were input to Stitchr (via Thimble) (II). TCR variable domain sequences produced by Stitchr were
then compared against the corresponding parental simulated TCR sequences (III). (C) Run time duration of Thimble applied to 50,000 � and � TCRs
generated by immuneSIM, comparing different formats of junction region input: amino acid (AA), nucleotide (NT), nucleotide with padding nucleotides
5′ and 3′ for seamless (SL) integration, either 10, 20, 30, or 200 nt (200 5′, 30 3′). (D) Percentage of TCRs produced by Stitchr for which the variable region
(start of V gene to end of J gene) perfectly matched the input sequence generated by immuneSIM, at both the nucleotide (NT, purple) and translated
(AA, grey) levels. (E) Histogram of positional mismatches between simulated and stitched sequences for NT and AA junction input modes. Histograms
were generated with 111 bins, so each bar corresponds approximately to one codon (given the variable domain length distribution of ∼333 nucleotides,
Supplementary Figure S7A).

TCRs of known sequence that were then submitted
to Stitchr/Thimble, providing the CDR3 junction in
different formats as with immuneSIM (Supplementary
Figure S8A). Basic Stitchr results were broadly similar to
those seen for the simulated data (Supplementary Figure
S7D–F). Inspecting the accuracy profiles revealed that as
expected, the majority of cases produced correct amino
acid sequences, with some expected nucleotide mismatches
when providing CDR3 junctions as AA or NT (Figure
4A, B). However, there were some additional nucleotide
mismatches even when providing extended junctions for
seamless integration Figure 4A, top two rows) that occurred
outside of the region included in the padded junction
(which gets integrated into the stitched sequence and is
thus perfectly matched). While some of these mismatches
are likely technical errors accumulated during the TCR-seq
protocol (during RT, PCR, or sequencing) that survived
the error-correction process, some appeared at markedly

higher frequencies than others (Figure 4A, middle row). We
hypothesized that some of these peaks may represent novel
TCR alleles present in our cohort that are not represented in
the IMGT reference database. We performed a novel allele
inference analysis on each of our donor repertoires (see
Methods and Supplementary Figure S8B) and introduced
the potential novel alleles inferred from that process both
to our TCR annotation software and Stitchr reference files.
Potential novel alleles inferred by this process are listed
in Supplementary Table S4. When we re-ran the analysis,
the largest mismatch peaks at both the NT (Figure 4A,
bottom row) and AA (Supplementary Figure S7G) levels
were no longer present. When we restricted the analysis to
TCRs that were found to incorporate a potentially novel
allele, we observed an increase to near-completely perfect
amino acid TCR replication when using the combined
IMGT + inferred allele reference database (Figure 4C).
Collectively, these results demonstrate that Stitchr can be
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Figure 4. Assessment of Stitchr/Thimble accuracy on high-throughput TCR-seq data. (A) Relative positional mismatches between Thimble-generated
sequences and original input sequenced TCRs for different junction inputs: (columns left-to-right): AA, NT, SL (20), SL (200). Top row shows errors
when using IMGT-provided TCR germline genes only. Middle row shows the same analysis with expanded Y-axis to highlight the bottom hundredth
of the mismatch range. Bottom row shows mismatches upon rerunning Stitchr/Thimble when providing additional novel TCR alleles inferred from the
individual donor repertoires. (B) Percentage of all TCRs produced by Stitchr/Thimble that match perfectly to the original input sequences, using the IMGT
reference. (C) Percentage of only those TCRs that use a potentially novel inferred V gene allele and agree perfectly between TCR-seq and Stitchr/Thimble
output, before (blue) and after (red) including those alleles in the reference dataset, at the nucleotide (left) or amino acid (right) level.

scaled to accurately generate full-length TCR sequences for
high-throughput datasets, using a variety of input CDR3
formats.

DISCUSSION

TCRs have been intensely studied since their discovery
in the 1980s, drawing on many innovative approaches to
overcome the challenges presented by their complexity.
In particular, the advent of high-throughput sequencing
technologies (TCR-seq) has allowed the identification
of many orders of magnitude more rearranged TCRs
than were possible with traditional techniques (43). More

recently, microfluidic and other single-cell technologies
have enabled high-throughput pairing of alpha-beta
chain information through sequencing (44,45), and
even high-throughput functional cloning of screenable
libraries (25). From these efforts, and those of other
experimental approaches, there now exist various databases
of deep-sequenced TCR repertoires (46–49), antigen- or
pathology-associated TCRs (15,50,51), and structurally
determined TCR-pMHC interactions (52–54). These
provide a wealth of information for other researchers to
build upon. Moreover, the translational potential of TCRs
is increasingly being explored, particularly for anti-cancer
treatments, as TCRs are capable of directly targeting
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proteins other than those expressed on the cell membrane
(in contrast to monoclonal antibodies, for example). This
includes a range of both cellular (TCR-T) and soluble
(e.g. ImmTACs and other TCR fusions) TCR therapies
undergoing clinical trials (55–57). The ability of TCR
research to effect change in basic immunology and in the
clinic has never been greater.

Despite these advances, barriers remain both within and
between the sub-fields of TCR biology. Many of these
relate in some way to one of two problems: (1) researchers
are often not working with full-length TCR sequences,
and (2) the methodologies of different fields tend to work
at different scales. The former issue typically arises as
researchers work off sequencing reads shorter in length than
TCR variable domains (often just targeting the CDR3 and
the regions immediately adjacent), or from reported TCRs
in which the sequence has been converted to the detected
or inferred V and J genes and CDR3 sequence used (58)
(thus lacking nucleotide sequence information entirely).
While it is possible to cover the entire variable region with
available sequencing technologies, this often comes as a
trade-off with depth (or cost). Full-length variable domain
sequencing therefore tends to be restricted to validation of
small numbers of experimentally important TCRs, while
most high-throughput TCR-seq datasets numbering in the
thousands to millions of receptors narrow their focus to the
CDR3.

Both issues can present a barrier to many subsequent
experimental and computational applications, such as
synthesizing and expressing TCRs for validation of
antigen specificity, or computationally investigating the
contribution of different regions of the TCR to certain
biological properties. TCRs proposed to enter pre-clinical
testing require empirical validation of their specificities,
due to effects like bystander activation (59), non-specific
MHC multimer reagent staining (60,61), and cross-
reactivity (62,63). Moreover several bioinformatic strategies
to predict antigen specificity from sequence make use of
information encoded at regions outside those typically
sequenced in CDR3-centric protocols (64–66).

Here, we introduce Stitchr, a Python script that uses the
V/J/CDR3 TCR information commonly used to report
TCR identity and tables of germline sequences to generate
corresponding full-length coding nucleotide sequences. We
show that the sequences produced by Stitchr faithfully
reproduce the amino acid sequences of the TCRs they aim
to replicate. Stitchr can also be used to assemble TCRs
with non-natural sequences, as may be desirable in TCR
engineering applications. Moreover, through use of the
companion script Thimble, we demonstrate that Stitchr is
capable of processing a million sequences in ten minutes
on a standard desktop personal computer, meaning that
deep-sequencing data covering the CDR3 portion of TCRs
can be converted into full-length sequences in a high-
throughput manner.

The modular approach by which Stitchr reads in and
assembles TCR sequences provides an effective way to
generate edited or non-natural TCR sequences. A common
modification is the use of alternative constant regions,
typically to reduce the likelihood of mispairing with
endogenous TCRs when introducing an exogenous TCR.

This can take the form of swapping either whole (67,68)
or partial (69,70) constant regions with their orthologous
equivalents from different species (e.g. swapping human
for mouse sequences), swapping whole or partial sequences
between loci within a species (e.g. swapping whole (71)
or partial (72) alpha/beta constant region sequences),
or swapping alpha/beta chain regions for gamma/delta
TCR equivalents (73). Constant region domain swaps or
supplementation of modified variable region genes are
simply performed in Stitchr by including the wanted
sequence in the reference data (Supplementary Figure
S4 and Figure 2A respectively). Arbitrary non-TCR
sequences can also be appended to either end of a TCR
rearrangement, or even used to bridge paired TCRs into a
bicistronic sequence, to facilitate molecular manipulations
and transgene expression (as used for the TCRs tested
in Figure 2C). It is also increasingly appreciated that the
IMGT database of germline TCR alleles is incomplete
– for example, a recent publication reports discovery of
38 novel TRBV alleles mined from public datasets, two
of which were also found among this study’s inferred
alleles (23) – which raises concerns about applicability given
the over-representation of certain geographic populations
in these public datasets (74). Much as with non-natural
modifications, we show that Stitchr can be used to
include novel inferred alleles in the sequences it produces,
improving the fidelity of the TCRs it generates (Figure 4).

One potential limitation of Stitchr is that it can only
produce TCRs using the available component sequences
(V and J genes plus leader and constant regions). While
additional sequences can easily be provided, it is also
possible that the V/J/CDR3 information being used
as input may not faithfully reflect the ‘true’ sequenced
TCR, e.g. if the TCR contained polymorphisms which
were not captured by CDR3-targeted sequencing. V gene
polymorphisms can impact upon antigen recognition (75)
and surface expression levels (76), and could theoretically
be recognized as foreign antigens themselves (62), thus such
differences could prove functionally relevant depending
on the intended application. Therefore, we recommend
that wherever faithful reproduction of TCR sequences is
required, full-length variable domain sequencing should
be performed. Advanced users may draw on their own
sequencing data, along with databases of inferred TCR
alleles like OGRDB (77) and VDJbase (78) to supplement
or replace the provided germline sequences as needed.
This consideration becomes particularly important for non-
human species which may have far less well-studied loci,
and thus likely fewer annotated V/J gene polymorphisms.
Users wishing to apply Stitchr to immunoglobulins must
take particular care: in addition to greater germline
polymorphism these loci undergo somatic hypermutation
(24), meaning that genes will often effectively need to
undergo a sequence inference process at the level of the
clonotype, rather than just the individual. Use of the
seamless mode to provide Stitchr with CDR3-spanning
TCR-seq reads will also maximize the likelihood that
output sequences accurately reproduce the intended TCR.

While we have demonstrated the production and
validation of a small number of TCR expression constructs
here, we anticipate that Stitchr and Thimble will prove
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useful in large-scale TCR gene synthesis and validation
efforts. The domain switching illustrated in Supplementary
Figure S4 could be adapted and expanded to any number
of TCR-related efforts, e.g. to convert TCRs to soluble
forms by adding appropriate constant region sequences
(79). As screens for cancer- or pathogen-recognizing
clonotypes increase (80), and more engineered TCR assays
and immunotherapies are developed (55,56), we believe
that a tool like Stitchr stands to benefit the field by reducing
the time and effort currently spent manually assembling
full-length TCR expression construct sequences. Moreover,
by effectively converting TCR design into a programmatic
process it becomes exquisitely repeatable and reproducible,
consistently producing the same output given the same
input. This will contribute to rigor in TCR research,
accelerating the pace and minimizing the chances of
mistakes in TCR sequence production, both in basic
research and potentially in the clinic.

DATA AVAILABILITY

Healthy donor UMI-barcoded merged FASTQ files are
available on SRA under the accession PRJNA359580. Raw
flow cytometry data from Jurkat validation experiments are
available from FlowRepository, under the experiment IDs
#4949–4958 inclusively.

Stitchr is available on GitHub under a BSD 3-Clause
License here: https://github.com/JamieHeather/stitchr.
The immunoseq2airr script for converting Adaptive
Biotechnologies data to standard IMGT nomenclature
and AIRR-C format (https://github.com/JamieHeather/
immunoseq2airr) and the autoDCR script for TCR
annotation (https://github.com/JamieHeather/autoDCR/)
are similarly available. The code underlying the
analyses shown in this manuscript (including low-
throughput Stitchr commands used in the featured
example TCRs, plus additional input data required
for high-throughput analyses) is available here:
https://github.com/JamieHeather/stitchr-paper-analysis.
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