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ABSTRACT Assembly of a resistome in parallel with the establishment of a micro-
bial community is not well understood. Germfree models can reveal microbiota inter-
actions and shed light on bacterial colonization and resistance development under
antibiotic pressure. In this study, we exposed germfree soil (GS), GS with diluted
nontreated soil (DS), and nontreated soil (NS) to various concentrations of tetracy-
cline (TET) in a nongermfree environment for 10 weeks, followed by 2 weeks of ex-
posure to water. High-throughput sequencing was used to profile bacterial commun-
ities and antibiotic resistance genes (ARGs) in the soils. The initial bacterial loads
were found to shape the profiles of bacterial communities and the resistomes. GS
and DS treated with TET and the same soils left untreated had similar profiles,
whereas NS showed different profiles. Soils with the same initial bacterial loads had
their profiles shifted by TET treatment. Multidrug resistance (MDR) genes were the
most abundant ARG types in all soils, with multidrug efflux pump genes being the
discriminatory ARGs in GS regardless of different TET treatments and in GS, DS, and
NS after TET. Furthermore, MDR genes were significantly enriched by TET treatment.
In contrast, tetracycline resistance genes were either absent or low in relative abun-
dance. The family Burkholderiaceae was predominant in all soils (except in NS treated
with water) and was positively selected for by TET treatment. Most importantly,
Burkholderiaceae were the primary carrier of ARGs, including MDR genes.

IMPORTANCE This is the first study to examine how resistomes develop and evolve
using GS. GS can be used to study the colonization and establishment of bacterial
communities under antibiotic selection. Surprisingly, MDR genes were the main
ARGs detected in GS, and TET treatments did not positively select for specific tetra-
cycline resistance genes. Additionally, Burkholderiaceae were the key bacterial hosts
for MDR genes in the current GS model under the conditions investigated. These
results show that the family Burkholderiaceae underpins the development of resis-
tome and serves as a source of ARGs. The ease of establishment of Burkholderiaceae
and MDR genes in soils has serious implications for human health, since these bacte-
ria are versatile and ubiquitous in the environment.

KEYWORDS resistome, germfree soil, multidrug resistance genes, microbiome,
metagenomics

Microorganisms in the environment produce many antibiotics, harbor thousands of
antibiotic resistance genes (ARGs), and are continually evolving as part of an

ongoing evolutionary arms race. Researchers have isolated and investigated many antibi-
otic producers in an effort to discover new antibiotics with potential clinical applications.
Moreover, studies on the function, distribution, regulation, and evolution of ARGs can be
used to develop strategies aimed at combating and reversing the emergence of multiple-
antibiotic-resistant microorganisms. Early studies, which were generally based on axenic
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cultures, unveiled resistance phenotypes and genotypes in various human pathogens
(1–3). Furthermore, these studies revealed the genetic background of ARGs and the
mechanisms mediating their dissemination, such as in the cases of blaNDM-1, optrA, and
mcr-1 resistance genes (4–6). However, the methodologies were inadequate to interro-
gate ARGs from a broader ecological perspective, i.e., the resistome. The resistome, a
term first proposed by D'Costa et al. in 2006 (7), is the collection of all the ARGs from
pathogenic and nonpathogenic microorganisms in genomes or mobile genetic elements
(MGEs) of a defined microbial community. More specifically, it includes intrinsic ARGs
that are detected in all taxonomically related taxa, acquired ARGs that are present
natively in other taxonomically unrelated taxa, proto-ARGs that are nonfunctional and
distinct from clinically significant ARGs, and silent ARGs that are nonfunctional and can
be identified by comparison based on homologous sequences (8).

Recently, researchers have used next-generation sequencing (NGS), which bypasses
the limitation of unculturable bacteria, to study resistomes. ARG databases, such as
SARG, ARDB, MEGARES, and CARD, have been constructed and widely used (9–12).
Together with molecular biology techniques, NGS has also evolved into functional
metagenomics, to characterize and validate novel ARGs in the absence of prior knowl-
edge of targeted sequences (13, 14). Numerous studies have revealed the ubiquity of
resistomes, and the similarity or difference in resistomes recovered from different types
of samples, e.g., a resistome shared between soil and humans, was reported (15). Feng
and colleagues (16) reported that in the human gut, genes conferring resistance to tet-
racycline, macrolide-lincosamide-streptogramin (MLS), and multiple drugs are the
most abundant ARG types. Similarly, MLS, multidrug, and tetracycline resistance genes
are the most prevalent ARG types in black soil, which is important for crop production
in China (17). Also, a high level of tetracycline, multidrug, and erythromycin ARGs are
shared by swine, poultry, and human feces (18). The tight connections among humans,
animals, and environment urge us to study the resistome from the One Health per-
spective (19). Investigation into each compartment can reflect its contribution to the
overall evolution of the resistome.

Researchers have used samples from different sources, such as manure, sewage
sludge, and reclaimed water, to gradually elucidate the forces that shape resistomes in
different environments (20–22). Simulation of resistome evolution is the next frontier,
since this is the key to predicting and reversing the spread of antibiotic resistance. Lab
modeling can examine factors that are influential in resistome evolution, such as the
introduction of antimicrobials, heavy metals, aromatics, biochar, and plants (23–27).
Xiong et al. (28) used a chicken model to show that therapeutic doses of chlortetracy-
cline reduced the amount of Escherichia species, the main carrier of multidrug resist-
ance (MDR) genes, in the gut of chickens. Lu and Lu (27) also found that Azolla imbri-
cata plants could effectively reduce the number and diversity of ARGs in soils by the
elimination of antibiotics and heavy metals. The resistome is further shaped by the
interplay among members in the microbiome. Duan and colleagues (29) found that
inoculation of Bacillus subtilis into composting manure decreased the relative abun-
dance of ARGs, MGEs, and pathogenic bacteria. Overall, the evolution of the resistome
results from a diversity of biotic and abiotic factors, either external or internal, that
affect the composition of bacterial community and/or resistome.

Previous studies profiled the bacterial communities and resistomes and/or correlated
various factors to the changes in these profiles. Despite promising results, not many
studies have looked at initial bacterial colonization and new resistome formation in niche
areas with no prior detectable microorganisms. Additionally, the effect of environmental
selection on those bacterial communities and resistomes remains a mystery. A germfree
model provides a unique lens through which to explore the establishment of a resis-
tome. By exposing a germfree model to a defined environment, one can capture the as-
sembly of a new microbiome and a new resistome with and without exposure to stresses
that might serve as a force for shaping both the microbiome and the resistome. For sev-
eral decades, germfree animals have been used to study the interaction between host
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and its microbiota, especially the gut flora that is closely associated with metabolic,
inflammatory, and neuropsychiatric diseases (30). Recently, germfree animals have been
introduced to microbiome and resistome studies. Thomas et al. (31) reported the preva-
lent phyla in 18-day-old germfree chickens that were exposed to cecal contents, e.g.,
Bacteroidetes, Firmicutes, and Actinobacteria. Using a germfree piglet model, Liu and
Wang (32) found that the transplantation of the fecal microbiota resulted in higher prev-
alence and abundance of ARGs and the occurrence of ARGs that were originally unde-
tected. Of note, tetracycline, multidrug, and MLS were the most dominant ARG types in
the germfree piglets that received microbiota transplantation (32). Thus, germfree mod-
els can help unravel how resistomes become established and evolve, which will also aid
prediction of resistome changes and the development of reverse strategies.

Currently, resistome studies based on a germfree soil (GS) model are lacking. There
are differences in the abundance and composition of bacterial communities found in
soils and guts. The evolution of a soil resistome is shaped by numerous factors that
include the presence of various pollutants, antibiotic producers, and different antibiotic
concentrations. Additionally, the effects of antibiotics, such as tetracycline (TET), on
newly established and mature bacterial communities are unknown. This study aimed
to answer two fundamental questions: (i) which key bacteria, ARGs, and ARG hosts
appear first during the formation of a new resistome in soils? and (ii) how is the resis-
tome affected by different initial bacterial loads and by exposure to different antibiotic
concentrations? In order to address these questions, we developed and validated a GS
model to mimic conditions existing before bacteria assemble in soils and then followed
the development of resistome in the presence of TET. GS with no detectable bacteria
or bacterial DNA was exposed to the surrounding environment to allow colonization
by exogenous bacteria and to support the establishment of a new resistome.
Moreover, GS mixed with diluted nontreated soil (DS) and nontreated soil (NS) gave
insights into the resistome development from the interplay between indigenous and
exogenous bacteria. Subsequently, the soils were challenged with various concentra-
tions of TET to allow selection of TET-resistant bacteria and ARGs and reveal the diverse
evolutionary events of the soil resistomes. We expected that intrinsic ARGs and their
bacterial hosts would be the key to resistome development in the GS, since intrinsic
ARGs are generally ancient, omnipresent, and multifunctional (33). We also postulated
that TET would positively select the tetracycline resistance genes and their hosts in
soils. To account for potentially significant differences (e.g., abundance and composi-
tion) between communities and resistomes of NS and GS, we metagenomically profiled
the bacterial communities, resistomes, and bacterial hosts of ARGs during different
stages of resistome development. Our results suggest that Burkholderiaceae carrying
MDR genes and multidrug efflux pumps play key roles in resistome establishment and
in resistome development under TET pressure in the soils.

RESULTS
Establishment of bacterial communities using 16S rRNA gene sequencing.

16S rRNA gene sequencing revealed the colonization and development of bacterial
communities in soils. In GS, where no bacteria were initially present, bacterial com-
munities originated from external bacteria, whereas bacterial communities in DS and
NS developed from indigenous bacteria and/or exogenous bacteria. Samples were
named according to the time points of collection, soil types, and treatments. For
example, W2GSC refers to GS that were collected after a 2-week (W2) exposure to
water (C) (Table 1). Similarly, GST refers to all the GS exposed to TET, including samples
exposed to decreasing (T1), unchanging (T2), and increasing concentrations (T3) of TET.
Negligible amounts of DNA, insufficient for the sequencing process, were found in GSC,
GST1 to GST3, DSC, and DST1 to DST3 at the start of the experiment (week 0). Thus, only
the bacterial communities of NSC and NSC (T1 to T3) at week 0 were included for compar-
ison (Fig. 1A). In all the soils, the eight most abundant taxa identified at the bacterial family
level were Burkholderiaceae, Chitinophagaceae, Sphingobacteriaceae, Rhodanobacteraceae,
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Acidobacteriaceae subgroup 1, Micropepsaceae, Xanthobacteraceae, and Nocardioidaceae
(Fig. 1A). These families accounted for 27 to 91% of the sequences. A ninth group
remained unclassified (0.03 to 15%) according to the SILVA database. Other taxa
with low abundances were merged and defined as “others,” with details described
in Data Set S1, tab 2. Overall, soils with different initial bacterial loads and TET treat-
ments differed in bacterial community profiles (Fig. 1A). Comparative analysis of the
relative abundance of the above taxa revealed that GS was similar to DS and both
were different from NS, which had the largest number of significantly different taxa
(multiple Wilcoxon matched-pairs signed-rank test; q , 0.1) (Data Set S1, tab 3). The
abundance of Burkholderiaceae, Xanthobacteraceae, and Nocardioidaceae showed
significant differences among GS, DS, and NS with the same treatments, with either
water only or TET (Friedman test, P , 0.05) (Fig. S1A and B). Of note, the relative
abundance of Burkholderiaceae in GS and DS was significantly higher than in NS,
regardless of the treatment groups (multiple Wilcoxon matched-pairs signed-rank
test; q , 0.1) (Fig. S1A and B; Data Set S1, tab 3). Also, TET treatments positively
selected Burkholderiaceae in the three soils, i.e., GS, DS, and NS (Fig. S1C to E; Data
Set S1, tab 3). DESeq2, LEfSe, and edgeR analyses showed similar results. In addition,
Burkholderiaceae had the highest detection threshold in the core microbiome analy-
ses of all soil types (Fig. S1F). When TET treatments were stopped after week 10,
established bacterial communities were only slightly affected or reshaped after-
wards. This lack of change in bacterial communities after discontinuing the TET
selection pressure may result from the stability of developed resistomes (Fig. 1A).
Therefore, Burkholderiaceae were key to the colonization of soils by bacterial com-
munities and were positively selected for under TET treatments.

To study the diversity of bacterial communities and the differences in bacterial com-
position among the soils, alpha diversity analysis and beta diversity analysis were per-
formed at the bacterial family level. In the treatment of control soils, Shannon indexes
were similar in GSC and DSC but were significantly lower than that of NSC (Friedman
test; q , 0.1) (Fig. S1G). In TET-treated soils, GST had a Shannon index similar to that of
DST, which was significantly lower than that of NST (Friedman test; q , 0.1) (Fig. S1H).
TET treatments significantly reduced bacterial diversity in all the soils relative to the
corresponding control soils treated only with water except GST1 and NST1, which were
treated with decreasing TET (Friedman test; q , 0.1) (Fig. S1I to K). In general,
unchanged TET was the most influential treatment, resulting in the lowest Shannon
indexes in soils (Fig. S1I to K). Examining soil samples individually shows that the bacte-
rial diversity tended to increase with time (Fig. 1B). Within the three soils, GS generally
had the lowest bacterial diversity whereas NS had the highest diversity at week 2. After
week 8, the Shannon indexes were relatively stable in GSC and DSC and were similar to
that of NSC at week 2, suggesting that they all possessed bacterial communities with a
similar diversity. Therefore, we concluded that 10 weeks was sufficient time to study
the colonization and development of soil microbiomes. Discontinuation of TET treat-
ments after week 10 generally led to an increase in bacterial diversity (Fig. 1B).

TABLE 1 Experimental design of soil with different bacterial loads undergoing various TET
treatments

Sample typea

TET concn (mg/ml) at wks:

0–2 2–4 4–6 6–8 8–10 10–12
C 0 0 0 0 0 0
T1 4 2 1 0.5 0.25 0
T2 4 4 4 4 4 0
T3 4 8 16 32 64 0
aControl groups and treatment groups were designed for soils of different initial bacterial loads: germfree soil
(GS), GS with diluted nontreated soil (DS), and nontreated soil (NS). Control groups (GSC, DSC, and NSC) were
irrigated with autoclaved deionized water without TET for 12 weeks. TET treatment groups (GST, DST, and NST)
were irrigated with decreasing (T1), unchanging (T2), or increasing (T3) concentrations of TET for 10 weeks.
Autoclaved water without TET was used to irrigate all soil samples in weeks 11 and 12.
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FIG 1 Bacterial communities in a germfree soil model revealed by 16S rRNA analysis over a 12-week period. In this model, germfree soil (GS), GS with
diluted nontreated soil (DS), and nontreated soil (NS) were irrigated with TET (4 mg/ml) for 2 weeks, followed by decreasing (T1), unchanging (T2), or

(Continued on next page)
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For beta diversity, principal-coordinate analysis (PCoA) based on all the taxa
unveiled significantly different bacterial communities among soils with different initial
bacterial loads and treatments (P , 0.05; analysis of similarity [ANOSIM]) (Fig. 1C and
D). In controls treated with water (GSC and DSC), bacterial composition differed from
that of NSC (Fig. 1C) (P , 0.05). Similar results were observed in TET-treated groups,
where NST communities were distant from those in GST and DST (Fig. 1D) (P , 0.05).
Additionally, clear separations of the bacterial communities were observed among soils
with the same initial bacterial loads but with different TET treatments (Fig. S1L to N)
(P , 0.05). The results suggested that initial bacterial loads and TET treatments
accounted for the dissimilarities in soil bacterial communities.

Metagenomic sequencing to demonstrate the development of resistomes.
Metagenomic sequencing confirmed the relative abundance of ARGs and ARG hosts,
which were used to profile the development of resistomes. The relative abundance of
an ARG subtype was calculated as the copy number of ARG subtype per copy number
of 16S rRNA gene. Calculation of the total abundance of ARGs, i.e., the sum of all the
relative abundances of ARG subtypes (Fig. 2A), revealed that ARGs decreased steadily
in soils treated with water over the 12-week period. The value ranged between 0.52
and 0.82 in GSC, 0.49 and 0.91 in DSC, and 0.47 and 0.87 in NSC. Similarly, soils treated
with TET showed a gradual decrease in overall abundance of ARGs during the 10-week
exposure to TET. Upon discontinuation of TET at the end of week 10, the overall abun-
dance of ARGs rebounded only in GST1, indicating that the established resistomes
were generally stable at the community level. Furthermore, no significant difference
was found among soils receiving the same treatment, i.e., TET or water, despite having
different initial bacterial loads (Friedman test, q , 0.1) (Fig. S2A and B). On the other
hand, TET consistently raised the overall abundance of ARGs significantly, regardless of
initial bacterial loads (Fig. S2C to E).

In total, 98 ARG subtypes were characterized, representing 21 ARG types: multidrug,
bacitracin, fosmidomycin, rifamycin, b-lactam, glycopeptide, phenicol, tetracycline, nitro-
imidazole, MLS, fluoroquinolone, fluoroquinolone/multidrug, peptide, aminoglycoside,
aminoglycoside/aminocoumarin, tetracenomycin C, triclosan, nucleoside, sulfonamide,
polymyxin, and unclassified (Data Set S1, tabs 4 and 5). Furthermore, compositional
changes in ARG types were revealed and the relative abundance of ARG types were com-
pared (Fig. S2F to J). In general, multidrug, glycopeptide, fosmidomycin, and bacitracin
were the predominant ARG types in all the soils (Fig. 2A). NST had a significantly higher
level of b-lactam relative to GST and DST in TET treatments (Fig. S2G). Comparative analy-
sis based on ARG types revealed that GS was similar to DS, both of which were different
from NS that had the largest number of significantly different ARG types (multiple
Wilcoxon matched-pairs signed rank test, q , 0.1) (Data Set S1, tab 6). Noticeably, multi-
drug was the most abundant ARG type in all the soils during the investigated period.
Compared to the soils treated only with water, TET-treated soils had a significantly higher
relative abundance of MDR genes, such as in GST3, DST3, NST2, and NST3 (Fig. S2H to J).
Surprisingly, there were no significant differences in tetracycline resistance genes in soils
after TET exposure.

ARG subtype analysis. Resistome profiles were reconstructed based on the relative
abundance of ARG subtypes (Fig. 2B). Surprisingly, ARG subtypes from MDR genes,

FIG 1 Legend (Continued)
increasing (T3) TET concentration every 2 weeks for 8 weeks. After 10-weeks of exposure to TET, all soils were irrigated with sterile water for the next
2 weeks (Table 1). Details of the bacterial communities in control groups (GSC, DSC, and NSC) and TET treatment groups (GST1 to -T3, DST1 to -T3, and
NST1 to -T3) are given in Data Set S1, tab 2. GST, DST, and NST denote combined results from T1, T2, and T3, respectively. Very little or no DNA was
found in GSC, DSC, GST1 to -T3, and DST1 to -T3 at the start of the experiment (week 0), and hence, no bacterial compositions are presented for GST,
DST, or NST. Statistical analyses were performed using the Friedman test and multiple Wilcoxon matched-pairs signed-rank test, with the Benjamini-
Hochberg method to control the FDR (q , 0.1). (A) Eight predominant families were identified, and the relative abundances are shown, with
Burkholderiaceae, Chitinophagaceae, and Sphingobacteriaceae as the most abundant. (B) Alpha diversity analysis (Shannon index) showing bacterial
diversities increased over the 12-week study period across all soils. Regression lines were generated using Shannon index. (C and D) Beta diversity
analysis showed that GS and DS results clustered together but were removed from those for NS. Data were visualized by principal-coordinate analysis
(PCoA) of the bacterial families from soil samples with TET treatments. Unweighted UniFrac, as a distance metric, and ANOSIM, as a statistical test, were
used for the analysis (P , 0.05). Labels of individual soil samples are given (e.g., W2GST1 denotes results from week 2 of GST1). (C) Control groups
(P , 0.05); (D) TET treatment groups (P , 0.05).
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especially multidrug efflux pumps, ABC transporters, and mexF, dominated in all the
soils and remained high in relative abundance over the study period. Interestingly,
mexF, which can confer tetracycline resistance, underwent positive selection under
increased TET treatment. For example, the relative abundance of mexF increased with
the TET concentration in GST3 over the 10-week exposure. Despite discontinuation of
TET treatment after week 10, the abundance of mexF remained high until the end of
week 12, unlike other ARG subtypes, such as bacA, bpeF, and ceoB. In contrast, the rela-
tive abundance of tetA(58) and tetB(58) decreased with time or remained low in the
soils (Fig. 2B). Furthermore, we identified other multidrug efflux pumps as discrimina-
tory ARGs that gave unique occurrence patterns of resistomes in the soils (Table 2).
The discriminatory ARGs detected in GSC but not in NSC encoded multidrug (acrB,
ceoB, emrB, and major facilitator superfamily transporter [MFST]), tetracycline [tetA(58)],

FIG 2 Metagenomic analysis of ARGs in different soils over the 12-week study period. In this model, germfree soil (GS), GS with diluted nontreated soil
(DS), and nontreated soil (NS) were irrigated with TET (4 mg/ml) for 2 weeks, followed by decreasing (T1), unchanging (T2), or increasing (T3) TET
concentration every 2 weeks for 8 weeks. After 10 weeks of exposure to TET, all soils were irrigated with sterile water for the next 2 weeks (Table 1).
Details of ARG types and subtypes in the control groups (GSC, DSC, and NSC) and the TET treatment groups (GST1 to -T3, DST1 to -T3, and NST1 to -T3)
are described further in Data Set S1, tab 4 and tab 5, respectively. GST, DST, and NST denote combined results from T1, T2, and T3. (A) ARG types and the
relative abundance of total ARGs varied in different soils. Total ARGs decreased over time (right y axis), and the relative abundance of ARG types (left y
axis) showed a predominance of the multidrug resistance genes. (B) Heat map of variations of ARG subtypes based on the relative abundance of ARG
subtypes in the control groups (GSC, DSC, and NSC) and TET treatment groups (GST1 to -T3, DST1 to -T3, and NST1 to -T3). The top 50 ARG subtypes in all
the soils over the examined period are shown. Multidrug resistance (MDR) gene types and multidrug efflux pumps, e.g., mexF, were favored in the
germfree soil model. Details of all ARG subtypes are described in Data Set S1, tab 5. (C and D) Beta diversity analysis (P , 0.05) on soil resistomes in 3
control groups (C) and 3 treatment groups (D). These results showed that GS and DS clustered together but were away from NS. Data were visualized by
PCoA on the relative abundance of ARG subtypes, with Bray-Curtis as a distance metric and PERMANOVA as a statistical test (P , 0.05). Labels indicate
individual soil samples; e.g., W2GST1 denotes results for GST1 from week 2.
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TABLE 2 Discriminatory ARGs that exhibited unique occurrence patterns of resistomes in soilsa

Pairwise comparison

First comparator Second comparator

Resistance type Gene or protein Resistance type Gene or protein
GSC vs. NSC Aminoglycoside aac(69)-31 Beta-lactam blaLRA

Fosmidomycin rosB Glycopeptide vanI
Multidrug MFST MLS oleC
Multidrug ceoB Multidrug emrE
Multidrug acrB Multidrug efpA
Multidrug emrB Tetracenomycin C tcmA
Phenicol clbB
Phenicol floR
Rifamycin rphB
Sulfonamide sul2
Tetracycline tetA(58)
Unclassified cAMP-regulatory protein

GST vs. NST Multidrug MFST Glycopeptide vanI
Multidrug mdtN MLS oleC
Rifamycin rphB Tetracenomycin C tcmA

Tetracycline tetG

GSC vs. GST1 Aminoglycoside aac(69)-31 Aminoglycoside ksgA
Glycopeptide vanA Aminoglycoside, Aminocoumarin cpxA
Multidrug mdtN Beta-lactam blaLRA
Multidrug rpoB2 Beta-lactam penA
Phenicol clbB Fluoroquinolone emrR
Rifamycin rbpA Fluoroquinolone, multidrug mdtK
Sulfonamide sul2 Multidrug mexT
Tetracycline tetG Multidrug mdtA

Multidrug opcM
Multidrug mdtH
Multidrug baeR
Multidrug tolC
Multidrug oqxB
Unclassified H-NS

GSC vs. GST2 Multidrug mdtN Multidrug opcM
Phenicol clbB Multidrug mexT
Sulfonamide sul2 Multidrug mexB

Multidrug mexX

GSC vs. GST3 Phenicol clbB Beta-lactam Metallo-b-lactamase
Sulfonamide sul2 Multidrug amrB

Multidrug opcM
Multidrug mexT
Multidrug oprM
Multidrug mexX
Multidrug mexB

DSC vs. DST1 Multidrug MFST Aminoglycoside, aminocoumarin cpxA
Beta-lactam blaLRA
Beta-lactam blaTEM
Fluoroquinolone, multidrug mdtK
Fosmidomycin rosB
Multidrug emrE
Multidrug mdtH
Multidrug muxB
Multidrug mexN
Multidrug mvaT
Multidrug mexK
Multidrug muxC
Multidrug mexD
Multidrug emrD
Multidrug mexB

(Continued on next page)
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rifamycin (rphB), phenicol (clbB and floR), fosmidomycin (rosB), unclassified (cyclic AMP
[cAMP]-regulatory protein), aminoglycoside [aac(69)-31], and sulfonamide (sul2) resist-
ance (Table 2). Of note, high relative abundances of the efflux pump gene ceoB (mean 6

SD, 0.036846 0.01071) and acrB (0.053516 0.02808) were observed in GSC. The discrimi-
natory ARGs found in GST but not in NST were those for multidrug (mdtN and MFST) and
rifamycin (rphB) resistance (Table 2), all of which were in relatively low abundance.
Compared to the corresponding soils with water, discriminatory ARGs that existed exclu-
sively in GS, DS, and NS after TET treatments were mainly MDR genes (Table 2). Taken to-
gether, these results suggest that MDR genes (especially multidrug efflux pumps) and not

TABLE 2 (Continued)

Pairwise comparison

First comparator Second comparator

Resistance type Gene or protein Resistance type Gene or protein
Multidrug mipA
Multidrug mexA
Multidrug oprM
Multidrug marA
Multidrug mexW
Multidrug oprJ
Peptide, polymyxin arnA
Phenicol clbB
Triclosan opmH
Unclassified cAMP-regulatory protein

DSC vs. DST2 Multidrug ompR Beta-lactam blaTEM
Multidrug MFST Glycopeptide vanS
Rifamycin arr Multidrug amrB

Multidrug mexX
Multidrug mexB
Multidrug oprM

DSC vs. DST3 Multidrug MFST Beta-lactam Metallo-b-lactamase
Tetracycline tetA(58) Beta-lactam blaTEM

Multidrug amrB
Multidrug mexB
Multidrug oprM
Multidrug mexX

NSC vs. NST1 Multidrug amrB
Multidrug ceoB
Multidrug opcM
Multidrug mexX
Multidrug acrB

NSC vs. NST2 Multidrug amrB
Multidrug ceoB
Multidrug opcM
Multidrug mexX
Phenicol floR

NSC vs. NST3 Beta-lactam Metallo-b-lactamase
Multidrug amrB
Multidrug ceoB
Multidrug mexB
Multidrug oprM
Multidrug opcM
Multidrug mexX
Multidrug mexT
Phenicol floR
Tetracycline tetA(58)

aExtraARG revealed the discriminatory ARGs that were found exclusively in each soil in the pairwise comparison. MFST, major facilitator superfamily transporter. The
multidrug efflux pumps were a key determinant of soil resistome profiles in GSC and GST, and in GS, DS, and NS after TET.
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tetracycline resistance genes play a fundamental role in the resistome establishment
even in the presence of TET in soils.

In addition, beta diversity analysis with principal-component analysis (PCA) and
PERMANOVA (P , 0.05) was performed to study the dissimilarities in resistomes
(Fig. 2C and D; Fig. S2K to M). As expected, GSC and DSC were significantly different
from NSC (Fig. 2C; Data Set S1, tab 7). When TET was applied, there were significant dif-
ferences between the soils treated with TET but having different initial bacterial loads,
i.e., GST versus DST, GST versus NST, and DST versus NST (Fig. 2D; Data Set S1, tab 7).
The patterns revealed in the above results were similar to those revealed by 16S rRNA
sequencing (Fig. 1C and D). Under the same bacterial load, significant differences were
observed between the soils with water and TET treatments, e.g., GSC versus GST1,
GST2, and GST3 (Fig. S2K to M; Data Set S1, tab 7). Overall, we see that soil resistomes
are shaped by initial bacterial loads and TET treatments.

ARGs and their hosts. Taxonomic classification of the bacteria hosting the ARGs
is crucial to our understanding of the origin and development of resistomes; thus,
the contigs carrying ARG open reading frames (ORFs) were used to classify the bac-
terial hosts. Clean sequences were assembled into 56,282,585 contigs with an aver-
age length of 1,040 bp and an average N50 of 1,590 bp. A total of 94,453,457 ORFs
were obtained, from which 9,362 ARG ORFs and 9,095 contigs carrying ARG ORFs
were found with lengths ranging from 200 bp to 901,224 bp, a median length of
575 bp, and an average length of 6,280 bp (Fig. S3), and 9,243 bacterial taxa were
identified (Data Set S1, tabs 8 and 9). Subsequently, a major part of the ARG host
profile was represented by the observed ARG subtypes (relative abundance $ 1%),
and their bacterial hosts at the family level (relative abundance $ 1%) (Fig. 3A to F).
The complete ARG host profiles are described in Data Set S1, tabs 9 and 10. In GSC
and DSC, the most predominant ARG host was the family Burkholderiaceae, making
up 31.97% and 45.09% of the profiles, respectively (Fig. 3A and B; Data Set S1, tab 9).
In comparison, Streptomycetaceae (26.15%) was the most prevalent host in NSC,
although the family Burkholderiaceae was also represented as one of the most abundant
hosts (5.30%) (Fig. 3C; Data Set S1, tab 9). In the presence of TET, Burkholderiaceae con-
tinued to dominate the ARG host profiles in soils; 46.22% in GST, 48.67% in DST, and
42.36% in NST (Fig. 3D to F; Data Set S1, tab 9). Other major hosts in the TET treated
soils were Pseudomonadaceae, Bradyrhizobiaceae, Streptomycetaceae, Microbacteriaceae,
Alcaligenaceae, Rhodanobacteraceae, and Nocardioidaceae, regardless of the initial bacte-
rial loads (Fig. 3D to F).

We found that the family Burkholderiaceae carried diverse ARG subtypes and was
the main carrier of MDR genes. In the soils treated with water, Burkholderiaceae with
MDR genes represented the largest proportion in GSC (25.45%) and DSC (39.28%),
while Streptomycetaceae carrying glycopeptide ARGs were the most predominant in
NSC (14.66%) (Data Set S1, tab 10). Similarly, Burkholderiaceae carrying MDR genes
were the most abundant among TET-treated soils, i.e., 37.10% in GST, 42.62% in DST,
and 34.53% in NST (Data Set S1, tab 10). Examining the abundance over time revealed
that Burkholderiaceae harboring MDR genes were the most prevalent in all the soils
during the experimental period, e.g., 24.22% 6 9.42% in GSC and 39.13% 6 5.98% in
DSC. The only exception was NSC, which had an average relative abundance of 4.48% 6

2.39% (Data Set S1, tab 11). Furthermore, the abundance of Burkholderiaceae with MDR
genes in GSC and DSC was significantly higher than that of NSC and was positively
selected for by TET in GS and NS but not in DS (Friedman test, q , 0.1) (Fig. 3G), corre-
lated with the results of 16S rRNA analysis (Fig. S1A and C to E). As indicated by 16S rRNA
analysis, Burkholderiaceae had the highest detection threshold in the core microbiome
analyses of all soils (Fig. S1F).

In order to decipher differences in resistome evolution between newly developed
and mature bacterial communities, we compared the relative abundance of the major
hosts of MDR genes in GST3 and NST3, soils treated with increasing TET (Data Set S1,
tab 11). As expected, Burkholderiaceae carrying MDR genes dominated the ARG-host
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FIG 3 ARGs and their bacterial hosts in germfree soil (GSC and GST1 to -T3), GS with diluted nontreated soil (DSC and DST1 to -T3), and nontreated soil
(NSC and NST1 to -T3). Host bacterial families and ARGs with relative abundances of $1% are shown. The outermost circle represents the actual counts of

(Continued on next page)
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profiles during the study period and ranged from 31.33% to 57.53% and 24.00% to
37.86% in GST3 and NST3, respectively. In addition to Burkholderiaceae, we identi-
fied other hosts of MDR genes specific to the sample type; e.g., Alcaligenaceae and
Enterobacteriaceae were found exclusively in GST3, and Streptomycetaceae and
Nocardioidaceae were unique to NST3.

The gene mexF, capable of conferring tetracycline resistance, was abundant at the
start of the experiment but was further selected for in GST3 (Fig. 2B). It reached a
high abundance by week 8 and was maintained over weeks 10 and 12, with values of
0.163, 0.216, and 0.200, respectively. This was the most abundant ARG subtype at
these sampling time points (Fig. 2B; Data Set S1, tab 5). Noticeably, some of the
observed hosts of mexF were the primary taxa as revealed by 16S rRNA sequencing, i.e.,
Rhodanobacteraceae at week 2 (2.85%), Rhizobiaceae at week 4 (2.22%), Burkholderiaceae
at week 6 (38.27%), Rhodanobacteraceae (10.02%), and Rhizobiaceae (1.45%) at week
12 (Data Set S1, tab 2). However, none of the observed hosts of mexF in GST3 at
week 8 (Rhodospirillaceae and Pseudomonadaceae) and week 10 (Rhodospirillaceae,
Pseudomonadaceae, and Alcaligenaceae) were detected by 16S rRNA analysis (Data
Set S1, tab 2). The results suggest that vertical gene transfer was the determinant in
resistome development.

In summary, Burkholderiaceae, which were prevalent in the bacterial communities
and carried MDR genes, underpinned resistome development under TET selection in
soils. TET treatment also shaped the resistomes by positively selecting Burkholderiaceae
with MDR genes.

DISCUSSION

Many studies have looked at already-established resistomes from diverse sources or
tried to correlate intrinsic and environmental factors with resistome evolution in order to
understand the spread of ARG and to combat antibiotic resistance. However, the process
by which the resistome itself develops has remained less studied. Microorganisms
exploit the environment to colonize and outcompete others using ARGs (34); thus, resis-
tomes can develop during and following bacterial colonization (Fig. 1A and 2B). Of note,
soil resistomes are mainly determined by bacterial community structures (35). Inevitably,
commonly used soil models with mature bacterial communities fail to unveil the assem-
bly of a new resistome. To fill this gap, we constructed soil models with different initial
bacterial loads, mimicking the bacterial populations that initiate the development of
resistomes with or without TET selection. Combining NGS and bioinformatics, we pro-
filed changes in the bacterial communities, resistomes, and bacterial hosts of ARGs dur-
ing different stages of resistome development in soils. This analysis demonstrated the
importance of MDR genes, especially multidrug efflux pumps, and their major host,
Burkholderiaceae, in resistome development even in the presence of TET in soils.

The composition of bacterial communities in soils was affected by the initial bacte-
rial loads and TET treatments. More specifically, bacterial isolation and 16S rRNA gene
amplification revealed that the bacterial load in GS before exposure to the environ-
ment and TET was extremely low. The main source of bacteria in GS could be external
and possibly from the environment (aerosols and human intervention). In DS, the com-
munities might have developed by the interplay of indigenous and exogenous bacte-
ria. Last, NS with established bacterial communities was used for comparison. With
water treatment, Burkholderiaceae prevailed as the most common bacteria in GSC and
DSC. These results are consistent with other studies that found Burkholderia to be ubiq-
uitous and to occupy diverse ecological niches, such as air, soil, water, and humans

FIG 3 Legend (Continued)
each host and ARG subtype. The relationship between ARGs and the corresponding hosts is indicated by lines in the inner circle. Details of the profiles are
listed in Data Set S1, tabs 9, 10, and 11. Burkholderiaceae were the main carriers of ARGs and MDR genes. Burkholderiaceae with MDR genes were also
positively selected by TET treatments. (A to F) ARG host profiles in the different soils. (A) GSC; (B) DSC; (C) NSC; (D) GST; (E) DST; (F) NST. (G) Relative
abundances of Burkholderiaceae with MDR genes that were significantly different between soils in pairwise analyses (Friedman test; q , 0.1). Asterisks
shows significant differences, and “a,” “b,” and “c” indicate comparisons between GSC and DSC, GSC and NSC, and DSC and NSC, respectively.
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(36–38). Compared to NSC, GSC and DSC had significantly enriched amounts of
Burkholderiaceae, implying a vital role of Burkholderiaceae in the initial colonization of
bacterial communities and development of resistomes. The predominant phyla in DSC
were Actinobacteria, Acidobacteria, Bacteroidetes, Cyanobacteria, Gemmatimonadetes,
Planctomycetes, Proteobacteria, and Verrucomicrobia. Similarly, Yan et al. (39) found that
Proteobacteria, Bacteroidetes, and Verrucomicrobia predominated after incubation of GS
created by gamma irradiation with normal soils. Our alpha diversity analysis showed
that DSC, with a low bacterial load, needed 8 weeks to develop into maturity (Fig. 1B),
in agreement with the results of Yan and colleagues (39). The introduction of TET
reduced Shannon indexes in soils (Fig. S1I to K), which was in line with the findings
that TET reduced bacterial diversity in normal soil and that the reduction was TET con-
centration dependent (40). It is not surprising that NS that had mature communities
remained stable and had fewer dissimilarities in bacterial composition than GS and DS.
Similarly, adults have mature gut microbiotas that are believed to be stable even with
antibiotic administration (41). In addition, TET positively selected for Burkholderiaceae,
suggesting that Burkholderiaceae contribute to resistome development in soils. The
result reflects those of Podnecky et al., who found that Burkholderia has multidrug
efflux pumps conferring resistance to tetracycline (42).

After quantifying ARGs and identifying discriminatory ARGs, we observed that MDR
genes, especially multidrug efflux pumps, were the core of resistome in GS. In addition,
the presence of other ARG types at week 2 indicated that MDR genes were not the
only environmental option for resistome. More specifically, in GSC, ARGs encoding mul-
tidrug efflux pumps were prevalent in resistome profiles during the investigated pe-
riod, e.g., ABC transporter, acrB, adeF, ceoB, bpeF, and mexF. Moreover, several pumps,
i.e., ceoB, MFST, acrB, and emrB, resulted in the unique occurrence pattern in the GSC
resistomes (Fig. 2B; Table 2). The results might be explained by the fact that multidrug
efflux pumps are ancient and ubiquitous and can have diverse biological functions (33,
43). For example, acrB was detected in Burkholderia spp. recovered from uriniferous
soils (44). Also, mexF has been identified in air, soil, marine, and humans (45–48). In
addition, mexF was detected exclusively across the 50-year succession age of the
retreating glacier where microbes were the initial colonizers, and an increased trend of
relative abundance in soil resistomes was reported (49). The pumps tend to have a
wide range of substrates in addition to antibiotics; they can extrude toxic compounds
such as metabolites and heavy metals, and signaling molecules to facilitate cell-to-cell
communication (43). They are believed to underlie the origin of antibiotic resistance
(33). It has been found that mexF involved the extrusion of toxic kynurenine which is
an intermediate in the degradation of tryptophan and a precursor of anthranilate in
Pseudomonas aeruginosa (50). Additionally, mexF has been linked to the transport of a
precursor of quinolone signaling in Pseudomonas (51). In other studies, acrB facilitated
the arrest of growth after Escherichia coli intercellular contact, which is characterized
by the secretion of tRNA nuclease CdiA (52, 53). Another function of acrB is in confer-
ring resistance to bile salts, which enables Enterobacteriaceae to survive the environ-
ment of the mammalian gut (54). Moreover, MFST (rmrAB) was used by Rhizobium etli
to withstand flavonoids of plants (55). Therefore, it is possible that MDR genes (espe-
cially multidrug efflux pumps), probably due to their ubiquity and multifunctionality,
are foundational to resistome development in soils. Interestingly, pumps believed to
be immobilized in the chromosome, have been increasingly associated with MGEs,
such as the plasmid-mediated RND (resistance-nodulation-division) pump that was
recovered from Klebsiella pneumoniae (56). The normalization of ARGs with 16S rRNA
genes might affect the exact quantification of ARGs, since multiple copies of 16S rRNA
genes are commonly present in bacteria. Future studies can consider a single copy
gene such as gyrA or recA for the normalization of ARG amount.

By evaluating the effects of initial bacterial loads and TET treatments on soil resis-
tomes, we found that bacterial communities resulting from diverse initial bacterial
loads structured the resistomes in soils (Fig. 1C and D and 2C and D). This is consistent
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with the finding that bacterial community compositions determine the occurrence of
soil resistomes across habitats (35). Moreover, we observed that TET shaped the resis-
tomes by positively selecting the MDR genes. Similarly, Xiong et al. (28) showed that
TET shaped the resistomes in broiler guts by changing specific ARG subtypes. More
importantly, we observed that resistome development in soils under TET was driven by
MDR genes but not necessarily by ARGs that are commonly relevant to clinical environ-
ments, such as tetracycline resistance genes (Fig. S2F to J). The relative abundance of
MDR genes was generally high, but the abundance of tetracycline resistance genes
remained low during TET treatments (Fig. 2B). This contrasts with the results reported
by Xiong et al. (28), in which high doses of chlortetracycline decreased the abundance
of MDR genes by reducing the main carrier, Escherichia, but at the same time increased
the abundance of tetracycline resistance genes in broiler guts. One explanation for the
discrepancy may be the positive selection on bacteria carrying MDR genes by TET, or
the outperformance of tetracycline resistance genes in broiler guts after long-term use
of TET in the broiler industry (28). It can also be explained by the different microbial
composition in the gut and in the soil, since Enterobacteriaceae were rare in the investi-
gated soil samples. Taken together, the results call for a further interrogation into the
effects of MDR genes from the environment, as they have a critical role in resistome
development under TET selection in soils. In addition to MDR genes, TET treatments
enriched GS, DS, and NS with the bacitracin ARGs, whereas beta-lactam ARGs were
enriched in NS (Fig. S2H to J). Interestingly, mexT, the regulator of the mexE-mexF-oprN
multidrug efflux system, was enriched only in soils with increasing TET concentrations
(GST3 and DST3). Additionally, mexE was enriched in the early stages of TET exposure,
whereas mexF was predominant much later in GST3 and DST3. Therefore, the soil resis-
tomes appears to be influenced by both the initial bacterial community and the dura-
tion of antibiotic exposure.

Based on the taxonomic classification of bacterial hosts of ARGs, we observed con-
sistent profiles of bacterial communities and resistomes (Fig. 1A, 2B, and 3A to F).
Regardless of the treatments, the ARG host profiles of GS were like DS, but different
from NS profiles. It is possible that the ARG hosts in GS came from NS, such as
Streptomycetaceae carrying rpoB2; however, the possibility that the hosts originated
from the environment cannot be excluded. Burkholderiaceae carrying MDR genes were
the basis for resistome development (GSC) under the influence of TET in soils. Further,
Burkholderiaceae was the primary carrier of the most predominant ARG type, MDR
genes, and was also capable of harboring diverse ARG subtypes; Burkholderiaceae with
MDR genes were positively selected for by TET (Fig. 3A to G). These results explain the
differences in resistomes between our soils and broilers in the presence of TET (28). Of
note, the result that Burkholderiaceae carry pumps like that encoded by bpeF corre-
sponds to the previous finding that Burkholderia, the type genus of the family
Burkholderiaceae, encodes BpeEF-OprC, which uses TET as a major substrate (42, 57).
Interestingly, Burkholderiaceae were also shown to be the vital hosts for ARGs in acti-
vated sludge from wastewater treatment plants (58).

Burkholderiaceae are common soil inhabitants, and this family contains pathogens
of plants, humans, and animals. Its genus Burkholderia is of clinical concern; it causes
glanders, melioidosis, and pulmonary infections that lead to high mortality rates in
cystic fibrosis patients (59). There are approximately 165,000 cases of melioidosis
caused by environmental Burkholderia in the world per year (60). Currie and colleagues
(36) identified aerosolized Burkholderia under stormy weather conditions and provided
clear circumstantial evidence for the inhalation of Burkholderia by the patient. In our
study, the Burkholderiaceae blooms in GS, DS, and NS after TET treatments were most
likely from the environment, since some ARGs carried by Burkholderiaceae were not
present in GSC, DSC, and NSC (e.g., amrB and mexX). Indeed, further studies are
needed, since sequence depth in the present study might not be enough to unveil all
the genes in the soils. Additionally, Burkholderiaceae carrying bacitracin-type ARG,
which were absent in NSC, were present in NS after TET treatments, suggesting that
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the introduction of a single antibiotic enabled the communities to be resistant to
diverse antibiotics. The secondary modulation of soil resistomes could be due to TET
that turned on the antibiotic production in communities.

Generally, Burkholderia infections are difficult to treat due to the bacteria’s resistance
to frontline beta-lactams and to polymyxins, treatments of last resort in humans (57). The
importance of Burkholderiaceae should not be underestimated, because this family has a
significant presence in soil resistomes, as revealed in the current study, wide distribution,
broad-host-range pathogenesis, and notorious antibiotic resistance. It is imperative that
further investigation of its role in soil resistomes be conducted, along with the evaluation
of its potential contributions to the shared resistome between soils and humans (15).
Also, risk assessments on antibiotic residues, especially TET, in clinically relevant environ-
ments are required to prevent selection for Burkholderiaceae. The effects of various fac-
tors, such as climate, TET residues, soil texture, and ARG dynamics (such as single nucleo-
tide polymorphisms that cannot be identified by DeepARG), should be investigated
further.

When examined individually, GST3 with increasing TET revealed that mexF, a pump
from MDR genes that can confer TET resistance (61), was initially abundant and further
selected for by TET and remained in large amounts after TET was stopped (Fig. 2B).
Similarly, the absolute abundance of mexF significantly increased in soils that were
exposed to organic manure, chlortetracycline, and ciprofloxacin (62). Noticeably, sev-
eral bacterial hosts of mexF, at weeks 2, 4, 6, and 12, were the dominant taxa at the
same time point, as revealed by 16S rRNA sequencing (Data Set S1, tab 2), which sug-
gests positive selection for resistant bacteria. Meanwhile, there are inconsistencies in
the results at week 8 and 10 between 16S rRNA and metagenomic sequencing which
may result from the horizontal transfer of mexF. Interestingly, Norberg et al. (47)
reported a mobile mexF in an IncP plasmid recovered from marine microbial biofilms.
Maintenance of the high level of mexF after stopping TET treatments might be due to
the fact that mexF did not impair fitness of the host during competition (50). These
results reaffirmed the vital role of multidrug efflux pumps in the development of soil
resistomes challenged with antibiotics. The overexpression of pumps can confer antibi-
otic resistance to clinically relevant bacteria (63), which is advantageous to the host
bacteria since it imparts multiantibiotic resistance with reduced fitness costs via a sin-
gle pump (64). It is also possible that MGE-associated pumps “prime” the soil to facili-
tate resistome development. Future studies can use inhibitors of multidrug efflux
pumps to explore the reasons for the enrichment of nonspecific ARGs relative to antibi-
otic specific ARGs. Moreover, future studies in germfree models should explore the
effect of other antibiotics (apart from tetracycline) on soil resistome development. It
will be interesting to apply culturomics to examine the resistance phenotypes of bacte-
rial communities with enriched multidrug efflux pumps.

MATERIALS ANDMETHODS
Construction of soil microcosms and TET treatments. Commercial loam soil (Nord Agri, Latvia),

suitable for the growth of most plants, with a pH range of 5.0 to 6.5 and containing 50 to 260 mg/liter
nitrogen, 50 to 260 mg/liter phosphate, and 50 to 340 mg/liter potassium, was directly used (NS). This
NS was then used to construct soil microcosms of different initial bacterial loads, i.e., GS and DS. To
obtain GS, NS was sterilized three times at 121°C for 2 h in autoclave bags (Alex Red, Israel). To confirm
the absence of live bacteria, soils were plated out on Luria broth agar (LBA); no colonies appeared after
incubating GS on LBA plates at 37°C for 7 days. To validate the absence of bacterial DNA in GS, bacterial
DNA was extracted using a NucleoSpin soil kit (Macherey-Nagel, Germany) and amplified by PCR with
primers 515F and 907R (V4 and V5 regions) (65, 66). DS was prepared as described by Yan et al. (39) with
minor modifications. Specifically, 10 ml of NS and 90 ml of autoclaved deionized water were mixed and
serially diluted in sterile deionized water to reach a final concentration of 1024 (vol/vol). Then, 15 ml of
the final diluted soil suspension was thoroughly mixed with 300 g of GS to generate DS. Therefore, we
obtained soil with various bacterial loads, i.e., no bacterial load in GS, relatively low bacterial load in DS,
and normal bacterial load in NS.

Different soils (300 g) with different bacterial loads were transferred to plastic potting containers
(with drainage holes). The pots were placed in an outdoor shelter protected from rain to allow bacterial
colonization and establishment of resistomes. Four replicates of each soil sample were prepared. In con-
trol groups without antibiotic treatments, three types of soil samples (GSC, DSC, and NSC) were irrigated

Resistome Development in a Germfree Soil

November/December 2021 Volume 6 Issue 6 e00988-21 msystems.asm.org 15

https://msystems.asm.org


daily with 100 ml sterile (autoclaved) deionized water for 12 weeks. In TET treatment groups, soil sam-
ples were irrigated daily with 100 ml of sterile water containing TET (T3383; Sigma-Aldrich, USA). The
TET starting concentration was 4 mg/ml, because it is the TET resistance breakpoint for most of the
pathogens (Clinical and Laboratory Standards Institute [CLSI] [83]). Different concentrations of TET were
introduced to examine the development of microbiome and resistome under different levels of ecologi-
cal pressure. TET treatments lasted for 10 weeks. During the TET treatments, the TET concentrations
were decreased (T1) in GST1, DST1, and NST1 soils and increased (T3) in GST3, DST3, and NST3 soils, ev-
ery 2 weeks (Table 1). The TET concentration remained unchanged (T2) in GST2, DST2, and NST2 soils for
10 weeks (Table 1). After 10 weeks, all soil samples were irrigated daily with 100 ml autoclaved deionized
water for another 2 weeks to assess the fitness costs of the established resistomes.

Soil sampling and DNA extraction. For sampling, 2 g of soil was randomly sampled at a depth of
2 cm in each container every 2 weeks, from week 2 to week 12. A total of 8 g of soil was collected from
each sample consisting of four replicates. Soil was collected with a sterile spoon, pooled, and stored in
sterile 50-ml tubes (Eppendorf, Germany) at 220°C. The individual soil samples were mixed thoroughly
and separately prior to bacterial DNA extraction using a NucleoSpin soil kit (Macherey-Nagel, Germany).
If necessary, multiple extractions were performed to obtain at least 1 mg bacterial DNA from each sam-
ple. Quantification of DNA was carried out using a Qubit double-stranded-DNA (dsDNA) broad-range
(BR) assay kit (Invitrogen, USA).

16S rRNA profile. Genes encoding the V4-V5 regions of 16S rRNA were amplified using primers
515F (59-GTGCCAGCMGCCGCGG-39) and 907R (59-CCGTCAATTCMTTTRAGT-39) followed by sequencing
on an Illumina 2500 platform (BGI, China), which generated paired-end 300-bp sequences. The primers
included an Illumina adapter, pad, and linker sequences. The PCR was carried out as follows: 94°C for 3
min, 30 cycles of 94°C for 30 s, 53°C for 45 s, and 72°C for 45 s, and then 72°C for 10 min. Quality control
was performed on 16S rRNA sequences as follows. (i) A 25-bp sliding window was used to determine the
quality of the sequences; if the average quality of a sequence fell below 20 bp, the sequence was
trimmed. The remaining sequence was used only if the length was more than 75% of its original length.
(ii) Sequences with contamination of adapters, ambiguous bases (N), and low complexity (10 identical
consecutive bases) were also removed. After quality control, additional sequencing was performed if
there were fewer than 30,000 sequences in each sample.

The clean sequences were analyzed using QIIME2 and MicrobiomeAnalyst (67, 68). The primers 515F
and 907R were used to extract the sequences of V4 and V5 regions from SILVA database (69), followed
by training to obtain a naive Bayes classifier.

Sequences that passed the quality control were denoised and merged using the DADA2 algorithm,
using the parameters denoise-paired –i-demultiplexed-seqs –p-trunc-len-f 0 –p-trunc-len-r 0 –o-table –o-
representative-sequences, prior to taxonomy classification with the classifier (70). DADA2 analysis resulted
in;27,316 clean sequences in each sample (Data Set S1, tab 1).

Subsequently, the data were uploaded to MicrobiomeAnalyst without filtering to complete alpha di-
versity and beta diversity analysis (total sum scaling). Here, we present the results based on the analysis
of the bacterial family level.

Metagenomic sequencing. The total DNA for 16S rRNA sequencing was also used for metagenomic
sequencing on a MGISEQ-2000 platform (BGI, China), which generated paired-end 150-bp sequences.
After the removal of adapters and sequences containing N bases, at least 10 Gb of high-quality clean
sequences was obtained in each sample.

Resistome profile. Quality control of the raw sequences from metagenomics sequencing was per-
formed with FastQC and Trimmomatic, which generated the clean sequences (71, 72). More specifically, the
sequences were removed if they had 50% of consecutive low-quality bases (quality score # 12), 10% am-
biguous (N) bases, sequencing adapters, and duplication contaminations. After quality control, 10 to 20% of
the raw sequences were removed, and additional sequencing was carried out to obtain at least 10 Gb of
data for each sample. Then, the first 10 bp of those sequences were trimmed with Trimmomatic due to the
instability of the sequencing platform during the initial sequencing process. DeepARG-SS was used in the
calculation of relative abundance of ARGs. The copy number of ARG subtype genes, normalized by the copy
number of 16S rRNA genes in the clean sequences, was calculated with the following thresholds: 80% iden-
tity of ARGs, 0.8 probability, an E value of 1e210, 80% coverage, and 80% identity of 16S rRNA sequences
(73). Discriminatory ARGs resulting in the unique occurrence pattern of resistome were identified by
ExtraARG (74). More specifically, GSC was compared with NSC, whereas GST was compared against NST.

To identify the bacterial hosts carrying ARGs, taxonomic classification of ARGs was performed as
described by Yin et al. (75), with minor modifications. The clean sequences were de novo assembled into
contigs with default parameters using MEGAHIT (76). Afterwards, ORFs in the contigs were predicted via -p
meta in Prodigal V2.6.3 (77). To characterize contigs carrying ARGs, the blastx mode of DIAMOND was used
to annotate the ORFs with the database of DeepARG, with thresholds of an E value of 1e210, 80% identity,
and 70% coverage (78, 79). Contigs carrying ARG ORFs were obtained and sent for taxonomy classification
by Kraken2 using the bacterial database (80). Details of contigs and ORFs are presented in Data Set S1, tab 8.

Statistics. Statistical tests and data visualization were accomplished by MicrobiomeAnalyst, GraphPad
Prism 8 (GraphPad Software, Inc., USA), R 3.6.2, Origin 2020b (OriginLab Corporation, USA), and Past 4.03
(68, 81, 82). All the data were tested for normality using the D'Agostino-Pearson test (alpha = 0.05). To
reveal significant differences in the Shannon index, the relative abundance of total ARGs, and the relative
abundance of Burkholderiaceae with MDR genes among three or more soils (e.g., GSC versus DSC versus
NSC, and GSC versus GST1, GST2, and GST3), a nonparametric Friedman test was performed (P , 0.05).
Multiple comparisons were performed in pairwise analysis with the Benjamini-Hochberg method to control
the false discovery rate (FDR; q, 0.1) (e.g., GSC versus DSC, GSC versus NSC, and DSC versus NSC).
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To reveal significant difference in taxa and ARG types, the Friedman test was first performed (P , 0.05)
among three or more soils, e.g., GSC versus DSC versus NSC, followed by pairwise analysis using multiple
Wilcoxon matched-pairs signed rank tests with the Benjamini-Hochberg method to control the FDR
(q , 0.1), e.g., GSC versus DSC, GSC versus NSC, and DSC versus NSC. Furthermore, total sum scaling was
performed prior to DESeq2 and LEfSe analysis. The trimmed mean of M-value transformation before edgeR
analysis was carried out to identify differentially abundant taxa in MicrobiomeAnalyst. Analysis of similarities
(ANOSIM) (P , 0.05) and permutational analysis of variance (PERMANOVA) (P , 0.05) were used in beta di-
versity analysis of taxa and ARG subtypes, respectively. Further, the sequential Bonferroni correction was
used in pairwise analyses.

Data availability. The data sets supporting the results and discussion of this article were deposited
in NCBI under BioProject accession no. PRJNA628860 for resistome analysis and accession no.
PRJNA630011 for 16S rRNA analysis.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
DATA SET S1, XLSX file, 0.5 MB.
FIG S1, TIF file, 2.2 MB.
FIG S2, TIF file, 1.3 MB.
FIG S3, TIF file, 0.2 MB.
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