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A B S T R A C T   

Background: The study of tumor metabolism is of great value to elucidate the mechanism of tumorigenesis and 
predict the prognosis of patients. However, the prognostic role of metabolism-related genes (MRGs) in gastric 
adenocarcinoma (GAD) remains poorly understood. 
Methods: We downloaded the gene chip dataset GSE79973 (n = 20) of GAD from the Gene Expression Omnibus 
(GEO) database to compare differentially expressed genes (DEGs) between normal and tumor tissues. We then 
extracted MRGs from these DEGs and systematically investigated the prognostic value of these differential MRGs 
for predicting patients’ overall survival by univariable and multivariable Cox regression analysis. Six metabolic 
genes (ACOX3, APOE, DIO2, HSD17B4, NUAK1, and WHSC1L1) were identified as prognosis-associated hub 
genes, which were used to build a prognostic model in the training dataset GSE15459 (n = 200), and then 
validated in the dataset GSE62254 (n = 300). 
Results: Patients were divided into high-risk and low-risk subgroups based on the model’s risk score, and it was 
found that patients in the high-risk subgroup had shorter overall survival than those in the low-risk subgroup, 
both in the training and testing datasets. In addition, for the training and testing cohorts, the area under the ROC 
curve of the prognostic model for one-year survival prediction was 0.723 and 0.667, respectively, indicating that 
the model has good predictive performance. Furthermore, we established a nomogram based on tumor stage and 
risk score to effectively predict the overall survival (OS) of GAD patients. The expression of 6 MRGs at the protein 
level was confirmed by immunohistochemistry (IHC). Kaplan-Meier survival analysis further confirmed that their 
expression influenced OS in GAD patients. 
Conclusion: Collectively, the 6 MRGs signature might be a reliable tool for assessing OS in GAD patients, with 
potential application value in clinical decision-making and individualized therapy.   

1. Introduction 

According to the latest survey in 2020, gastric cancer is the fifth most 
common cancer with 5.6% of new cases worldwide and the fourth most 
common death-causing cancer with a mortality rate of 7.7% [1]. Gastric 
cancer is one of the leading causes of cancer-related death in Asian 

countries and the second most common cancer in China, with approxi-
mately 403,000 new cases (281,000 in men and 122,000 in women) in 
2015 [2]. Of all malignant tumors originating in the stomach, gastric 
adenocarcinoma (GAD) is the most common histological type (~95%) 
[3]. Currently, the diagnosis of GAD mainly depends on histopatholog-
ical examination, serum biomarkers and imaging evaluation. Because 
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the early symptoms are not obvious, most patients with GAD are already 
in the advanced stage when diagnosed. Early detection of GAD is still a 
clinical challenge, which may also be a reason for the high mortality rate 
of GAD patients. 

The TNM staging system commonly used in clinical practice can 
predict the prognosis of GAD patients according to different stages [4]. 
However, patients at the same stage can have different outcomes [5]. 
Moreover, there are contradictions between different histopathological 
classifications [6]. Therefore, there is a need to develop a more effective 
method to predict the prognosis of GAD and to provide a reference for 
subsequent individualized treatment. Molecular predictive models are 
one of the solutions and much research has been done in gastric cancer. 
For example, a molecular prediction system was applied to the predic-
tion of peritoneal recurrence after radical gastrectomy [7]; An immune 
score-based model predicts postoperative survival and adjuvant 
chemotherapy choice in patients with gastric cancer [8]. However, most 
of these studies lack sufficient testing cohorts or are not consistent 
enough and have not been applied in clinical practice [9,10]. 

Metabolic reprogramming is one of the important features of cancer. 
The relationship between metabolism and tumorigenesis involves 
complex biological processes and molecular regulation [11]. Gastric 
cancer also follows the Warburg effect, which enables cancer cells to 
maintain growth under hypoxia, provides raw materials for cell 
biosynthesis and division, and maintains intracellular redox homeostasis 
[12]. These functions are also related to the occurrence, proliferation, 
invasion, and metastasis of gastric cancer cells. In addition to the War-
burg effect, abnormal glucose metabolism is often accompanied by 
changes in lipid and amino acid metabolism, presenting as a general 
increase in lipid and triglyceride levels [13], or fluctuations in the 
concentrations of different amino acids, such as significantly decreased 
leucine level and significantly increased glycine, phenylalanine, and 
arginine levels in gastric cancer [14]. 

In view of the importance of metabolism in tumor development, 
attempts have been made to construct prognostic model of GAD using 
metabolic genes [15]. However, in Luo et al.’s study, the area under ROC 
curve (AUC) of both the training queue and the internal testing queue 
was lower than 0.7, indicating that the predictive performance of the 
model was poor and there were still some deficiencies to be improved. In 
this study, we first extracted more comprehensive metabolic genes from 
the VHM (The Virtual Metabolic Human) database and then analyzed 
their differential expression in tumor and normal tissues to obtain 
characteristic metabolic genes as parameters in an attempt to establish a 
better prognostic model. 

2. Materials and methods 

2.1. Sample collection 

Tissue wax block samples of GAD were collected in the Department 
of Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences. This 
contained 8 patients, including 2 gastritis patients and 6 GAD patients, 
totally 8 pairs of samples for immunohistochemistry. All of these pa-
tients were diagnosed by pathological diagnosis between January 2020 
and December 2020. This study was approved by the institutional ethics 
review committee of Hefei Institutes of Physical Science, Chinese 
Academy of Sciences (Approval number: Y-2020-11). 

2.2. Data processing 

From a GEO database (https://www.ncbi.nlm.nih.gov/geo/) to 
download three independent data sets, including GSE79973 (n = 20), 
GSE15459 (n = 200), GSE62254 (n = 300), a total of 520 patients with 
GAD were included. All three datasets were processed using the same 
on-chip platform GPL570 (Affymetrix Human Genome U133 Plus 2.0 
Array, Santa Clara, CA, USA). GSE79973 contained ten pairs of tumor 
and normal tissues for differential gene expression analysis. GSE15459 

was used as the training cohort for modeling, while GSE62254 was used 
as the testing cohort. 

2.3. Identification of differentially expressed MRGs in GAD 

Previous studies suggested that biomarkers based on differentially 
expressed DEGs between tumors and adjacent normal tissues can better 
predict the prognosis of cancer. To screen potential biomarkers, the 
‘limma’ package in R was used in this study to analyze DEGs by 
comparing paired tumor and normal tissues in GSE79973. These DEGs 
were intersected with MRGs derived from the VMH database (VMH, 
www.vmh.life), and then the differentially expressed MRGs obtained 
were further analyzed. 

2.4. Prognostic model construction 

Univariable Cox regression analysis was performed on the training 
cohort GSE15459 with 200 samples. According to a P-value less than 
0.001, 16 metabolic genes associated with survival were identified 
(APOE, ATP5F1, CBX1, CYP4F12, DIO2, GAK, HSD17B4, LOX, MAP4K4, 
NUAK1, PDE3A, SCP2, SLC25A20, TGM2, WHSC1L1). Based on pre-
liminarily selected prognostic genes, we established a multivariable Cox 
proportional risk regression model to predict the prognosis of patients 
with GAD and calculate the risk score. In this model, the risk score of 
each sample is calculated as follows: 

Risk score=
∑n

i=1
Expiαi,

where α is the regression coefficient and Exp is the gene expression 
value. 

2.5. Evaluating the prognostic performance of the model 

To evaluate the performance of the prognostic model, we divided 
GAD patients in the training cohort GSE15459 into low- and high-risk 
subgroups according to the median risk score and drew the Kaplan- 
Meier survival curve, and then compared the difference in overall sur-
vival (OS) between the two subgroups by log-rank test. In addition, we 
used the ‘SurvivalRoc’ package to construct the ROC curve and draw the 
nomogram graph to predict overall survival. Furthermore, to confirm 
the predictive value of the model, we also drew the Kaplan-Meier sur-
vival curves, ROC curves for the testing cohort. 

2.6. Immunohistochemistry 

Formalin-fixed paraffin-embedded tissue was cut into 3 μm thick 
sections and collected with adhesive slides. The paraffin-embedded GAD 
tissues and surrounding tissues were dewaxed by xylene and ethanol, 
and then the antigens were recovered by a high-pressure repair method. 
The slides were sealed with serum at 37 ◦C for 30 min, incubated 
overnight with primary anti-DIO2 antibody (1:2000, from Wuhan 
Sanying Biotechnology Co., Ltd., item No. Cat No. 66813-1-Ig) at 4 ◦C, 
and subsequently incubated with secondary antibody at room temper-
ature for 30 min. The slides were counterstained for 30 s with hema-
toxylin and finally sealed. Immunohistochemical results were 
independently evaluated by two experienced pathologists. Some 
immunohistochemical results of other genes in the model will be ob-
tained from the HPA database [16] (https://www.proteinatlas.org/). 

2.7. Statistical analysis 

All statistical analyses in this study were based on version R4.1.0 
(https://www.r-project.org/). The log-rank test was used to test the 
difference in survival rate, and the Kaplan-Meier survival curve was 
drawn. P < 0.05 was considered statistically significant. 
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3. Results 

3.1. Screening of differentially expressed MRGs in GAD 

The workflow of this study is shown in Fig. 1A. Gene expression on- 
chip data and corresponding clinical information of patients with GAD 
were downloaded from the GEO database. The ‘limma’ package was 
used to analyze the DEGs in the GSE79973 dataset which contains 10 
pairs of tumor and adjacent normal tissues (P < 0.05, | log2FC | ≥ 1.0). 
After intersecting the DEGs with 3695 MRGs extracted from the VMH 
database (https://www.vmh.life), 310 differentially expressed MRGs 
were obtained. 

3.2. Selection of prognostic related MRGs 

Univariable Cox regression analysis was performed on the training 
cohort GSE15459 (n = 200), and a total of 16 prognosis-related hub 
MRGs significantly associated with survival were selected (P < 0.001) 
(Fig. 1B), including ACOX3, APOE, ATP5F1, CBX1, CYP4F12, DIO2, 
GAK, HSD17B4, LOX, MAP4K4, NUAK1, PDE3A, SCP2, SLC25A20, 
TGM2, and WHSC1L1. Next, multivariable Cox regression analyses were 
performed on the 16 genes to investigate their effects on patient survival 
and clinical outcomes. 6 hub MRGs, including ACOX3, APOE, DIO2, 
HSD17B4, NUAK1, and WHSC1L1 (Fig. 1C), were identified as inde-
pendent predictors in GAD patients. APOE, DIO2, and NUAK1 were 
upregulated genes, while ACOX3, HSD17B4, and WHSC1L1 were 
downregulated genes. Among all 6 independent prognostic genes, the P- 
value of DIO2 was the smallest (P = 0.005), suggesting its important role 
in the prognosis of GAD. 

3.3. Construction and analysis of prognostic model 

6 hub MRGs identified by multivariable stepwise Cox regression 
were used to construct the prognostic model. The risk score for each 
patient was calculated by the following formula:  

Risk score =(-0.7124*ACOX3) + (0.2715*APOE) + (0.3697*DIO2)+
(− 0.8258*HSD17B4) + (0.4775*NUAK1) + (− 1.0427*WHSC1L1)             

The predictive ability of the model was then evaluated by survival 
analysis, and 300 GAD patients in the training cohort were divided into 
low- and high-risk groups according to the median risk score. The results 
showed that the survival time of patients in the high-risk group was 
significantly shorter than that in the low-risk group (Fig. 2A). To further 
assess the prognostic ability of the model, a time-dependent ROC curve 
was generated. In the training cohort, the area under the ROC curve for 
overall survival was 0.723 at 1 year, 0.767 at 3 years, and 0.775 at 5 
years (Fig. 2B), indicating a favorable diagnostic performance. Fig. 2C 
shows the expression heatmaps of the 6 MRGs, patient survival status, 
and risk scores of each case in the low- and high-risk groups. In addition, 
to assess whether the predictive model had a similar prognostic value in 
other cohorts of GAD patients, a testing cohort GSE62254 was applied 
for validation. In the testing cohort, patients with a high risk score also 
had worse overall survival than those with a low risk score (Figs. S1A 
and C). The area under the ROC curve for overall survival was 0.667 at 1 
year, 0.640 at 3 years, and 0.623 at 5 years (Fig. S1B). The above results 
suggest that this prognostic model has a good predictive ability. 

3.4. The risk score of the model is an independent prognostic factor 

In addition, univariable and multivariable Cox regression analyses 
were used to evaluate the prognostic significance of different clinical 
features in GAD patients in the training cohort. Age, gender, lauren type, 
tumor stage, and risk score of the model were included in the prognostic 
analysis related to survival time. Univariable (Fig. 3A) and multivariable 
(Fig. 3B) Cox regression analyses revealed that tumor stage and risk 
score were consistently independent prognostic factors associated with 
overall survival in the training cohort (P < 0.001) (Table S1). 

3.5. Construction of nomogram 

To make the results of the predictive model more readable and 

Fig. 1. A, Flow chart of the prognostic model’s construction and its validation. B, 16 prognosis-related MRGs were identified by univariable Cox regression analysis. 
C, Multivariable Cox regression analysis identified 6 independent prognosis-related MRGs. 
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Fig. 2. Assessment of the 6 MRGs-based prognostic 
model in the training cohort. A, Kaplan-Meier sur-
vival curve ananlysis of the low-risk and high-risk 
subgroups of GAD patients in the training cohort, 
overall survival of the high-risk subgroup was lower 
than that of the low-risk subgroup. B, The ROC curve 
of overall survival was predicted based on risk score, 
and the area under the ROC curve for overall survival 
was 0.723 at 1 year, 0.767 at 3 years and 0.775 at 5 
years. C, Heatmap of 6 MRGs’ expressions. Rows 
represent genes and columns represent patients. 
Different color blocks represent differences in tran-
scription level. D, Risk survival status and score dis-
tributions of patients (E). (For interpretation of the 
references to color in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 3. Assessment of independent prognostic factors. Univariable (A) and multivariable (B) analyses of the training cohort was based on risk scores and other clinical 
features (including age, sex, Lauren typing, and T stage). 
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facilitate the evaluation of patient prognoses, we integrated tumor stage 
and risk score to established a nomogram (Fig. 4A). We assigned points 
to each variable according to the coefficient of each variable on survival 
in the model. For each independent variable, a horizontal line was 
drawn to determine the point and add the points of all variables together 
to obtain the total score. The 1-, 2-, and 3-years survival rates of patients 
with GAD can be estimated, which will facilitate clinical decision- 
making and patient prognosis management. Calibration plots indi-
cated that the nomogram performed well compared with an ideal model 
(Fig. 4B). The DCA curve indicated that most of GAD patients are suit-
able for survival prediction with this nomogram, showing its wide 
applicability (Fig. 4C, D, E). 

3.6. Verification of protein expression of 6 hub MRGs in tissues 

The immunohistochemical statuses of the hub MRGs were checked 

on the HPA website. Among them, ACOX3, APOE, HSD17B4 and 
WHSC1L1 had queryable immunohistochemical results, and the protein 
expression changes were consistent with the results of gene expression 
analysis. APOE was upregulated in tumor tissues (Fig. 5A), while 
ACOX3, HSD17B4, and WHSC1L1 were downregulated (Fig. 5B, C, D). 

DIO2 had the smallest p-value in multivariable Cox analysis, sug-
gesting that DIO2 may be the key factor related to the prognosis of GAD. 
Immunohistochemical staining was performed on DIO2 and the results 
showed that DIO2 protein was located mainly in the cytoplasm of GAD 
cells (Fig. 5E, F, G). Compared with the corresponding noncancerous 
adjacent tissues, the expression level of the DIO2 gene was higher in 
GAD tissues. Interestingly, the expression level of DIO2 protein was also 
significantly correlated with the proliferation of gastric gland cells, as it 
was correlated with KI67 staining and was strongly expressed in reactive 
hyperplasia glands (Fig. 5E, F, G). The above results indicated that the 
changes in the protein expression of 6 hub MRGs were consistent with 

Fig. 4. Construction of the nomogram. The tumor 
stage and the risk score in the training cohort (A) was 
integrated to predict the survival probability of pa-
tients at 1, 2, and 3 years. The score was assigned by 
vertical line upward for the expression value of each 
gene, then the score was added together to get the 
total score. The survival probability of patients in 1, 
2, and 3 years was predicted by vertical line down-
ward from the total score. (B) The calibration curve of 
the model was established based on the consistency 
between the predicted results and the observed out-
comes at 1, 2 and 3 years. Close-ended vertical lines 
represent the 95% confidence intervals. The x-axis 
indicates predicted survival probability, and the y- 
axis indicates the actual freedom from DFS for the 
patients. The relative 45-degree line indicates an 
ideal performance of a nomogram. (C–E) Decision 
curve analysis of the nomogram. The x-axis repre-
sents the percentage of threshold probability, and the 
y-axis represents the net benefit. The black lines 
represent the assumption that no patients relapsed at 
1 (C), 2(D), or 3 years (E). The gray lines represent 
the assumption that all patients relapsed. The dotted 
lines represent the performance of nomogram.   
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those of mRNA expression and the DIO2 may play an essential role in 
abnormal cell proliferation. 

3.7. Validation of the prognostic value of hub MRGs 

To further explore the prognostic value of the 6 MRGs in GAD, the 
tool of Kaplan-Meier Curves was used to determine the relationship 
between MRGs and overall survival (Fig. 6). Log-rank test results 
showed that these 6 MRGs were significantly associated with overall 
survival in GAD patients. The expression levels of ACOX3, HSD17B4 and 
WHSC1L1 were positively correlated with overall survival (Fig. 6A,D,F), 
while the expression levels of APOE, DIO2 and NUAK1 were negatively 
correlated with overall survival (Fig.B,C,E). These MRGs have potential 
as therapeutic targets in GAD intervention. 

4. Discussion 

Gastric cancer is a highly heterogeneous cancer. Prognostic guidance 
based on a classification system is very helpful for clinical management. 
Currently, the most commonly used clinical classification is pathology- 

based TNM staging, but there is increasing evidence that GAD patients 
with the same stage often have different outcomes. Therefore, a more 
sensitive and specific classification standard is needed. Based on the 
relationship between gene expression and clinical traits, studies using 
specific types of genes to construct prognostic models continue to 
emerge. For example, some researchers have established prognostic 
models for GAD based on immune-related [17], or tumor 
microenvironment-related genes [18], etc. All these studies have posi-
tive significance for improving the accuracy of prognostic prediction of 
gastric cancer. 

Metabolism-related genes have been used to construct prognostic 
models in many types of malignancies [19–21]. However, there is 
currently only one study in gastric cancer that uses MRGs to establish the 
prognostic model [15] and it is still not perfect with much space for 
improvement. First, the selection of metabolic genes based on gene set 
from the MsigDB database is inadequate. The Virtual Metabolic Human 
(VMH, www.vmh.life) database can provide up to 3695 MRGs [22], 
which has been used in current study. Secondly, differentially expressed 
MRGs was selected as input parameters, since several studies have 
shown that biomarkers based on DEGs between tumors and adjacent 

Fig. 5. The protein expressions of 6 MRGs. The 
changes of protein expressions of APOE (A), ACOX3 
(B), HSD17B4 (C), and WHSC1L1 (D) were consistent 
with that of mRNA expressions. The expression of 
APOE was significantly increased in GAD, while 
ACOX, HSD17B4 and WHSC1L1 were relatively 
downregulated in cancer tissues. Protein expression 
of DIO2 and KI67 in different cell sources, including 
normal glands (E), reactive hyperplasia glands (F), 
and cancer cells. (G). Each photo was photographed 
with 10X and 20× magnification with light micro-
scopy, respectively. DIO2 staining was upregulated in 
both the reactive hyperplasia glands and cancerous 
tissues compared with the normal tissues.   
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normal tissues can better predict the prognosis of cancer [23,24]. 
However, in Luo T et al.‘s study, the genes for modeling were not 
screened according to the changes in differential expression. Third, the 
ROC curve in this study shows that the area under the curve (AUC) of 
both the training and internal testing cohort is below 0.7, indicating that 
the model has a poor performance. In our study, we analyzed a total of 
520 samples based on three datasets from the GEO database. We first 
obtained differentially expressed genes between tumor and normal tis-
sues by analyzing the independent GEO datasets, and then intersected 
MRGs included in the human metabolic database VMH to obtain reliable 
differentially expressed MRGs.In turn, we constructed a 6 MRGs-based 
prognostic model for GAD, and the accuracy of the model was 
confirmed by the external testing cohort. The prediction model estab-
lished in this study shows good performance and can effectively predict 
the survival status of patients, which provides a reference for formu-
lating reasonable treatment plans and implementing individualized 
treatment for patients. 

Of these 6 hub MRGs, many have been shown to play an important 
role in the development and progression of malignancies. Among them, 
ACOX3 may be a susceptibility gene for cervical cancer and is a potential 
risk marker [25]; APOE was considered to be an anti-angiogenic and 
metastatic inhibitor since one study found that tumor-secreted APOE 
inhibited invasive and metastatic endothelial recruitment by binding 
LRP1 and LRP8 receptors in melanoma cells [26]; DIO2 may promote 
the growth of intestinal tumors [27]; HSD17B4 is a potential biomarker 
for the diagnosis of prostate cancer [28]; NUAK1 was found to be 
upregulated in both ovarian cancer and nasopharyngeal cancer, and is a 
potential prognostic marker [29,30]; WHSC1L1 is believed to be an 
integral part of the oncogenic complex and plays a key role in the 
pathogenesis of many cancers [31]. 

The expression profile of these hub MRGs was also verified in protein 
level through HPA database. Since DIO2 had the most significant rela-
tionship with prognosis, we specifically analyzed its protein expression 
in GAD samples by immunohistochemistry. IHC results showed that the 

DIO2 was mainly localized in the cytoplasm of cells. Compared with 
normal gland cells, the expression of DIO2 was enhanced not only in 
GAD tumor cells but also in reactive hyperplasia gland cells. This indi-
cated that the expression of DIO2 may play a role in the proliferation of 
abnormal gastric cells, which was also verified by KI67 staining-a nu-
clear antigen that assesses the ability of cells to proliferate [32]. In the 
future, we plan to collect more clinical samples to study the expression 
characteristics of DIO2 in tissues of GAD patients with different patho-
logical stages, and to explore whether DIO2 can be used as a molecular 
marker for pathological classification of GAD. In particular, it is neces-
sary to study the signaling pathways related to DIO2 and abnormal cell 
proliferation to provide molecular targets for tumor targeted 
intervention. 

However, there are still shortcomings in this study. First, the 
metabolism-related prognostic model proposed in this study needs more 
clinical practice to verify its accuracy. Second, 6 hub MRGs were found 
in this study, and only immunohistochemical experiments were carried 
out to detect their expressions in GAD tissues. In the future, cell func-
tional experiments are needed to confirm its role in the development of 
GAD, which will not only help to understand the metabolic regulation in 
tumorigenesis but also provide molecular explanations for the estab-
lished prognostic model. 

5. Conclusions 

In conclusion, this study established a prognostic model of GAD 
based on metabolically related genes with considerable predictive 
power. This study also revealed a group of key metabolic genes involved 
in the development of GAD, contributing to the understanding of the 
role of metabolic regulation in tumorigenesis. These findings not only 
provide a new method for clinical prediction of the prognosis of GAD 
patients, but also render potential therapeutic intervention targets. 

Fig. 6. Validation of the prognostic value of 6 MRGs in GAD by Kaplan-Meier curve. The expressions of ACOX3(A), HSD17B4(D) and WHSC1L1(F) were positively 
correlated with overall survival, while the expressions of APOE(B), DIO2(C) and NUAK1(E) were negatively correlated with overall survival. 
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