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ABSTRACT Culture and screening of gut bacteria enable testing of microbial func-
tion and therapeutic potential. However, the diversity of human gut microbial com-
munities (microbiota) impedes comprehensive experimental studies of individual
bacterial taxa. Here, we combine advances in droplet microfluidics and high-
throughput DNA sequencing to develop a platform for separating and assaying
growth of microbiota members in picoliter droplets (MicDrop). MicDrop enabled us
to cultivate 2.8 times more bacterial taxa than typical batch culture methods. We
then used MicDrop to test whether individuals possess similar abundances of
carbohydrate-degrading gut bacteria, using an approach which had previously not
been possible due to throughput limitations of traditional bacterial culture tech-
niques. Single MicDrop experiments allowed us to characterize carbohydrate utiliza-
tion among dozens of gut bacterial taxa from distinct human stool samples. Our ag-
gregate data across nine healthy stool donors revealed that all of the individuals
harbored gut bacterial species capable of degrading common dietary polysaccha-
rides. However, the levels of richness and abundance of polysaccharide-degrading
species relative to monosaccharide-consuming taxa differed by up to 2.6-fold and
24.7-fold, respectively. Additionally, our unique dataset suggested that gut bacterial
taxa may be broadly categorized by whether they can grow on single or multiple
polysaccharides, and we found that this lifestyle trait is correlated with how broadly
bacterial taxa can be found across individuals. This demonstration shows that it is
feasible to measure the function of hundreds of bacterial taxa across multiple fecal
samples from different people, which should in turn enable future efforts to design
microbiota-directed therapies and yield new insights into microbiota ecology and
evolution.

IMPORTANCE Bacterial culture and assay are components of basic microbiological
research, drug development, and diagnostic screening. However, community diver-
sity can make it challenging to comprehensively perform experiments involving indi-
vidual microbiota members. Here, we present a new microfluidic culture platform
that makes it feasible to measure the growth and function of microbiota constitu-
ents in a single set of experiments. As a proof of concept, we demonstrate how the
platform can be used to measure how hundreds of gut bacterial taxa drawn from
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different people metabolize dietary carbohydrates. Going forward, we expect this
microfluidic technique to be adaptable to a range of other microbial assay needs.

KEYWORDS microbiome, microfluidics, bacteria, gut, prebiotics, polysaccharides,
diet, droplet, fiber

Culture-based assays can reveal important functional differences between individ-
uals’ gut microbial communities. Such differences are often not evident from 16S

rRNA sequencing studies that do not resolve bacterial taxonomy below the species
level (1). Culture-based studies are capable of resolving strain-level functional variation,
which can drive interindividual variation in microbiome-associated health and disease
outcomes. Selective growth assays, for example, have long been used to identify
individuals harboring pathogenic strains of commensal gut microbial taxa (2). Inhibition
assays have also been used to reveal strain variation within bacterial species that
determines whether individuals’ microbiota can resist pathogens (3), and carbon
utilization screens have shown that strains of the same bacterial species isolated from
different people can differ in their capacity to metabolize dietary carbohydrates (4–6).

Still, a key challenge for culture-based studies in human gut microbiota research has
been the need to increase the throughput of bacterial assays. It has been calculated
that millions of microbial colonies would need to be cultured in order to sample the
diversity now typically captured in metagenomic analyses of human gut microbiota (7).
Such calculations reflect the diversity of human gut microbiota; culture-independent
methods based on high-throughput sequencing of the 16S rRNA gene have shown that
the average individual harbors hundreds of distinct enteric bacterial strains (8–11).
Moreover, unrelated individuals do not share bacterial strains in common (12), and,
because most gut taxa are rare, exhaustive capture of bacterial species from even a
single stool sample requires extensive colony picking (13, 14). To reduce the human
effort needed for such experiments, state-of-the-art culture assays leverage plate-
handling and liquid-handling robots. However, even these automated systems are
limited by the same physical constraints as typical plate-based culture methods, which
grow bacteria in wells ranging from centimeters to millimeters in diameter. Even relying
on 96-well and 384-well plates, conventional large-scale culture efforts may require
automation to load and handle dozens of plates within an anaerobic chamber (15),
ultimately limiting throughput to the study of tens of strains (15, 16).

An alternative approach is to culture bacteria in lower volumes (nanoliters to
picoliters). Devices comprised of thousands of microscale compartments have been
used to culture laboratory strains of both bacteria and fungi (17), as well as isolates
previously uncultured bacteria from the gut and soil (18, 19). Experiments of even
higher throughput are possible by compartmentalizing microbes in droplets of media
that are tens to hundreds of micrometers in diameter and separated by immiscible oils
and engineered surfactants (20, 21). Because droplets are not limited by the need to
microfabricate physical wells or channels, millions of distinct culture volumes can be
created in minutes. So far, droplet techniques have been used to isolate uncultured
microbes from seawater, soil, and gut communities (18, 22–24); assess microbial
cross-feeding (25); track population dynamics of individual bacteria (26); and examine
antibiotic sensitivity and commensal-pathogen interactions of human gut and oral
microbiota (27, 28). Still, existing droplet microfluidic approaches for assaying bacteria
have required combining complex emulsion techniques (water-oil-water) with the use
of flow cytometers or custom on-chip droplet sorting devices. These protocol require-
ments limit the accessibility of droplet technologies for bacterial assays.

Here, we developed a platform to separate, culture, and assay bacteria from human
gut microbiota in droplets (MicDrop) using accessible techniques and equipment. A key
challenge our method addresses is that of measuring the growth of isolates within
distinct microfluidic droplets. To accomplish this, we rely on 16S rRNA genes as intrinsic
DNA barcodes that are shared between droplets carrying the same bacterial taxa. This
approach in turn allows us to measure growth of taxa in droplets without the need for
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the use of double-emulsion techniques or droplet sorting. Instead, we combine single-
emulsion (water-in-oil) microfluidic droplet protocols with molecular techniques (quan-
titative PCR [qPCR] and 16S rRNA gene sequencing). These simplified protocols allow us
to employ off-the-shelf microfluidic pumps and chips, which are compact enough to fit
within typical anaerobic chambers.

To demonstrate the utility of MicDrop for measuring functional differences between
human microbiota samples at the level of individual bacterial taxa, we applied the
platform to address an outstanding question in gut microbiology research: do individ-
uals differ in the number of gut bacterial species that can degrade complex dietary
carbohydrates? Using MicDrop, we characterized dietary polysaccharide metabolism
among hundreds of gut bacterial species from nine different people. We found that all
individuals harbored microbes that could degrade the carbohydrates examined, and
yet the levels of carbohydrate-degrading bacteria differed between the individuals. Gut
bacterial taxa could also be broadly categorized by whether they grew on single or
multiple polysaccharides. Together, these data suggest rational approaches for prebi-
otic design and demonstrate the potential of microfluidic droplet assays for compari-
sons of the growth rates and functions of individual bacterial strains across complex
microbial communities.

RESULTS
MicDrop: a platform for culturing human gut microbiota in droplets. To isolate

and culture individual gut bacteria from human gut microbiota, we merged concepts
from prior microfluidic droplet protocols with high-throughput DNA sequencing (see
Materials and Methods). Our protocol first randomly encapsulates individual bacterial
cells from gut microbiota into picoliter-sized droplets. Gut microbiota samples are
diluted before encapsulation using the Poisson distribution at a loading concentration
that optimizes the number of droplets loaded with cells (�10% to 26%) against the
number of droplets loaded with more than one microbe (�95% to 86% of loaded
droplets contain single cells) (see Fig. S1A in the supplemental material) (29). Since
many gut bacteria are obligate anaerobes, encapsulation takes place in an anaerobic
chamber and droplets are subsequently incubated under anaerobic conditions (Fig. S1B
and C). To track bacterial growth, we can avoid having to identify and sort bacteria by
assuming that droplets are either empty or loaded with clonal isolates whose progeny
share the same 16S ribosomal RNA (rRNA) gene sequence, meaning that genomic
material accumulating across all droplets reflects the growth of bacteria grown in
isolation. We therefore track isolate growth in droplets at a given time point using bulk
bacterial DNA extraction without droplet sorting, followed by DNA sequencing and
total quantification (qPCR) of the 16S rRNA gene. To obtain as much taxonomic
resolution as possible, we group 16S rRNA sequences into sequence variants (SVs) (30).
Unlike the conventional operational taxonomic units (OTUs) that cluster sequences
using set dissimilarity thresholds, SVs are constructed using sequencing error models
and can typically resolve genetic variation more accurately than OTUs (30). The product
of values representing relative SV levels from 16S rRNA gene sequencing and total 16S
rRNA gene levels yields an estimate of the absolute levels of each SV across all droplets
at the time of sampling.

To explore the feasibility of the MicDrop platform, we initially examined bacterial
replication and separation in droplets. We observed that aerobic monocultures of
fluorescent Escherichia coli were able replicate in droplets (Fig. 1A). Droplet stability
experiments suggested that bacteria could be studied in droplets for at least 5 days
(Fig. S1D and E). Microscopy showed droplets could be loaded with single particles
(Fig. S1F to K). Imaging also provided evidence that we could segregate clonal isolate
populations with distinct morphologies and motilities from mixed microbial commu-
nities (Fig. 1B; see also Video S1 in the supplemental material). Droplet cultures grown
with modified Gifu anaerobic medium (mGAM) were reproducible (within donor rep-
licates, � � 0.63 to 0.96, P � 0.0001, Spearman correlation), and we found the level of
richness of replicate droplet cultures within donors to be lower than the difference in
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richness between donors (for donor A, median richness � 21, median absolute devia-
tion � 5.3; for donor B, median richness � 62, median absolute deviation � 2.4). More-
over, human fecal microbiota isolated and cultured in droplets exhibited on average 2.8
times greater richness over time than those grown under mixed conditions (Fig. 1C).
This finding is consistent with the hypothesis that droplet isolation enables slow-
growing microbes to be sheltered from competition with fast-growing bacteria (18,
24, 31).

We then examined the use of DNA sequencing to track bacterial levels in microflu-
idic droplets. We analyzed whether bacterial DNA levels in MicDrop corresponded to
bacterial abundances measured by traditional culture methods. We used MicDrop to
culture bacteria from a synthetic mixture of four bacterial strains that were grown
under various antibiotic conditions for 24 h. We found that the resulting bacterial DNA
levels in droplets corresponded to isolates’ optical densities in reference well plates
(accuracy � 89%) (Fig. S2). Next, we examined the timing of harvesting droplets for
DNA sequencing when culturing human gut microbiota. We applied MicDrop to a fresh
stool sample from a healthy donor. We then created replicate droplet populations and
destructively sampled them at hourly intervals for the first 24 h and daily for four
subsequent days after inoculation. Among the resulting time series, 94 SVs were
detectable in droplets, meaning that they appeared in �5 time points (Table 1; see also
Fig. S3). Detected SVs included representatives of the major human gut bacterial phyla
(the Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) and represented 76%
of the inoculating stool sample’s SVs. This fraction is within the range (40% to 78%)
noted in previous reports of the fraction of human gut bacterial taxa that can be
detected following culture on plates using a single medium (7, 13, 32–34). We further
wanted to distinguish within our detected SVs those that were actively growing in our

FIG 1 (A) Fluorescently labeled E. coli growing in droplets from h 0 to h 9. We facilitated imaging by
overloading E. coli (i.e., most droplets were initially loaded with more than one E. coli cell). (B) Distinct
colony morphologies across droplets of an artificial community of five facultative gut anaerobes:
Streptococcus agalactiae, Staphylococcus haemolyticus, Enterococcus faecalis, Enterobacter cloacae, and E.
coli. Droplets appear hexagonal due to oil evaporation used to flatten the field of view for imaging. (C)
Richness of microbial communities isolated and cultured in droplets compared with communities grown
without separation in standard bulk culture. Differences in richness were not associated with DNA
sequencing depth of samples.
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medium from those that were nonviable or nongrowing. We used our antibiotic-based
control experiments to establish a limit of detection for growing cells, which we
calculated to be a measurement of more than 2.14 cell doublings or a change in ln(SV
DNA abundance) of �1.48 (Fig. S3). We found that 25% of inoculating SVs exceeded
this threshold, meaning that we believed them to be actively dividing in droplets
(Fig. 2A). Growing SVs included taxa that were as rare as representing only 0.02% of the
starting fecal community. Finally, among the growing SVs, we found that 97% achieved
80% of their final carrying capacity at 43 h after inoculation (Fig. 2B). This observation
suggested that sampling microfluidic droplets roughly 2 days after inoculation would
provide an informative measure of growth across a diverse set of human gut bacterial
taxa.

A droplet assay for prebiotic consumption by human gut microbes. To dem-
onstrate how MicDrop could be used to compare the functions of human-associated
bacterial communities, we used the platform to measure bacterial utilization of poly-
saccharides. In typical polysaccharide utilization screens, bacteria are cultured in de-
fined media containing a polysaccharide as the sole carbon source (16, 35). Those
microbes that replicate are assumed to be capable of utilizing the polysaccharide and
are termed “primary degraders” (36, 37). The biology of primary degraders is of
increasing interest because bacterial metabolism of select indigestible polysaccharides
(prebiotics) leads to the growth and activity of gut microbes with multiple beneficial
impacts on host health (16, 38–42). And yet, bacterial prebiotic metabolism is incom-
pletely understood, in part due to current limitations in bacterial culture-based assays.
Human gut microbial culture assays typically do not comprehensively compare the
prebiotic consumption potentials of microbiota constituents across individuals; rather,
they may investigate only a limited number of type strains or public isolates (15, 16, 43,
44), due to factors such as the cost and availability of reference strains in culture
repositories, the effort needed to isolate wild-type prebiotic degraders, and constraints
associated with automation of plate handling in anaerobic environments. However, a
focus on a select set of prebiotic degraders, particularly without focused comparisons
of functional variations in strains across hosts, precludes addressing key issues involving
the natural diversity of enteric bacteria, such as (i) the nature of the patterns of
prebiotic utilization among the members of the full set of culturable human gut
microbiota and (ii) how patterns of microbial prebiotic degradation compare across
individuals.

To investigate whether the MicDrop platform could be used to address these issues
of gut microbial prebiotic degradation, we performed a set of validation experiments
focused on bacterial prebiotic metabolism (Fig. 3A). Since most human gut microbes
previously sampled reached carrying capacity after two days of growth in droplets
(Fig. 2B), we carried out each of these validation experiments after 48-h growth periods.
First, we loaded a previously characterized type strain, Bacteroides thetaiotaomicron
ATCC 29148, into droplets and standard 96-well plates. Consistent with both prior
studies (16) and our well plate experiments, B. thetaiotaomicron ATCC 29148 replicated

TABLE 1 Number and fraction of microbes from a human stool sample cultured by MicDrop in mGAMa

Taxonomic
level

No. of
taxa in
inoculum

No. of taxa
detected in
droplets

No. of taxa
in inoculum
and detected
in droplets

Fraction of
inoculum
detected in
droplets

No. of
taxa that
grew in
droplets

No. of taxa
in inoculum
that grew
in droplets

Fraction
of taxa in
inoculum
that grew in
droplets

Phylum 4 5 4 1.00 5 4 1.00
Class 10 11 10 1.00 7 5 0.50
Order 10 14 10 1.00 8 5 0.50
Family 17 21 16 0.94 13 7 0.41
Genus 56 53 40 0.71 20 13 0.23
Sequence variant 89 94 68 0.76 34 22 0.25
aSVs were considered to have been “detected” if present in more than five longitudinal measurements. “Growth” was defined by determination of an inferred number
of doublings equal to or greater than 2.14.
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in droplets on pullulan and levan but not on laminarin or a no-carbohydrate control
(Fig. 3B). We next tested how the MicDrop prebiotic assay performed using artificial
microbial communities assembled from seven human gut isolates (Fig. 3C). Using
experiments performed with 96-well plates as our reference (Fig. 3C to E), we found the
accuracy, sensitivity, specificity, and false-discovery rate of the MicDrop prebiotic assay
to be 87%, 80%, 93%, and 9%, respectively. Finally, to assess the reproducibility of the
MicDrop prebiotic assay, we used the same frozen fecal sample from a healthy donor
to compare the results of two separate experimental sessions. We observed higher
correlation between replicates from the same session (� � 0.73 to 0.78, P � 0.0001,
Spearman correlation) than between replicates across sessions (� � 0.57, P � 1.67e�17,
Spearman correlation). One explanation for the difference in correlations is that our
prebiotic assay involved reviving and preparing frozen fecal samples using overnight

FIG 2 SV growth kinetics in microfluidic droplets. (A) Abundance over time of SVs in MicDrop from a
fresh human fecal sample. Levels of growth in replicate droplets were measured hourly for 24 h and daily
for the ensuing days. Modified Gompertz growth curves are fitted to a time series (black lines). SVs are
colored by taxonomy and sorted according to total growth (curve asymptote height; by an uppercase
Greek delta [Δ]), which is denoted on each subplot. Only those SVs inferred to have doubled at least 2.14
times were considered to have been growing and are shown [ln(Δ SV DNA abundance) � �1.48;
threshold determined using control experiments in Fig. S2]. To ease viewing, curves are shifted vertically
such that the y intercepts are at the origin. (B) Fraction of SVs that had reached a given fraction of
estimated carrying capacity over time. Carrying capacities were inferred from the fitted curves shown in
panel A. By 43 h, 97% of SVs had reached 80% of their carrying capacity in droplets.
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culture prior to droplet encapsulation and that the microbial communities reassembled
in slightly different configurations during the overnight cultures (Fig. S4) (45). Indeed,
controlling for microbiota differences between droplet inocula elevated the between-
session correlation (� � 0.74, P � 5.14e�19, Spearman correlation) (Fig. 3F).

Identifying primary degraders from human guts across multiple prebiotics.
Following our validation, we used MicDrop to compare levels of polysaccharide utili-
zation across gut microbiota from nine healthy human stool donors. We assayed

FIG 3 A prebiotic utilization screen based on the MicDrop platform. (A) Schematic of MicDrop prebiotic
assay. (B) Droplet monoculture growth of B. thetaiotaomicron in microfluidic droplets measured by qPCR.
a.u., arbitrary units. (C) Results of 96-well plate growth of gut bacterial isolates across 11 carbohydrates.
FOS, fructooligosaccharide; B. ovatus, Bacteroides ovatus; B. vulgaris, Bacteroides vulgaris; K. granulo.,
Klebsiella granulomatis; R. gnavus, Ruminococcus gnavus; S. Flexneri, Shigella flexneri; E. faecalis, Entero-
coccus faecalis. (D and E) Receiver operating characteristic (ROC) curve of MicDrop assay results at
different growth threshold cutoff values using data from panel C as a reference. True-positive rate and
false-positive rate are defined as true positives/total positives and false positives/total negatives, respec-
tively. (D) The black dot indicates the growth threshold that maximizes the true-positive rate while
minimizing the false-positive rate (depicted in panel E). (F) Correlation between two different MicDrop
sessions (each carried out in triplicate) on the same frozen fecal sample with five different carbohydrates.
Points indicate median growth levels of different SVs across each experimental session.
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growth on three consumer-grade prebiotics (inulin, galacto-oligosaccharides [GOS],
and dextrin) and on a laboratory-grade polysaccharide (xylan). Of the 7,092 donor-
specific SVs detected in stool by 16S rRNA sequencing, 204 grew in MicDrop on at least
one of the screened polysaccharides (primary degraders). An additional 94 SVs grew in
droplets that were not detected in corresponding stool samples. These taxa shared
between droplet cultures and stool samples included members of major bacterial phyla
(Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria; Fig. 4). Some
of these taxa may have been contaminants; we noticed that 24 taxa found only in
prebiotic droplets were also detected in our carbon-free controls. However, droplet-
specific taxa might also reflect the elevated sensitivity of culture relative to metag-
enomics in some scenarios (46, 47). Indeed, we observed that droplet-specific taxa were
enriched for members of the Bacteroidetes (Fig. 4), which is in line with the primary
components of our base assay medium having originally been designed to culture
members of this phylum (35). This medium bias may also explain why certain rarer
phyla (Verrucomicrobia, Euryarchaeota, Lentisphaerae) were absent from droplets.

We investigated the overall patterns in SV prebiotic utilization observed within the
MicDrop dataset. Clustering of prebiotic utilization patterns suggested the presence of
two groups of SVs (Fig. 5A). One SV group (cluster 1) was typically characterized by
growth on only a single carbohydrate. The other SV group (cluster 2) tended to be able
to grow on multiple types of carbohydrates. This clustering pattern motivated us to
categorize individual SVs as either “specialists” (cluster 1) or “generalists” (cluster 2)
(though we acknowledge that taxa denoted as specialists may grow on other untested
carbohydrates). The dichotomy of specialist and generalist SVs may have evolutionary

FIG 4 Taxonomic distribution of donor stool and droplet samples used in MicDrop prebiotic assay. (A) Phylum-level counts of taxa found across 9 donor stool
samples. (B) Phylum-level counts of taxa that grew in the prebiotic assay. (C to E) Phylum-level counts of SVs unique to droplet growth on the prebiotic assay
(C), shared between droplet cultures and donor stool (D), or unique to donor stool samples (E). (F) Venn diagram of overlap of droplet and stool SVs (not scaled
by SV number).
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FIG 5 MicDrop prebiotic assay carried out on fecal samples from nine individuals. (A) Microbial carbohydrate preferences for
298 SVs from nine healthy human donors. We defined primary degraders as SVs that grew on at least one polysaccharide.

(Continued on next page)
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origins. Prebiotic utilization patterns tended to be shared among taxa that were from
the same species or SV (rM � 0.12, P � 0.05, Mantel test) but not at higher phylogenetic
levels. Such a pattern is consistent with predictions suggesting that closely related taxa
would exhibit conserved metabolic traits (48). Bacteria from the phyla Firmicutes,
Actinobacteria, and Proteobacteria were also significantly more likely to grow on a single
prebiotic than would be expected by chance (P � 1e�4, P � 0.0011, and P � 0.0271,
respectively, permutation test), whereas Bacteroidetes were more likely to grow on
multiple prebiotics (P � 0.0012, permutation test) (Fig. 5E). This difference in phylum-
level preferences is consistent with previously published estimates that the Bacte-
roidetes harbor 4-fold more glycoside hydrolase and polysaccharide lyase genes on
average than Firmicutes, Actinobacteria, or Proteobacteria (36). We observed that the
specialist-to-generalist ratio across individuals was significantly less than 1 (median,
0.44, P � 3.9e�3, Wilcoxon signed rank test) (Fig. 5D) and that the number of carbon
sources that a given SV degraded positively correlated with the number of participants
in which the SV was found (� � 0.34, P � 3.62e�36, Spearman correlation) (Fig. 5F).
These observations are consistent with an evolutionary model in which bacteria with
more-flexible carbohydrate utilization profiles are more capable of dispersing across
and persisting within individuals than SVs with more-restrictive metabolic lifestyles (49).

We then explored the hypothesis that differences in the presence or absence of
primary degraders are able to drive interindividual variation in human prebiotic re-
sponse. Evidence arguing against this hypothesis included the observation that mul-
tiple SVs capable of growing on the tested prebiotics were present in all subjects
(median, 12.5 � 6.1) (Fig. 5B). Concordant with human studies showing that even
individuals with low prebiotic fermentation in vivo exhibit at least some prebiotic
fermentative capacity in vitro (37), this finding supports the hypothesis that primary
degraders are found across most individuals. Still, we also found evidence for interin-
dividual variation in primary degrader composition and abundance. We found that
subject identity explained more variation (R2 � 0.30, P � 0.001, permutational multi-
variate analysis of variance [PERMANOVA]) than prebiotic type (R2 � 0.16, P � 0.001,
PERMANOVA) in overall primary degrader growth. We also observed differences in the
richness of primary degraders across subjects (P � 2.8e�07, two-way ANOVA) and in
the relative abundances of primary degraders in inoculating fecal communities
(P � 3.9e�4, two-way ANOVA) (Fig. 5C). This variation appeared in spite of our having
controlled for potential differences in overall microbiota viability due to sample col-
lection and handling, which we performed by normalizing levels of primary degraders
to the levels of glucose consumers. Overall, we observed the normalized richness of
primary degraders to differ by 2.6-fold across individuals and the normalized stool
abundance of primary degraders to differ by 24.7-fold. Thus, while primary degraders
are likely present in most individuals, observed differences in polysaccharide me-
tabolism in vivo (50, 51) might be due to interindividual variation in primary
degrader abundance in the gut.

DISCUSSION

We have introduced a high-throughput platform that enables functional measure-
ments of individual bacterial taxa from a human microbiota sample (MicDrop). A wide
range of human gut bacteria were grown on this platform and exhibited growth

FIG 5 Legend (Continued)
Rows (SVs) were clustered by calculating the Euclidean distance between prebiotic growth profiles. A cutoff between clusters
1 and 2 was set visually to reflect how subtrees of SVs were generally characterized by growth on either a single carbohydrate
or multiple carbohydrates. (B to D) The number of primary degraders (B), the stool abundance of primary degraders of a given
prebiotic (C), and the ratio of specialists (i.e., those that grew on only one carbon source) to generalists (i.e., those that grew
on multiple carbon sources) for each participant and carbon source (D). Primary degraders (PD) were normalized by glucose
consumers (GC) to control for potential differences in overall microbiota viability. Participant ordering in panels B to D is sorted
by median values of primary degrader counts per participant. (E) Numbers of SVs from a given phylum observed to grow on
different numbers of carbon sources (red), and counts expected by chance (blue). (F) SVs plotted according to the number of
participants they were found in and the number of carbon sources they degraded. Spearman correlation reported.

Villa et al.

May/June 2020 Volume 5 Issue 3 e00864-19 msystems.asm.org 10

https://msystems.asm.org


kinetics similar to those observed in conventional culture. As a proof of concept, we
used MicDrop to perform the most comprehensive characterization of natural variation
in dietary polysaccharide utilization among human gut microbiota reported to date.
The resulting data suggest that gut bacterial metabolism of prebiotics is carried out by
both specialist and generalist bacteria and that the levels of these microbes differ
between individuals.

A key benefit of our platform is its level of throughput, which in turn makes it
feasible to compare the functions of individual bacterial taxa between multiple micro-
biota samples. We estimate that, using traditional culture methods, roughly 700
colonies would have needed to have been isolated and genotyped per fecal sample to
capture the same level of diversity assayed in our MicDrop prebiotic experiments. While
such efforts may be feasible for a limited number of samples, the time needed to
process large numbers of samples is prohibitive. In contrast, as sample numbers grow,
MicDrop requires only modest increases in effort since additional droplet encapsulation
runs require only minutes of extra labor; also, multiplexing techniques enable many
droplet cultures to be assayed in a single high-throughput DNA sequencing run.
Coupled with our use of compact and off-the-shelf microfluidic pumps and chips, we
believe that MicDrop now makes it feasible for researchers to measure how the
functions of individual bacterial taxa differ among an array of microbiota samples.

Still, the MicDrop platform has some limitations. In particular, we speculate that
some of the error associated with our validation experiments could have been due to
the presence of rare multicellular encapsulations during droplet generation. For exam-
ple, in our prebiotic assays, we might have encapsulated primary degraders with a
second nonprebiotic degrading microbe that cross-feeds on the primary degrader’s
byproducts of prebiotic degradation. Such coencapsulation would lead to development
of a false-positive signal of prebiotic degradation for the second microbe. At our target
dilutions, such events are expected to be atypical: an estimated 0.5% to 4% of the
droplets consisted of multicellular droplets. Future users of our technology will be able
to reduce multiencapsulation by seeding droplets at lower Poisson dilution. And yet,
the use of such dilution would represent a trade-off as droplet generation experiments
would need to be lengthened in order to maintain the number of droplets containing
cells.

These caveats notwithstanding, we were still able to use MicDrop to provide insight
into the hypothesis that individuals’ gut microbiota differ in their prebiotic utilization
potential (42). Specifically, our measurements suggest that while most individuals
harbor gut microbial strains that can utilize common prebiotics, the abundance of these
strains may represent a nearly 25-fold range between people. We note that culture-
based utilization data from MicDrop could be used to make a priori predictions of which
individuals in a population would be responders or nonresponders to a prebiotic
therapy (52). Such predictions could be used to personalize prebiotic treatments to a
given individual (53) or to limit the costly inclusion of individuals who would not
respond to treatment in a clinical trial (54). Additionally, our data suggest rational
approaches for stimulating the greatest number of gut taxa using the fewest prebiotics.
Specifically, combinatorial therapies could be composed of prebiotics that target
different groups of gut microbiota. Here, we observed that one of the prebiotics
examined (xylan) and the three other prebiotics (inulin, GOS, and dextrin) exhibited
relatively little overlap in terms of degrading bacterial species (Fig. 5A; see also Fig. S5
in the supplemental material). Our data predict that a two-prebiotic cocktail involving
xylan would be sufficient for stimulating a majority (88%) of the bacterial SVs that grew
in our prebiotic assay (Fig. S5).

Beyond uses in human-associated microbiology, MicDrop could ultimately be ap-
plied in environmental microbiology studies. Environmental microbiota often feature
levels of diversity similar to or even greater than those of the microbial taxa of
human-associated communities, which indicates a similar need for high-throughput
bacterial culture (55, 56). Additionally, analysis of microbial phenotypes by culture can
reveal important insights into the differences between environmental microbial com-
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munities and their habitats. In marine environments, differences in bacterial tempera-
ture sensitivity are correlated with seasonal shifts in bacterial ecosystem function (57).
In agricultural settings, differing abundances of bacteria exhibiting antibiotic resistance
can reflect fertilization strategies (58). And, in grassland habitats, the diversity of
bacterial carbon metabolic capabilities can be modulated by the presence of keystone
plant species (59). By enabling functional comparisons between individual bacterial
from a variety of samples, MicDrop may therefore also provide unique new datasets
that will improve our understanding of environmental microbiology (48, 60, 61).

MATERIALS AND METHODS
Overall MicDrop procedure. Droplets were made on a microfluidic chip (6-junction droplet chip;

Dolomite Microfluidics). The bacterial media used varied by assay. For the oil phase, we used a
fluorinated oil and surfactant mixture consisting of 1% Pico-Surf (Sphere Fluidics)–Novec 7500 (3M). One
day prior to initiation of the droplet assay, all reagents, including carrier oil, culture media, and carbon
solutions, were equilibrated to the anaerobic atmosphere in an anaerobic chamber (Coy). The fecal
inoculum optical density at 600 nm (OD600) was recorded, and the inoculum was diluted according to the

Poisson distribution using the equation P�n,n�� �
n�ne�n�

n!
, where n is the droplet occupancy (i.e., 0.1

cells/droplet) and n� is the average number of cells per droplet given by the equation n� � �V, where V
is droplet volume and � is cell density. Assays were performed using n� values of 0.1 to 0.3 to minimize
the number of droplets loaded with more two or more cells (see Fig. S1 in the supplemental material).
Thus, for a fixed droplet volume and n� value, the target cell concentration can be obtained from the

equation � � K
n�

V
, where K is a constant that converts CFU counts per milliliter to optical density at 600

nm (OD600) determined from replicate CFU assays on blood agar plates (catalog no. A10, Hardy). We note
that in the growth curve experiments, loading concentrations were chosen by loading droplets at
different dilutions (K) and then counting empty droplets to calculate the fraction of droplets containing
clonal populations of bacteria (Fig. S1) as previously described (13). A loading dilution was then chosen
such that as close to 20% of droplets as possible were clonally loaded. This dilution corresponds to a
proportion of droplets with multiple bacteria of �3%. We estimate that at our loading concentrations
and working volumes, we typically generated on the order of a million droplets loaded with a single
microbe per experiment. Increasing the number of generated droplets by a factor of up to 3 did not
increase the richness of the droplet cultures (data not shown). Syringe pumps were used to control the
flow rates of the oil and cell suspension (NE-1000 single-syringe pump; New Era Pump Systems).
Following the culture period, droplets were loaded into chambered slides (catalog no. C10283, Invitro-
gen) or directly onto glass slides and observed with phase-contrast and/or dark-field microscopy (Nikon)
to examine growth and the appropriate loading level. All steps of cell encapsulation and culture were
performed in an anaerobic chamber.

Collection and preparation of fecal inocula. Stool was collected from human donors under a
protocol approved by the Duke Health Institutional Review Board (Duke Health Institutional Review
Board [IRB] Pro00049498). Inclusion criteria limited donors to healthy subjects who could provide fecal
samples at no risk to themselves, had no acute enteric illness (e.g., diarrhea), and had not taken
antibiotics in the previous month. Stool samples were collected in a disposable commode specimen
container (Fisher Scientific, Hampton, NH). Intact stool was moved within roughly 15 min of bowel
movement to anaerobic conditions. The sample was prepared for inoculation in an anaerobic chamber
(Coy). A 5-g stool aliquot was weighed, placed into a 7-oz filtration bag (Nasco Whirl-Pak), and combined
with 50 ml of mGAM (Gifu anaerobic medium [HiMedia], with the addition of 5 mg/liter vitamin K and
10 mg/liter hemin [32]) that was prereduced overnight in an anaerobic chamber. The mixture was
homogenized in a stomacher (Seward Stomacher 80) for 1 min using the normal-speed setting under
atmospheric conditions to make a total of 100 ml of inoculum. The supernatant was filtered through a
50-�m-pore-size CellTrics filter, diluted, and loaded into droplets. A limited number of human stool
samples were collected under another protocol approved by the Duke Health Institutional Review Board
(Duke Health IRB Pro00093322). These samples were used to examine the within-subject reproducibility
of droplet cultures and the effect of increasing the number of droplets on droplet culture diversity.
Participant enrollment for this protocol was limited to healthy individuals between the ages of 18 and
70 years. Exclusion criteria included food allergies to milk or wheat/gluten, a history of irritable bowel
syndrome, inflammatory bowel disease, type 2 diabetes, chronic kidney disease or reduced kidney
function, intestinal obstruction, untreated colorectal cancer, antibiotic treatment within the previous 1
month, pregnancy, and breastfeeding. Participants were asked to self-collect stool using provided
sampling kits. Sampling kits consisted of an adhesive waxed paper toilet accessory (catalog no. OM-AC1;
DNA Genotek, Ottawa, Ontario, Canada) and a fecal specimen collection tube (catalog no. 109120; Globe
Scientific, Mahwah, NJ, USA). Home-collected stool samples were stored in personal freezers and were
then brought to the laboratory on a weekly basis by participants. Participants were also provided with
an insulated bag and an ice pack to enable cold transport of samples from home freezers to the
laboratory, where the samples were placed in a locked �20°C drop-off freezer. This �20°C drop-off
freezer was emptied on a weekly basis, and samples were transferred to a �80°C freezer to be stored
until use. Aliquots were made from homogenized stool in mGAM using a stomacher and filtration bag
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as described above. Then, stool aliquots were mixed 50:50 with a 50% solution of glycerol–phosphate-
buffered saline (PBS) and frozen at �80°C for later use.

Droplet DNA extraction, PCR amplification, and DNA sequencing. To extract DNA from droplets,
excess oil was removed by pipetting and water-in-oil emulsions were broken by adding an equal amount
of 1H,1H,2H,2H-perfluoro-1-octanol (PFO; VWR) and were subjected to a brief period of vortex mixing.
Then, the samples were briefly centrifuged (�200 � g) to separate the aqueous and oil phases by
density. The aqueous solution was transferred to a new tube, and DNA was extracted using an UltraClean
kit (Qiagen catalog no. 12224). DNA was extracted from stool samples in our time-series experiments
using a 96-well PowerSoil kit (Qiagen catalog no. 12888). For all samples, the V4 region of the 16S rRNA
gene was barcoded and amplified from extracted DNA using custom barcoded primers and previously
published protocols (62, 63). 16S rRNA amplicon sequencing was performed on an Illumina MiniSeq
sequencing system with paired-end 150-bp reads. We chose to analyze only those samples that had
more than 5,000 reads to remove outlying samples that might have been subject to the accumulation
of library preparation or sequencing artifacts. Sample read depth data are provided in Table S1 in the
supplemental material. Total abundances of bacteria from droplet cultures were estimated by qPCR for
bacterial 16S rRNA using the primers used in the DNA sequencing protocol. Amplification during the
qPCR process was measured with a real-time PCR system (CFX96 real-time system; BioRad) using E. coli
DNA at a known cell concentration as a reference.

Identifying sequence variants and taxonomy assignment. DADA2 was used to identify SVs (30).
Custom scripts were used to prepare data for denoising with DADA2 as previously described (64). Reads
were then demultiplexed using scripts in Qiime v1.9 (65). SVs were inferred by DADA2 using error profiles
learned from a random subset of 40 samples from each sequencing run. Bimeras were removed using
the function removeBimeraDenovo with tableMethod set to “consensus.” Taxonomy was assigned to
sequence variants using a naive Bayes classifier (66) trained using version 123 of the SILVA database (67).
For examination of the growth dynamics of the human gut microbiota, only forward sequencing reads
were analyzed. Downstream analysis of sequence variant tables was performed using R (ver. 3.4.2) and
Python (ver. 2.7.6). PERMANOVA was run in R using adonis in the vegan package (ver. 2.5-2).

Growth dynamics of human gut microbiota. To estimate SV growth curves using MicDrop, we
collected a total of 70 separate microfluidic droplet aliquots for destructive longitudinal sampling.
Droplets were generated according to the MicDrop protocol described above. We used modified Gifu
anaerobic medium (mGAM) (HiMedia) in our droplets, with the addition of 5 mg/liter vitamin K and
10 mg/liter hemin. Each aliquot of 200 �l of droplets was incubated at 37°C in an anaerobic chamber.
Aliquots were destructively sampled in triplicate, hourly, from h 0 to h 24 after droplet making and in
duplicate once a day from h 24 to h 127 after droplet making.

Growth curves were fitted using a combination of 16S rRNA qPCR and DNA sequencing data. To
minimize the potential for poorly fitted growth curves, SVs were required to have been detected by DNA
sequencing in �5 samples to be included in curve fitting. To avoid numerical instabilities associated with
taking the log or dividing by zero, a pseudocount value of 1 was added to the sequence variant count
table prior to normalization to relative abundances. Relative abundances of each SV were then deter-
mined by dividing the number of counts associated with each SV in each sample by the total read counts
in the sample. The concentration of each taxon was then estimated by multiplying the relative
abundances of SVs by the 16S rRNA concentrations determined by qPCR. Technical replicates constituted
distinct data points in these calculations. We used the SciPy Python package (v0.19.1) to fit a modified
Gompertz equation (68) to which we added an additional term to the resulting dataset to account for

differences in starting abundances using the equation y � Aexp� � exp��·e

A
�� � t� � 1�� � A0, where

� is growth rate, A is carrying capacity, � is lag time (or the time it takes for a bacteria to reach logarithmic
growth), and A0 accounts for the relative abundances of the different SVs in the inoculum. We fitted
curves using the module scipy.optimize.least_squares with the robust loss function “soft_l1.” Parameter
bounds were also used to minimize the optimization search space. We set lower bounds of A � 0,
� � �50, � � 0, and A0 � 0 and upper bounds of A � 15, � � 12, � � 2.6, and A0 � 15. We selected
bounds by considering both biological feasibility and parameter sensitivity analyses (Fig. S6). Our upper
bound for growth rate (� � 2.6) represented a doubling time of 15 min, which we based on the highest
growth rates observed in an anaerobic bacterium (69). The upper bounds on A and A0 were set to the
maximum amount of DNA measured across replicate MicDrop samples from the human fecal inoculum.
The upper bound for �, which represents the lag time until the exponential-growth stage is reached (70),
was set at 12. The assigning of a lower bound of 0 for A, A0, and � reflected our choice not to model
negative growth. A lower bound for � was selected by sensitivity analysis (Fig. S6), which revealed that
the choice of a bound of 0 led to fitted � values regularly collapsing to our boundary limits. We also
found that fitted curves were sensitive to starting parameters. To ensure a broad search of parameter
space, we initialized each curve fit multiple times (n � 100) with starting values randomly distributed
between the bounds of each parameter. Fitted growth rates often collapsed to the maximum � value
tolerated; we therefore retained only those fits where the growth rates were at least slightly below our
upper bound for � (� � 2.5). Among the remaining fitted curves, we analyzed the one with the lowest
loss-of-function value. In our analyses of SV growth in human fecal samples, we defined total SV levels
as y(127 h) � y(0 h).

MicDrop prebiotic assays using human stool samples. Stool aliquots from the samples collected
under the IRB protocol described in the “Collection and preparation of fecal inoculum” section were used
for MicDrop growth dynamics assays. Aliquots were drawn from nine healthy donors (7 men, 2 women)
between the ages of 35 and 53 years. To facilitate the carrying out of prebiotic assays simultaneously
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across a range of donors, we used frozen gut microbiota in these experiments. Fecal slurries were made
at 10% (wt/vol) using mGAM and a stomacher (Seward) that homogenized fecal samples for 1 min. Then,
slurries were mixed 50:50 with 50% glycerol and stored at �80°C for later use. Cells were revived from
frozen stock in rich medium (mGAM; see the “Growth dynamics of human gut microbiota” section) for
18 h to allow cells to recover from freezing. Bacteria were then cultured in minimal medium (Table S2)
containing glucose and galactose (Sigma) as the sole carbon sources to deplete excess nutrients (71).
Following determination of the loading concentration, the bacteria were washed twice by centrifugation
(2 min at 14,000 � g) to remove free monosaccharides and resuspended in 2� minimal medium without
a carbon source. Bacteria were filtered using a 50-�m-pore-size filter (CellTrics; Sysmex) to remove
multicell clumps. The filtered microbiota suspension was then added to prebiotics in a 50:50 mixture of
1% prebiotic solution and 2� minimal medium (Table S2). To prevent chip fouling during droplet
generation, the oil inlet was equipped with 10-�m-pore-size inline filters (P-276; IDEX). Droplet gener-
ation in the anaerobic chamber was monitored using a bright-field microscope (Celestron). Droplet
cultures were stored in 5-ml polypropylene tubes (Falcon) with the caps closed in an anaerobic incubator
at 37°C. Following the second day of incubation, cultures were moved to a �20°C freezer for storage
prior to DNA extraction. DNA was extracted from all stool and microfluidics samples in prebiotic
experiments using UltraClean kits (Qiagen catalog no. 12224).

Validation of prebiotic utilization assays. To validate the MicDrop prebiotic assay, we generated
reference data on carbohydrate preferences using an artificial community of seven wild-type gut isolates
from our culture collection (Table S3). These isolates were collected from healthy stool donors under
Duke Health IRB Pro00049498. Isolates were obtained by combining 5 g of stool with 25 ml of mGAM
culture media followed a brief period of vortex mixing. Following centrifugation at 175 � g for 10 min,
the supernatant was used to prepare streak plates on 5% sheep blood agar (catalog no. A10, Hardy) and
cultivated for 4 days. Colonies were picked and restreaked on individual plates three times and
transferred to liquid culture in mGAM to prepare a frozen stock mixed in 50% glycerol. Fecal isolates were
assigned taxonomy by sequencing the 16S rRNA gene (primers 8-27F [AGAGTTTGATCCTGGCTCAG] and
1512-1429R [ACGGYTACCTTGTTACGACTT]).

Fecal isolates were grown in both 96-well plates and the MicDrop prebiotic assay described in the
preceding paragraph. Following the procedure described in the “MicDrop prebiotic assays using human
stool samples” section, well plates were prepared with minimal medium (Table S2) and a carbohydrate
as a sole carbon source (Table S2). A 10-�l aliquot of bacterial suspension was added to 200 �l of
medium in 96-well plates and incubated in a humidified container for 2 days at 37°C. All culture
experiments were performed in an anaerobic chamber. Following the culture period, the optical density
at 600 nm of each well was examined using a plate reader (CLARIOstar; BMG Labtech). Following
published protocols (16), isolate growth in plates was normalized to the maximum growth rate for each
microbe. To classify isolates as either “growing” or “not growing,” a threshold of 20% of maximum
growth was applied to the plate data; growth at levels above 20% was considered representative of
growth on the carbon source of interest. The isolates used in the well plate analyses were then mixed
evenly into an artificial community and examined using the MicDrop prebiotic assay described above.
MicDrop experiments were performed in triplicate. Growth thresholds for the MicDrop assay were
determined by first assigning preprocessing sample qPCR values a value of 0 if they indicated overall
growth below the mean levels seen with no-carbon controls. Then, relative SV abundance data were
converted to absolute SV abundances by multiplying each sample by the corresponding qPCR value.
Median SV abundances were then calculated across replicates, and values representing SV abundances
from matched no-carbon controls were subtracted from each sample. An optimal SV growth threshold
for determining growth on a carbohydrate in MicDrop was obtained by applying Youden’s J index across
all possible threshold values, with the well plate data as the reference. A growth threshold of 88%
maximized this index and was used in subsequent experiments on fecal samples.

Analysis of the proportions of generalist taxa and specialist taxa by phylum. Specialists were
defined as taxa that grew on only one carbon source, whereas generalists were defined as those that
grew on two or more carbon sources. To determine if the number of generalists or specialists was greater
than that expected by chance, the droplet carbon consumption table was randomly shuffled to generate
a permuted distribution. Then, the fraction of 10,000 permuted distributions in which the number of
generalists or specialists was above the observed value was calculated for each phylum and lifestyle
combination (e.g., Actinobacteria-generalist, Actinobacteria-specialist, Bacteroidetes-generalist, and so on).
All phylum and lifestyle comparisons in which fewer than 5% of the permuted runs were above the
observed value for generalists/specialists were reported. Relationships between similarity of carbohy-
drate utilization patterns of taxa and phylogenetic distance were calculated using the Mantel test. The
test was carried out at different phylogenetic levels using the phyloseq R package.

Data availability. The 16S rRNA nucleotide sequences generated in this study have been made
available at the European Nucleotide Archive under study accession number PRJEB33065.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 2.8 MB.
FIG S2, TIF file, 2.1 MB.
FIG S3, TIF file, 1.7 MB.
FIG S4, TIF file, 0.9 MB.
FIG S5, TIF file, 1.3 MB.
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FIG S6, TIF file, 1.9 MB.
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VIDEO S1, AVI file, 10.1 MB.
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