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Abstract
Background: COVID-19 has emerged as the most serious 
pandemic in the 21st century to date. COVID-19 patients 
may develop various disease symptoms that hinder the ac-
curate clinical diagnosis. Summary: Routine diagnosis of 
COVID-19 requires complementary investigations, including 
computed tomography, immunological assays, and molecu-
lar assays like real-time RT-PCR, loop-mediated isothermal 
amplification, metagenomic next-generation sequencing, 
and clusters of regularly interspaced short palindromic re-
peats-based assays. Clinically approved antiviral drugs avail-
able for the COVID-19 treatment are very limited. The most 
common measurements that enhance health condition and 
patients’ viability are conservation fluid management, oxy-
gen therapy, and antibiotics. Several therapeutic options 
have been developed or repurposed to prevent virus replica-
tion and/or modulate the immune response against virus in-

fection. These options include various drugs that affect virus 
entry and membrane fusion, inhibit polymerase and prote-
ase activity, suppress the host pro-inflammatory cytokines, 
and utilize cell therapy approaches. Key Messages: In this 
review, we aimed to provide an up-to-date discussion on the 
current diagnostic options and therapeutic strategies used 
to control and manage COVID-19 in clinical and point-of-
care settings. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

COVID-19 has developed as the most serious pandemic 
in the 21st century to date. The causative agent SARS-
CoV-2 is classified as a member of genus Betacoronavirus, 
subfamily Coronavirinae, family Coronaviridae, and order 
Nidovirales [1]. A characteristic feature of SARS-CoV-2 is 
its transmission via close contact with infected persons by 
exposure to sneezing, coughing, respiratory droplets, and 
aerosols (airborne transmission) [2–4]. Routine diagnosis 
of COVID-19 is based on the epidemiological history, clin-
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ical manifestations, and some complementary investiga-
tions, including molecular detection of viral RNA, bedside/
point-of-care (POC) testing, computed tomography (CT), 
and immunological assays like ELISA. Neverthelesss, 
SARS-CoV-2-infected patients may show a wide range of 
clinical symptoms such as dry cough, fever, loss of taste 
and/or smell, fatigue, headache, sore throat, myalgia, pneu-
monia, renal failure, diarrhea, septic shock, and others [5]. 
Therefore, complementary investigations are crucial for a 
better diagnosis of COVID-19 in clinical and POC settings 
[6]. Specimens for identifying SARS-CoV-2 infection may 
include nasopharyngeal swab/wash/aspirate, oropharyn-
geal swab, lower respiratory tract aspirate/lavage, sputum, 
whole blood, plasma, serum, urine, and stool [7, 8] (online 
suppl. Video; for all online suppl. material, see www.karger.
com/doi/10.1159/000522336).

Unfortunately, the available and clinically approved 
antiviral drugs to prevent and/or treat COVID-19 are 
very limited [6, 9]. The alternative adjuvant treatments, 
including conservation fluid management, oxygen thera-
py, and antibiotic use against secondary bacterial infec-
tions, are the only measures to support the health condi-
tion and enhance the patient’s viability [10]. Based on the 
genomic organization of SARS-CoV-2 [1] and the mo-
lecular mechanisms of infection [11], several prospective 
therapeutic targets are available for the development of 
efficient interventions against SARS-CoV-2 [6]. In the 
following sections, the different methods used for diag-
nosing COVID-19 and the approaches used for develop-
ing specific antiviral chemotherapy will be discussed ac-
cording to the most recent available data.

Basic Structural and Functional Features of SARS-
CoV-2

SARS-CoV-2, like most coronaviruses, is spherical or 
pleomorphic in shape with an average diameter of 65–125 
nm [12]. The viral genome is typically composed of sin-
gle-stranded positive-sense RNA that extends from 29.8 
to 29.9 kb in length [1]. Viral RNA is wrapped with the 
nucleoprotein subunits to form a helical nucleocapsid 
structure. An outer envelope is formed by the budding of 
the viral nucleocapsid from the endoplasmic reticulum-
Golgi intermediate compartment. Coronaviruses have a 
crown-shaped appearance as they possess club-shaped 
projections (spikes) of 20-nm length protruding from the 
viral envelope [13].

The genome of SARS-CoV-2 encodes for 4 structural 
proteins, including spike (S), membrane (M), envelope 

(E), and nucleoprotein (N), besides 23 nonstructural and 
accessory proteins [14]. RNA-dependent RNA poly-
merase (RdRp), in combination with other nonstructural 
proteins like nsp2 (RNA helicase) and nsp4, forms the 
polymerase complex that is crucial for RNA processing 
and virus replication [15]. RdRp plays a vital role in virus 
evolution since it controls the virus replication fidelity 
and consequently, the mutation rate and adaptation to 
sudden changes of host populations and new environ-
mental conditions [16]. Other accessory proteins, rare in 
RNA viruses, were also described to gather at the cell 
membrane during virus budding from the host cell. These 
proteins include 2′-O-ribose methyltransferase, putative 
sequence-specific endo-RNAse, 3′–5′ exonuclease, and 
ADP ribose 10-phosphatase [17].

S protein is a type I membrane glycoprotein mediat-
ing virus binding to host cell and membrane fusion and 
is crucial for determining host susceptibility and trans-
missibility [18]. Two subunits have been described for 
S protein, including S1, which has four core domains 
S1A–D responsible for cell attachment and S2, which is 
implicated in membrane fusion and virus entry into the 
host cell [19]. M glycoprotein has a long C-terminus 
cytoplasmic domain, a short N-terminus domain pro-
truding externally, and 3 transmembrane domains 
spanning the viral envelope [20]. This protein repre-
sents a chief organizer of virus assembly and budding 
by interaction with other structural proteins [21]. The 
E protein is the minor membrane protein engaged in 
different virus replication stages, particularly during as-
sembly and envelope formation [22]. N protein is dis-
tinct from the other structural proteins of SARS-CoV-2 
binding to the viral RNA forming the nucleocapsid 
[23]. The protein also augments RNA synthesis and 
folding and influences cell cycle and protein translation 
in the host cell [24, 25]. M, E, and N proteins interact to 
stabilize the RNA-nucleoprotein complex within the 
internal core of virions, triggering virus assembly and 
budding [26].

Current Diagnostic Measures for COVID-19

Besides CT, which is critical for the initial diagnosis of 
COVID-19, the currently available diagnostic tests are di-
vided into two major classes. The first class includes the 
molecular assays used for the identification of SARS-
CoV-2 RNA in clinical specimens, such as real-time RT-
PCR (rRT-PCR), next-generation sequencing (NGS), 
clusters of regularly interspaced short palindromic re-
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peats (CRISPR), reverse transcription loop-mediated iso-
thermal amplification (RT-LAMP), specific high-sensi-
tivity enzymatic reporter unlocking (SHERLOCK), and 
nucleic acid sequence-based amplification (Table 1) [27]. 
However, the second class comprises the immunological 
assays used for detecting virus-specific antibodies in pa-
tients’ sera [28].

rRT-PCR Assays
rRT-PCR is the gold standard for detecting a wide 

range of pathogens, including SARS-COV-2, because of 
its sensitivity, specificity, and rapidity [28]. Scientists 
have used several targets like RdRp, ORF1a/b, E, N, and 
S genes to detect SARS-CoV-2 by rRT-PCR. Testing two 
molecular targets in parallel are mostly recommended to 
avoid cross-reactivity with other human coronaviruses 

Table 1. Contemporary diagnostic tools for SARS-CoV-2: advantages and disadvantages

Diagnostic 
tool

Common sample types Advantages Disadvantages

rRT-PCR Sputum
Bronchial aspirates
Pharyngeal, nasal, and anal swabs
Bronchoalveolar lavage fluid
Blood
Feces [8–9]

Sensitive and specific [29–43]
Rapid: 1.5 h/run
Closed system reaction (limited false-positive 
results) [30]
Targets most viral protein genes
Structural (S, E, M, N)
Nonstructural (RdRp, ORF1a/b) [31–34]

Requires well-equipped labs
Infrastructure is lacking in developing 
countries [33]
Requires a satisfactory threshold of 
virus concentration in the specimen
Delay of 5 days for switching from 
premier negative to positive results [93]
False-negative results due to improper 
handling [94]
Expensive [94]

RT-LAMP Swabs (nasopharyngeal, oropharyngeal, 
anterior nares, MTN
Nasal and bronchial aspirates
Bronchoalveolar lavage fluid

Sensitive and specific [95]
Rapid (less than an hour)
Simple one-step amplification technique
Performed at constant temperature (60–65°C)
No need for sophisticated equipment
Low-cost reagents (stable at room temp)
Simple detection of positive results (color, 
turbidity, and fluorescence)

Four to six primers

CRISPR Respiratory samples Sensitive and specific (100%) [43]
Short turnaround time (40 min)
No false-positive results

Off-target results [94]

mNGS Respiratory samples High throughput [96]
Unbiased nature

Long turnaround time (about 20 h) [43]
Relatively short reads [96]

SHERLOCK Respiratory sample
Serum
Urine
Saliva
Blood

A simple and rapid technique
Single sample handling step
Performed at a single temperature
Visual result interpretation
No need for sample extraction
Suitable for home testing [46]

Technically demanding
RNA/DNA oligonucleotides and 
reaction mixtures are not commercially 
available
Multistep nucleic acid amplification
Less useful in gene expression profiling 
[97]

Serological 
tests

Blood
Plasma
Serum

Easy to perform
Require little instrumentation
Do not need technical proficiency
Easy sample collection
Less potential hazard [98]

Less sensitive and specific
Cannot detect infection in early stages 
[98]
Do not discriminate between infection 
and vaccination
Cross-reactivity with other 
coronaviruses [33]

Chest CT Chest Noninvasive [33–99]
Screens even asymptomatic people
Sensitivity (86–98%) [93]

Expensive
Requires technical expertise [33]
Results may confuse with other 
infections

MTN, mid-turbinate nasal.



Hassanein/Sharaby/Tawfik/Rashed/Adel/
Fayez/Mansour/Amer

Intervirology4
DOI: 10.1159/000522336

and reduce the potential of false-negative results caused 
by the generation of new virus variants over time [29]. 
Studies have utilized conserved sequences from S and 
RdRp [29], E and RdRp genes [30], and ORF1b and N 
genes for the development of reliable rRT-PCR assays. It 
was suggested that the ideal design for a SARS-CoV-2 
rRT-PCR assay is to target at least one conserved region 
and one specific region [29]. The WHO recommends us-
ing a gene-based assay for initial screening and RdRp 
gene-based assay for result confirmation [29, 30], where-
as the CDC identified two loci in the N gene for getting 
the best results [31].

Genome analysis of a wide array of SARS-CoV-2 strains 
has identified three genes: RdRp, E, and N, as highly con-
served. The developed assays that target these genes have 
shown variable analytical sensitivities, where E- and 
RdRp-based assays were highly sensitive (detection limit 
of 3.9 and 3.6 copies per reaction, respectively), and N-
based assays were the least sensitive (8.3 copies per reac-
tion) [30, 32]. Similarly, a Chinese group has compared 
the results of three assays targeting RdRp, S, and N ORFs 
using 273 clinical samples from confirmed cases and con-
firmed that RdRp is the most sensitive and specific for the 
use in laboratory diagnosis of COVID-19 [33].

A notable drawback of rRT-PCR is that it could not 
determine the infection early enough to apply the con-
trol measures, particularly in asymptomatic patients 
[32]. The sensitivity of the assay also depends on the 
type of sample used for testing. In a cross-sectional 
study that involved 1,070 specimens collected from 205 
confirmed cases, the highest sensitivity was obtained 
with bronchoalveolar lavage (93%), followed by spu-
tum (72%), nasal swabs (63%), and pharyngeal swab 
(32%) [32]. The viral RNA was also detected in the feces 
but not in the urine of infected patients. Evidence also 
suggested using the saliva as an alternative sample with 
less need for protection facilities; however, it still needs 
validation.

A combined Influenza SARS-CoV-2 Multiplex rRT-
PCR Assay (Flu SC2) was launched by the CDC in July 
2020 to detect SARS-CoV-2, influenza A, and influenza B 
viruses simultaneously in upper or lower respiratory 
specimens. The assay is extremely sensitive and can be 
used as a powerful tool to evaluate specimens from pa-
tients in the acute phase of infection [34]. The Flu SC2 
Multiplex Assay allows public health laboratories to run 
three tests in a single reaction tube with fewer test re-
agents and higher throughput. Flu SC2 is currently under 
improvement, utilizing sequence data that were not avail-
able during the first release of the assay [34].

Reverse Transcription Loop-Mediated Isothermal 
Amplification
RT-LAMP is a one-step RNA amplification technique 

used for the diagnosis of many infectious diseases. The 
advantages of RT-LAMP over RT-PCR are shown in Fig-
ure 1. The assay is performed at a constant temperature 
between 60 and 65°C, and the amplified target is identi-
fied using simple methods like visual inspection of color 
change or turbidity, measurement of fluorescence, and 
agarose gel electrophoresis [35]. Recently, several re-
search groups have developed optimized RT-LAMP sys-
tems as rapid and straightforward choices for COVID-19 
diagnosis in regions lacking the facilities and equipment 
[36–41]. The developed assays use primer sets that target 
conserved sequences in different genomic regions of 
SARS-CoV-2 (either separately or combined), including 
ORF1ab, S, and N genes. In particular, the primers are 
designed to target the RdRp region of ORF1ab and have 
shown higher amplification efficiency and specificity 
[39].

The RT-LAMP assays could amplify the specific se-
quences in a single-step process without the need for 
RNA extraction. Also, obtained results are quick with 
high specificity, sensitivity, and minimum cross-reactiv-
ity [40]. It was reported that the colorimetric LAMP is a 
quantitative method [41]. In two different studies, there 
was a high degree of compatibility between the results of 
RT-LAMP and the gold standard rRT-PCR (89.9% and 
100%) [36, 38]. The technique was also adapted for use 
with the commercial Eppendorf PCR tubes combined 
with the 3D-printed incubation chamber [41].

Metagenomic NGS and CRISPR
Metagenomic NGS, high-throughput sequencing, is now 

playing a pivotal role in diagnosing unexplained pathologi-
cal conditions, particularly those caused by atypical caus-
ative agents. This method has many applications including 
genome sequencing (>1 million base pairs per single run), 
diagnosis of cancer, inheritable disorders, and infectious dis-
eases, besides large-scale recognition of novel viruses and 
virus strains. In conjunction with the bioinformatic tools, 
the metagenomic NGS has greatly inspired the contempo-
rary viral pathogenesis and diagnostics, especially during the 
current pandemic [42]. NGS has recently been utilized in 
routine screening of viral genomes for genetic drifts due to 
its high sensitivity [43]. At the start of COVID-19 outbreak, 

Fig. 1. Advantages of using RT-LAMP over RT-PCR as a diagnos-
tic method for SARS-CoV-2 detection.

(For figure see next page.)
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the patients’ samples of acute respiratory distress syndrome 
(ARDS) indicated negative for all suspected pathogens. NGS 
was the only tool that enabled scientists to identify the etio-
logical pathogen as novel coronavirus [44]. Yet, the costs of 
NGS chemicals and equipment limit its use as a laboratory-
standard diagnostic technique [42].

CRISPR/Cas is a powerful gene-editing tool and a 
promising treatment for many diseases. Different kinds 
of Cas proteins were demonstrated, among which Cas12a 
and Cas13a are efficient in diagnostic purposes, and Cas9 
is specialized in gene editing [45]. A CRISPR/Cas12-
based assay was developed to detect SARS-CoV-2 in clin-
ical samples and was termed SARS-CoV-2 DNA Endonu-
clease-Targeted CRISPR Trans Reporter. Another iso-
thermal CRISPR/Cas13-based assay (CRISPR-nCoV) 
was developed and compared to rRT-PCR and NGS [43]. 
CRISPR-nCoV had a sensitivity and specificity of 100% 
compared to the reference assays. The assay seems a 
promising diagnostic tool that offers a shorter turn-
around time, even in under-resourced settings with no 
need to use thermal cyclers [43].

SHERLOCK is an innovative technique that involves 
amplifying specific viral RNA sequences, followed by de-
tecting the amplicons using CRISPR-mediated collateral 
reporter unlocking [32, 46]. An RNA guide sequence, to-
gether with Cas13a, binds specifically to the amplified 
fragments forming a complex [47]. This binding stimu-
lates activation of Cas13a to cleave adjacent fluorophore-
quencher probes emitting fluorescence. SHERLOCK was 
used to distinguish Zika virus from dengue virus in the 
serum and urine in concentrations lower than 2,000 cop-
ies/mL. It could also detect several bacterial strains and 
identify mutations in cell-free tumor DNA [48].

SHERLOCK Testing in One Pot is a modified method 
based on SHERLOCK’s use in a simple platform. The 
technique does not require RNA extraction and is per-
formed in a single step using a single reaction tempera-
ture. STOPCovid was recently developed for use in POC 
settings and household facilities to face the growing need 
for COVID-19 diagnostics [46]. The developed assay uti-
lizes lysis buffer (QuickExtract) to release SARS-CoV-2 
RNA, which is detected after amplification, RNA bind-
ing, and Cas13a activation on a commercially available 
paper dipstick by the naked eye [46].

Immunological Testing
Immunological testing, particularly serological assays, 

is relatively inexpensive, easier to perform, and requires 
fewer tools and less technical proficiency than nucleic ac-
id-based assays. However, a recognizable level of antibod-

ies cannot be detected before elapse of several days to 
weeks of infection. Therefore, serological tests are not 
recommended to diagnose acute SARS-CoV-2 infections 
except in very rare conditions [49]. They may be used for 
confirming or excluding the infection in late stages [50].

Serological tests are mainly used to determine former 
infection with SARS-CoV-2 and help diagnose clinically 
suspicious patients with negative PCR results. Patients 
are considered positive when they have recognizable IgM 
antibodies or an increased IgG titer (4× or more) in the 
convalescence sera compared to the acute phase sera [51]. 
The antibody dynamics of SARS-CoV-2 are very similar 
to most acute viral infections, where the IgG level increas-
es as the IgM level decreases [31]. In general, IgM starts 
to appear in the patient’s serum by the 5th day postinfec-
tion, whereas IgG does not develop before the 14th day 
[51]. Likely, several serological tests have been authorized 
for use, under the emergency, by the US FDA for SARS-
CoV-2 diagnosis. The majority of currently authorized 
serological tests detect IgM and IgG in infected persons’ 
blood by ELISA, lateral flow cassettes, or chemilumines-
cence platforms [52].

Other assays that determine cellular markers and im-
mune cells’ levels are also described as practical approach-
es for COVID-19 diagnosis. Patients mostly show higher 
D-dimer and C-reactive protein levels and low levels of 
leukocytes, lymphocytes, and blood platelets [53]. There 
is much to be determined about the value of these param-
eters and serological testing in monitoring and diagnos-
ing COVID-19.

Computed Tomography
Despite the availability of many sensitive and specific 

diagnostic assays for SARS-CoV-2, chest CT is still sig-
nificant as an initial screening tool [53–57]. A chest CT 
scan is a cross-sectional image taken across a patient’s 
chest at different angles. Several scientists claimed that 
chest CT is more credible than rRT-PCR in COVID-19 
diagnosis since rRT-PCR may render false-positive and/
or false-negative results [58]. Others confirmed that even 
asymptomatic patients could be screened by chest CT 
[54]. It was concluded that patients with intermediate 
symptoms who display inconspicuous chest X-ray find-
ings are positive COVID-19 even if their rRT-PCR results 
are negative [55]. Recently, the Fleischner Society de-
clared three main scenarios for using imaging as a pri-
mary diagnostic tool, including (a) cases with mild respi-
ratory features yet have risk factors for disease progres-
sion, (b) cases presenting with moderate to severe features 
of COVID-19, and (c) cases with moderate to severe 
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symptoms with limited testing resources and within a 
high frequency of disease [59].

Chest CT mostly shows peripheral, bilateral, and 
ground-glass opacity in COVID-19 patients [54]. How-
ever, the imaging pattern varies according to the disease 
stage and severity [60]. Chest CT exhibits interstitial 
changes and multiple small plaques in the early stages, 
besides common patterns like lymphadenopathy, cystic 
changes, pleural effusion, bronchiectasis, and nodules 
[54]. In more advanced stages, an infiltrating opacity is 
recognized with lung consolidation (solid or fluid mate-
rial in compressible lung tissue), multiple bilateral 
ground-glass opacity, and fibrous stripes or interstitial 
thickening [54, 61].

Breathe Print
The COVID-19 breath test has developed to exploit 

the advances in sensor technologies for breath diagnos-
tics based on the crystallo-chemical principle of selective 
gas detection [62–64]. An electronic signature can be 
generated based on the presence and concentration of a 
specific chemical compound (biomarker) in a single ex-
haled breath, as opposed to other nose technologies that 
use nonselective sensors and sample the entire breath for 
patterns drawn by machine learning algorithms [65]. Ex-
line et al. provided the first study to use a nanosensor 
breathalyzer to detect viral infection from exhaled 
“breathe prints” in critically ill patients. The test is non-
invasive and quick. Due to epidemiological concerns and 
regulations regarding research staff exposure, the analysis 
was not done at the bedside, but it could be done easily in 
clinical practice [66]. This COVID-19 sensor captures the 
interaction and relative ratio of two distinct gases (NO 
and ammonia) in temporal information that two selective 
sensors cannot capture, unlike gas chromatography, 
where ammonia is often absorbed by stainless steel [67]. 
This unique technology utilizes pure γ-phase tungsten 
trioxide’s semiconducting, catalytic, and gas-sensing 
properties, as well as the redox reactions between the two 
biomarkers in the presence of the sensor [66].

Available Therapeutics and Treatment Options

Since the beginning of the COVID-19 pandemic, most 
countries and pharmaceutical companies worldwide 
have spent much time, effort, and expense developing ef-
fective vaccines and specific antiviral drugs against SARS-
CoV-2. Concurrently, they tested a wide range of existing 
and approved drugs, particularly those that showed 

promising results with other viral infections like SARS, 
MERS, Ebola, flu, and AIDS [68]. Four classes of drugs 
have now been described according to their mode of ac-
tion as shown in Figure 2 including (i) viral entry and 
membrane fusion inhibitors, (ii) protease inhibitors, (iii) 
RdRp inhibitors, and (vi) immunomodulatory agents.

The S protein of SARS-CoV-2 anchors to the angio-
tensin-converting enzyme 2 (ACE2) receptor on the sur-
face of epithelial cells [69]. The S protein is primed and 
activated by the host cell protease, transmembrane serine 
protease 2 (TMPRSS2), for virus entry [70]. Numerous 
candidate drugs including umifenovir, camostat mesyl-
ate, ACE inhibitors (ACEis), angiotensin receptor-1 
blockers (ARBs), soluble recombinant human ACE2 
(rhACE2), chloroquine phosphate, and hydroxychloro-
quine sulfate have been tested to disrupt virus attachment 
and fusion with cell membranes (Table 2A). Umifenovir, 
a broad-spectrum antiviral used as a prophylaxis against 
influenza, is currently approved in China and Russia but 
not FDA-licensed [63, 64]. Camostat mesylate has shown 
ability to inhibit SARS-CoV and MERS-CoV replication 
in cell culture and partial blockage of SARS-CoV-2 repli-
cation in Caco-2 and Vero-TMPRSS2 cells [71]. Several 
nonrandomized studies were conducted to confirm the 
safety and efficacy of both drugs in the treatment of CO-
VID-19 [71–73]. However, the use of limited sample size 
and the contradictory results obtained discouraged their 
routine use in therapeutic purposes.

ACEis and ARBs are common drugs for the treatment 
of hypertension and heart failure [74]. During the SARS-
CoV outbreak, it was predicted that prolonged treatment 
with these drugs might protect from severe lung injury 
due to the elevation of ACE2 expression [75]. Conversely, 
several scientists claimed that frequent use of ACEis or 
ARBs could increase the likelihood of severe COVID-19 
in patients with cardiovascular diseases since they up-
surge the ability of SARS-CoV-2 to enter permissive cells. 
The latter prospect was disproved by two recent studies, 
which showed no evidence for increased severity or mor-
tality of COVID-19 in 1,200 and 362 patients regularly 
treated with ACEis or ARBs [76]. rhACE2 is also pro-
posed as a bait receptor that traps virus particles and pre-
vent them from binding with cell-surface receptors [77]. 
It was recently announced by APEIRON Biologics AG 
that APN01, synonymous with rhACE2, was used to treat 
200 COVID-19 patients in Austria, Germany, and Den-
mark [78].

Monoclonal antibodies (MAbs) are generated using 
human phage libraries, immunized animals, and memory 
B cells from patients [72]. MAbs are more effective than 



Hassanein/Sharaby/Tawfik/Rashed/Adel/
Fayez/Mansour/Amer

Intervirology8
DOI: 10.1159/000522336

using convalescent plasma in treatment of COVID-19 pa-
tients since they can be produced in greater quantities and 
possess reduced risk of antibody-dependent enhance-
ment [73]. REGN-COV2 is a novel MAb cocktail that 
binds to the RBD of S1 or S2 subunits of SARS-CoV-2 
spike protein to prevent virus entrance into a host cell. A 
double-blind, randomized controlled clinical trial using 
REGN-COV2 has shown reduction in the viral load, par-
ticularly in patients whose immune response did start to 
respond yet [74]. B38, H4, and CR3022 are three other 
MAbs that may be effective against SARS-CoV-2 in fu-
ture trials [75, 79].

Chloroquine phosphate was promising in treating 
COVID-19 patients, compared to the control group, by 
improving lung imaging, advancing a negative infection 
transformation, and shortening the disease course [77]. 
The in vitro efficacy against SARS-CoV-2 was higher in 
hydroxychloroquine than chloroquine (EC50: 0.72 vs. 
5.47 μM) [77]. Complete virus clearance was reported in 
6 patients concurrently treated with hydroxychloroquine 
and azithromycin within 5–6 days [79]. Nonetheless, a 
large-scale randomized clinical trial had recently shown 
that no notable difference in the hospital stay duration 
and the primary endpoint of mortality was observed 

Fig. 2. Schematic representation of SARS-CoV-2 life cycle and the 
treatment strategies for COVID-19 pandemic. An infected person 
with COVID-19 can infect another person through their respiratory 
droplets, sneezing, and coughing. The SARS-CoV-2 life cycle in-
cludes (1) binding of SARS-CoV-2 spike protein with ACE2 receptor 
on the host cell’s surface with the aid of the host protease enzyme 
TMPRSS2; (2) virus entry by fusion with the plasma membrane or 
by endocytosis mediated by endosome formation; (3) translation of 
the viral machinery of replication at cytoplasmic membranes; (4, 5) 
genomic and sub-genomic mRNA transcription through coordinat-
ed processes of continuous/discontinuous RNA synthesis deter-
mined by the viral replicase and mediated by viral proteases (e.g., 
3CLpro and PLpro) and RdRP; (6) translation of structural and non-

structural proteins by viral-encoded enzymes and host cell machin-
ery; (7) virions components are assembled at the ERGIC and obtain 
their membrane envelope; and (8) viruses are directed through the 
host secretory pathway and released by budding from the plasma 
membrane. The treatment options for COVID-19 include (a) viral 
entry and membrane fusion inhibitors (e.g., umifenovir, camostat 
mesylate, ACEi, ARBs, rhACE2, hydroxychloroquine); (b) protease 
inhibitors (e.g., LPV/r, darunavir/cobicistat, and disulfiram); (c) 
RdRp inhibitors (e.g., RDV, favipiravir, and ribavirin); and (d) im-
munomodulatory agents (e.g., tocilizumab and sarilumab, anakinra, 
nitazoxanide, thalidomide, and corticosteroid). Blue arrows for the 
subsequent step and a red “T” sign for inhibition. ERGIC, endoplas-
mic reticulum/Golgi intermediate compartment.
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when hydroxychloroquine was used in 1,542 patients as 
compared to 3,132 patients with standard care only [80]. 
Therefore, the WHO has lately declared discontinuation 
of hydroxychloroquine from COVID-19 treatment regi-
mens [81].

The protease inhibitor is another group of drugs that 
has long been used for treatment of AIDS (Table  2B). 
Lopinavir is typically formulated in combination with 
ritonavir (LPV/r) under the brand name Kaletra®. The 
effect of LPV/r against human coronaviruses was previ-
ously confirmed in cell culture against SARS-CoV-1 and 
MERS-CoV [82] and recently against SARS-CoV-2 [83]. 
In a clinical trial, patients who received LPV/r (n = 99) 
showed significant clinical improvement and viral clear-
ance after 14 days of treatment compared to patients who 
received standard care only (n = 100) [84]. Further studies 
have proven that the combination of LPV/r with inter-
feron beta-1b and ribavirin are safe and superior to LPV/r 
alone in enhancing virus clearance, relieving symptoms, 
and facilitating discharge of patients with mild to moder-
ate COVID-19 [85]. LPV/r is still an attractive candidate 
for the treatment of COVID-19 due to its commercial 
availability and large-scale producibility. Other protease 
inhibitors like darunavir (Prezista®) and disulfiram (An-
tabuse®) can inhibit replication of CoVs in vitro, and they 
did not show activity in clinically compatible concentra-
tions [83]. Although the results of using protease inhibi-
tor in the treatment of COVID-19 are discouraging till 
now, in silico studies of the protein-drug modeling 
showed a predictable strong interaction between HIV 
protease inhibitors and the active site of the SARS-CoV-2 
protease. Hence, further studies on these compounds 
may provide a positive impact in the future [86].

Notably, RdRp inhibitors showed promising out-
comes in COVID-19 patients (Table 2C) [87–89]. Rem-
desivir (RDV, GS-5734, Gilead), for example, blocked 
SARS-CoV-2 infection at low concentrations (EC50 0.77 
μM) [88]. Animal studies in Rhesus macaques indicated 
that treatment with RDV is safe and effective compared 
to control animals [89]. The adverse effect of RDV on 
host cells is well-tolerated since human mitochondrial 
RdRp has a lower affinity to RDV than other adenosine 
analogs [90]. RDV was first utilized empirically with a 
35-years-old COVID-19 patient in the USA and showed 
promising results [87]. Favipiravir (T-705, Avigan®), an-
other RdRp inhibitor, has shown effective action against 
SARS-CoV-2 in Vero E6 cells at high concentration (EC50 
61.88 μM) [88], albeit some reports showed no effect even 
in concentrations up to 100 μM [91]. A clinical study con-
ducted on 80 patients in China has shown that favipiravir 

is more effective than LPV/r with no profound adverse 
effect. Accordingly, favipiravir was approved in March 
2020 for the treatment of COVID-19 in China [92]. Sev-
eral clinical trials are now proceeding to evaluate the 
pharmacokinetics and antiviral activity of RDV and fa-
vipiravir either alone or in combination with other treat-
ment options.

Other RdRp inhibitors, like β-D-N4-hydroxycytidine 
(EIDD-1931), were highly efficacious in preventing rep-
lication of SARS-CoV-1, SARS-CoV-2, and MERS-CoV 
in cell culture [93]. In contrary, ribavirin (Virazole®) 
showed limited activity against SARS-CoV-2 in cell cul-
ture and required high concentration to inhibit viral rep-
lication. It was found that ribavirin is 100-times less effec-
tive than RDV (EC50: 109.5 μM) [88]. The use of ribavirin 
in COVID-19 patients was evaluated either alone (n = 
111) or in combination with LPV/r (n = 41) in a clinical 
trial. The latter group showed no ARDS and mortalities. 
However, the use of high doses (1.2–2.4 g orally every 8 
h) may exert a potential risk of toxicity in some patients 
[82].

Several collateral treatments are often used to decrease 
the severity and complications of COVID-19 and evade 
the inflammatory immune response developed in severe 
cases [94] (Table 2D). Drugs used to suppress the pro-
inflammatory cytokines (e.g., interleukin [IL]-1, IL-2, IL-
6, IL-8, TNF-α) such as MAbs (e.g., tocilizumab and sar-
ilumab) and IL receptor inhibitors (e.g., anakinra) are 
widely emerged [60]. Anakinra (Kineret®) is currently 
proceeding in clinical trials in China, Italy, Spain, and 
Greece to evaluate the safety and efficacy of using anakin-
ra in COVID-19 patients with respiratory distress [94]. 
Nitazoxanide has demonstrated antiviral activity against 
SARS-CoV-2 in Vero E6 cells (EC50: 2.12 μM at 48 h) 
[88]. It had a vital immune-modulatory role by amplify-
ing cytoplasmic RNA sensing and INF-1 pathways [95]. 
Nitazoxanide was also able to restrain pro-inflammatory 
cytokines in peripheral blood mononuclear cells and in-
hibit IL-6 production in mice [96]. It is essential to in-
clude nitazoxanide in controlled-randomized clinical tri-
als to conclude its potential for improving the health con-
dition of COVID-19 patients.

Corticosteroid helps reduce lung inflammation and 
cytokine storm and avoid acute lung injury and ARDS. 
Nevertheless, corticosteroid treatment is often associated 
with delayed virus clearance and an elevated secondary 
infection rate [97]. In the UK’s national clinical trial RE-
COVERY, the corticosteroid dexamethasone was evalu-
ated in COVID-19 patients, including severe cases, and 
was found to have benefits. According to the preliminary 
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findings, the mortality rate for patients on ventilators was 
reduced by one-third, and for patients requiring only ox-
ygen, the rate was cut by about one-fifth. The mortality 
rate was also decreased in another study conducted on 
201 COVID-19 patients with ARDS after administering 
the corticosteroid drug methylprednisolone (46% vs. 61.8 
in the control group) [98]. It was suggested that the re-
duction of severe illness and mortality rate are correlated 
to the early administration of low-dose methylpredniso-
lone. The NIH, IDS, and other experts provided guide-
lines for using corticosteroids in COVID-19 patients 
based on the currently available information [99].

Cell therapies have demonstrated efficacy in treating 
conditions that were previously difficult to manage with 
conventional treatment modalities, including neurodegen-
erative, oncologic, and immunological disorders. Numer-
ous cell therapy approaches have been studied such as in-
duced pluripotent stem cells, mesenchymal stromal cells, 
and T cells [100–103]. In a variety of indications, safety and 
efficacy results of cell therapy have suggested that cell ther-
apy may be exploited to treat COVID-19 patients [100]. As 
of 1 January 2021, clinicaltrials.gov listed several cell thera-
py-based clinical trials targeting COVID-19 pathology. 
Mesenchymal stromal cells account for approximately 71% 
of the cells used in cell therapy clinical trials, with the re-
mainder consisting of natural killer cells, T cells, and early 
apoptotic cells. Approximately 88% of the clinical trials are 
nowadays in phases 1 and 2, with only one trial in phase 2/3 
and one in phase 3 [100, 104].

Conclusion and Perspectives

COVID-19 is currently considered the most promi-
nent health concern worldwide. Several options are avail-
able for sensitive and accurate diagnosis of COVID-19, 
among which rRT-PCR is the standard diagnostic tool in 

almost all countries. The rapid spread of SARS-CoV-2 
and its burden on health and the economy has encour-
aged research and industrial foundations to pursuit effec-
tive therapeutic solutions for the disease. A group of med-
ications has been developed or repurposed to help virus 
clearance, symptoms relief, and rapid discharge of pa-
tients from healthcare facilities. These drug candidates 
can inhibit virus entry, membrane fusion, viral RNA syn-
thesis, or protease activity. Immunomodulatory agents 
and corticosteroids are proposed to be used in severe cas-
es to suppress the cytokine storm induced by pro-inflam-
matory cytokines. Nevertheless, the safety and efficacy of 
these drugs require further evaluation in controlled ran-
domized clinical trials.
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