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Background: Systemic metastasis is the main cause of death in patients with prostate
cancer. It is necessary to establish a more accurate model to distinguish and predict
patients with a high risk of metastasis to optimize individualized treatment.

Methods: In this study, it was determined that hypoxia could affect the metastasis-
free survival of patients with prostate cancer, and a hypoxia-related gene signature
composed of seven genes for predicting metastasis was established and verified in
different cohorts. The study further evaluated the effects of ALDOB expression on
the proliferation and invasion of the LNCaP and DU145 cell lines under hypoxia and
finally constructed a nomogram containing specific clinical characteristics of prostate
cancer combined with the hypoxia gene signature to quantify the metastasis risk of
individual patients.

Results: The hypoxia-related gene signature was identified as an independent risk
factor for metastasis-free survival in patients with prostate cancer. The expression
of ALDOB increased under hypoxia and promoted the proliferation and invasion of
LNCaP and DU145 cells. In addition, patients with a high risk score showed therapeutic
resistance and immunosuppression. Compared with other parameters, the nomogram
had the strongest predictive power and net clinical benefit.

Conclusion: The study established a hypoxia-related gene signature and a nomogram
to distinguish and predict patients with a high risk of prostate cancer metastasis, which
may help to optimize individualized treatment and explore possible therapeutic targets.

Keywords: hypoxia, prostate cancer, gene signature, metastasis, therapeutic resistance, immune infiltration

INTRODUCTION

Prostate cancer is a global health threat. According to statistics published in 2020, among the
19.3 million new cancer cases, there were 1,414,259 cases of prostate cancer, accounting for 7.3%
of the total cases and ranking third among 36 cancers (Sung et al., 2021). Of those diagnosed
with prostate cancer, 3.8% face death, and systemic metastases remain the leading cause of death
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(Sung et al., 2021). In recent years, the diagnosis and treatment of
prostate cancer have been continuously developed and improved.
For example, prostate-specific antigen (PSA) is used for early
screening of disease, and treatment is carried out according to
clinical features, such as the Gleason score (GS) and tumor
TNM stage. After treatment, the vast majority of prostate cancer
patients will eventually enter the castration-resistant prostate
cancer (CRPC) stage. However, there is insufficient evidence to
show that these clinical features are sufficient to describe tumor
invasion and metastasis (Prensner et al., 2012). Therefore, it
is necessary to identify a more sensitive and reliable predictor
to highlight patients with a high risk of metastasis for more
appropriate and individualized systemic treatment.

In cancer tissue, the imbalance in the growth and necrosis
of cells often leads to a significant increase in oxygen
demand, creating a hypoxic microenvironment that results in
inflammation, angiogenesis and other reactions to promote the
development of cancer and eventually forms a vicious cycle
(Semenza, 2012; Gilkes and Semenza, 2013; Gilkes et al., 2014).
In the field of prostate cancer research, hypoxia gene expression
patterns have been shown to be significantly different between
primary and metastatic prostate cancer (Bharti et al., 2019).
Hypoxia can not only affect the expression of cancer-related
genes (Khandrika et al., 2009; Yamasaki et al., 2013; Bowler et al.,
2018; Zheng and Bai, 2019) but also promote the proliferation,
migration and invasion of prostate cancer by activating a
variety of signaling pathways or promoting stem cell properties
(Hugo et al., 2007; Ma et al., 2011; Yang et al., 2020). Using
hypoxia-related genes as markers may help to distinguish patients
with a high risk of metastasis.

In this study, hypoxia-related genes were screened according
to published gene expression information to predict prostate
cancer metastasis. Validation was carried out in different test
sets, and then treatment response and immune infiltration were
analyzed. Finally, by combining the hypoxia gene signature and
clinical characteristics, a reliable model was established, which
ensured a high predictive ability in the horizontal comparison of
existing risk factors.

MATERIALS AND METHODS

Download and Preparation of a Patient
Dataset
A total of 1,325 different-stage prostate cancer patients with
gene expression, clinical annotation and follow-up data from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
database (GEO) platforms were included in the study. Among the
patients, 481 from the TCGA platform were used as the training
set, and their fragments per kilobase per million mapped reads
(FPKM)-normalized RNA-Seq data and follow-up information
were downloaded to construct a hypoxia-related gene predictive
model. The GSE116918 dataset, consisting of a cohort of
localized/locally advanced prostate cancer patients commencing
radical radiotherapy (with androgen deprivation therapy) and
generated by the Almac Diagnostics Prostate Disease Specific

Array (DSA) chip platform, was downloaded from GEO1, and
the 248 patients in the dataset were used as the validation
set for the model. In addition, 596 patients receiving radical
retropubic prostatectomy (RRP) from the GSE10645 dataset
(DASL Custom Prostate Panel by Gene Chip Platform2) were
used as supplementary independent validation cohorts. For the
gene expression data in all datasets, data normalization and log2
transformation were necessary.

Screening of Candidate Hypoxia Genes
and Model Construction
First, according to the Molecular Signatures Database (MsigDB)3

HALLMARKS cancer characteristic gene set, the scores for 50
pathological pathways in each sample of the training set were
calculated using the “zscore” algorithm of the single sample gene
set enrichment analysis (ssGSEA) (R package “GSVA”) (Lee et al.,
2008). Then, a hypoxia-related protein-protein interaction (PPI)
network was built by the String PPI website4. The number of
connecting nodes for each gene was calculated, and the first 50
genes were selected as hypoxia core genes and intersected in the
expression matrix of the TCGA and GEO datasets. After batch
correction, the expression matrix of the core hypoxia genes in the
TCGA and GEO was constructed. A univariate Cox proportional
hazard regression model was applied by loading the R package
“survival,” and 20 candidate genes were selected for inclusion
in least absolute shrinkage and selection operator (LASSO) Cox
regression (R package “glmnet”) and multivariate Cox stepwise
regression models (R package “survival”) (Tibshirani, 1997).
Then, the genes with a high correlation and duplicate information
were removed to optimize the model, and finally, a hypoxia risk
score was obtained by multiplying the results for each gene’s
coefficient and expression in the matrix.

Statistical and Bioinformatic Analyses
R software (version 4.0.35) and GraphPad Prism 8 were used
to perform data analysis and graphic visualization. According
to the median hypoxia risk score, patients were divided
into a high-risk group and a low-risk group. Using the R
package “ConsensusClusterPlus” to perform non-negative matrix
factorization (NMF) consensus clustering, the supplementary
cohort was divided into different groups according to the
characteristics of the remaining hypoxia genes. Heat maps,
histograms, scatter charts and Sankey diagrams were used to
show gene expression and prognosis in different groups (R
packages “reshape2,” “ggplot2,” “scales,” “cowplot,” “ggalluvial,”
and “sankeyNetwork”), and the differences between groups were
analyzed by t-tests. Principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (tSNE) algorithms
were used to reduce dimensionality to show the degree of
differentiation between two groups (R package “Rtsne”) (Reich
et al., 2008; van der Maaten and Hinton, 2008). Kaplan-Meier

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116918
2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10645
3http://www.gsea-msigdb.org/gsea/msigdb/search.jsp
4https://www.string-db.org/
5http://www.r-project.org
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survival curves and the log-rank test were used to evaluate
metastasis in patients in the high- and low-risk groups in different
clinical groups. Receiver operating characteristic (ROC) curve
(R package “timeROC”) and time-dependent receiver operating
characteristic (T-ROC) analyses (R package “pec”) were used
to evaluate the predictive ability of the model. The state of
hypoxia, cellular component (CC) and molecular function (MF)
in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were carried out
by gene set enrichment analysis (GSEA) software (version 4.1.0)
and the R package “GOplot” in different groups (Subramanian
et al., 2005). Cellminer6 was used to explore the resistance
of commonly used medicines in prostate cancer and screen
sensitive small molecule medicines (Pommier et al., 2012). The
degree of immune infiltration in different groups was obtained
by three algorithms, namely, the ssGSEA algorithm (immune
gene set downloaded from MSigDB), CIBERSORT algorithm
(immune gene set download from7) and immunophenoscore
(IPS) algorithm (Newman et al., 2015; Charoentong et al.,
2017). Additionally, the immune cells were subgrouped by the
previous pattern (Thorsson et al., 2018). A nomogram and
calibration curve were obtained by the R package “rms,” (Zhang
and Kattan, 2017) and decision curve analysis (DCA) was used
to evaluate the clinical benefits to patients with the model
(Vickers and Elkin, 2006).

Cell Culture and Transfection
Prostate cancer cell lines LNCaP and DU145 were prepared from
our research laboratory and cultured in DMEM and RPMI-1640
medium at 37◦C with 5% CO2 (each medium containing 10%
FBS). In the hypoxic group, the oxygen concentration in the
cell culture environment was set to 0.5%. The hypoxic culture
time was determined to be 72 h by a hypoxia exposure gradient
pre-experiment.

Small interfering RNA (siRNA) against ALDOB (GAA
GUAUACUCCAGAACAATT-UUGUUCUGGAGUAUACUUC
TT) and siRNA negative control (si-NC) (UUCUCCGAACGU-
GUCACGUTTACGUGACACGUUCGGAGAATT). When they
reached 70–80% confluence, LNCaP and DU145 cells were
transfected with 750 µL mixed solution of siRNA and
Lipofectamine 3000 (Invitrogen, United States) following
the instructions. Then, transfected cells were collected after 24 h
of culture for the next step.

Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR)
RNA was extracted from cells by adding TRIzol reagent
(Invitrogen, United States) and following the manufacturer’s
instructions. Then, the purity of the RNA obtained was
determined by the OD260/280 ratio, which was considered to be
very pure in the range of 1.8–2.1.

PromeScript RT Master Mix (TaKaRa, Japan) was used for
reverse transcription. The cDNA product was diluted 10 times
to prepare a qRT-PCR system with the ALDOB primer and SYBR

6https://discover.nci.nih.gov/cellminer/-home.do
7https://cibersortx.stanford.edu/

Green mix (TaKaRa, Japan). The reaction step settings were 95◦C
for 5 min in the holding stage, 40 cycles of 95◦C for 15 s and 60◦C
for 20 s and 72◦C for 40 s in the cycling stage, 95◦C for 15 s and
60◦C for 1 min and 95◦C for 15 s in the melt curve stage. Using
GAPDH as an internal reference, the relative expression levels
of different groups were determined by the 2-11Ct method
(Ivak and Schmittgen, 2001).

The primers were as follows: ALDOB (Forward: TGGC
GTGCTGTGCTGAGGAT, Reverse: CTGCTGACAGATGCTG
GCGTAG), GAPDH (Forward: AGATCATCAGCAATGCCTC
CT, Reverse: TGAGTCCTTCCACGATACCAA).

Cell Proliferation Assay
LNCaP and DU145 cell lines were inoculated in a 96-well plate.
Four groups were established, (a) normoxia group; (b) hypoxia
group; (c) hypoxia+ si-NC group; and (d) hypoxia+ si-ALDOB
group, using the culture conditions described above. After 72 h
of culture, cells were incubated for 2 h with 10 µL Cell Counting
Kit-8 (CCK-8) according to the reagent instructions, and 450 nm
OD was detected by a microplate reader.

Transwell Assay
After 24 h of starvation culture, four groups of cells were
inoculated in the upper chamber of a 24-well Transwell
chamber precoated with Matrigel (BD Bioscience, San Jose,
CA, United States) for invasion assays. Then, 500 µL medium
containing 20% FBS was added to the lower chamber. After 24 h
of culture, the Transwell chamber was stained with crystal violet
at 37◦C for 30 min, and the number of invaded cells was counted
at high magnification (200×).

RESULTS

Research Process and Identification of
Risk Factors for Hypoxia
The overall flow of this study is shown in Figure 1. First, the
ssGSEA score among 50 pathological pathways was included
in univariate Cox regression analysis to evaluate the effect of
each pathological pathway on metastasis-free survival (MFS)
(Supplementary File 2). As shown in Figure 2A, HYPOXIA had
a great impact on MFS (p = 0.0059). As the hypoxia z-score
increased, the number of patients with metastasis also increased
(Figure 2B). Next, patients were divided into high z-score and
low z-score groups according to the median z-score for hypoxia.
The number of metastases in the high-risk group was higher
than that in the low-risk group (p = 0.0312). The MFS of the
high z-score group was worse than that of the low z-score group
(Figure 2C). To date, hypoxia has been identified as a risk factor
for prostate cancer metastasis. The clinical characteristics of the
cohorts were uploaded to Supplementary File 1.

Establishment of a Gene-Related
Hypoxia Risk Score
A PPI network was constructed through the String PPI website,
and the first 50 genes were selected according to the ranking
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FIGURE 1 | Research design and process diagram.

of gene-connecting nodes (Figure 3A). Figure 3B shows 20
genes selected from the 50 genes that were significantly related
to prognosis after univariate Cox regression analysis. Then,
the 20 candidate genes were further screened by the LASSO
Cox regression model; the λ of the best model was 0.018,
containing 13 genes (Figures 3C,D). After that, the 13 genes

were included in multivariate Cox stepwise regression analysis,
and a predictive model composed of 7 genes was obtained
(Figure 3E and Supplementary File 3); the genes were aldolase
B, fructose-bisphosphate (ALDOB), glucose-6-phosphate
isomerase (GPI), heme oxygenase 1 (HMOX1), phosphorylase
glycogen muscle (PYGM), biglycan (BGN), enolase 2 (ENO2)
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FIGURE 2 | Identification of risk factors for hypoxia. (A) Univariate Cox regression analysis revealed a significant correlation between hypoxia and metastasis-free
survival. (B) The number of metastatic patients increased significantly with increasing hypoxia z-score. (C) The prognosis of the high hypoxia z-score group was
worse than that of the low hypoxia z-score group by Kaplan-Meier analysis.

and phosphoglycerate kinase 1 (PGK1). The coefficients of
these genes are shown in Figure 3F. Except for that of the
protective gene PYGM, the expression of the other genes was
significantly correlated with predicted metastasis. Finally, the
hypoxia risk score was obtained by the formula ALDOB∗
1.419194944 + GPI∗ 0.552184172 + HMOX1∗ 0.35686836
-PYGM∗ 0.490233672 + BGN∗ 0.301083663 + ENO2∗
0.39107228+ PGK1∗ 0.295317893.

The Hypoxia Risk Score Predicted Poor
Metastasis in the Training Set
In the training set, patients were divided into a high-risk group
and a low-risk group according to the median hypoxia risk score.
Obviously, the distribution of metastatic patients in the high-risk
group was higher, and it was found that the genes were highly
expressed only in the high-risk group, except for PYGM, which
was highly expressed in the low-risk group (Figure 4A). GSEA
and loss of PTEN expression (Bhandari et al., 2019) confirmed
hypoxic status of tumor in the high risk group (Figure 4B;
Supplementary Figure 1 and Supplementary File 4). Figure 4C
reveals that there were no significant correlations among the
genes in the gene signature, indicating that the model was
optimized well. In addition, PCA and tSNE analysis indicated
that the model could be used to distinguish between patients

at different risks (Figures 4D,E). Then, combined with clinical
features, the risk score was determined to be an independent
prognostic factor for MFS by multivariate Cox regression analysis
(Figure 4F). Kaplan-Meier survival curves showed that the MFS
of patients in the high-risk group was significantly worse than
that of those in the low-risk group (p < 0.001, Figure 4G).
Figure 4H implies that the area under the curve (AUC) of the
ROC curve for the hypoxia risk score within 10 years increased
over time, suggesting that the average predictive ability of the
hypoxia risk score was strong (AUC > 0.75). Additionally,
the T-ROC curve suggested that the AUC of the risk score
was higher than that of other clinical features and tended
to be stable over time (Figure 4I). Furthermore, the study
included a model containing 28 hypoxia-related genes for the
prediction of biochemical recurrence of localized prostate cancer
(Supplementary File 5) (Yang et al., 2018). The T-ROC curve also
showed that over time, the curve of the hypoxia risk score was
higher than that of the 28-gene model (Figure 4I).

Validation of the Hypoxia Risk Score in
the Test Set
The hypoxia risk score was applied to the test set to verify the
performance of the predictive model (Supplementary File 3).
Encouragingly, the distribution of metastatic patients and gene
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FIGURE 3 | Establishment of a gene-related hypoxia risk score. (A) Hypoxia-related genes in the top 50 connecting nodes in the protein–protein interaction network.
(B) Twenty hypoxia-related genes were screened by univariate Cox regression analysis. (C,D) After LASSO Cox regression was used to filter hypoxia-related genes,
the best λ value was 0.018, and 13 indicators remained. (E) Final hypoxia-related gene signature obtained by multivariate Cox stepwise regression. (F) The
coefficients of the seven genes in the signature.

expression patterns in different risk groups in test I group
(GSE116918 dataset) were the same as those in the training
group (Figure 5A). GSEA confirmed that patients in the high-risk
group in test set I had a hypoxic microenvironment (Figure 5B
and Supplementary File 4). As with the training group, PCA

and tSNE analyses demonstrated good differentiability among
different subgroups of patients (Figures 5D,E), and multivariate
Cox regression analysis confirmed that the hypoxia risk score was
an independent prognostic factor for MFS (Figure 5C). Kaplan-
Meier survival analysis validated that the MFS of high-risk
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FIGURE 4 | Distribution of the hypoxia risk score in the training set. (A) Patient survival distribution map and gene expression heat map of hypoxia-related genes at
different risk scores. (B) GSEA proved that patients with a high risk score had a hypoxic microenvironment. (C) Gene correlation heat map showing low correlation
among genes. (D,E) PCA and tSNE analysis indicated that the model could be used to distinguish between different risk groups. (F) The hypoxia risk score was an
independent prognostic factor for metastasis-free survival. (G) Kaplan-Meier survival analysis confirmed that patients with a high risk of hypoxia had a worse
prognosis. (H) The 10-year AUC determined by ROC analysis of the hypoxia gene signature was relatively high, suggesting that the predictive ability of the signature
was good. (I) Compared with those of other models and clinical characteristics, the average AUC of the hypoxia risk score was the highest, indicating that the
predictive ability of the risk score was the best.

patients was worse than that of low-risk patients (p = 0.004,
Figure 5F). ROC and T-ROC curves confirmed the good
predictive ability of the hypoxia risk score (Figures 5G,H).
However, in the supplementary GSE10645 dataset cohort, the
genes in the hypoxia risk score were incomplete because of
differences in the chip platforms. The cohort was divided into
3 clusters based on the remaining hypoxia genes according to
the optimal K value by performing NMF consensus clustering
(Figure 5I). Kaplan-Meier survival analysis showed that there
were significant differences in the MFS among different clusters,
and the MFS of cluster 2 was worse than that of cluster 1 and
cluster 3 (Figure 5J). Furthermore, according to gene expression
matrix analysis, there was a significant difference in the high
expression of the remaining hypoxia genes in cluster 2, which had
the worst prognosis (Figures 5J,K).

A High Hypoxia Risk Score Indicated a
Poor Prognosis in Different Clinical
Stratifications
Patients in the training set and test set I were divided into
different subgroups according to different clinical characteristics
(Supplementary File 6). In the age subgrouping, a high risk
score indicated worse MFS in both the early-onset prostate

cancer group (age ≤ 55 years) and the non-early-onset prostate
cancer group (age > 55 years), which was confirmed in test
set I (Figures 6A,B). However, the difference in MFS between
the high-risk and low-risk groups in the early-onset prostate
cancer group was not statistically significant (p = 0.189); this
might be due to an insufficient sample size in this group.
Patients were divided into stages of localized and locally advanced
prostate cancer according to the European Association of
Urology (EAU) risk groups. In the training set, a high risk of
hypoxia predicted a worse prognosis in each stage, especially
in the locally advanced stage, which had a p value < 0.001
(Figure 6C). In the localized low-intermediate risk stage, the
difference in MFS between the high-risk group and the low-
risk group was not statistically significant (p = 0.157), which
might be caused by the reason mentioned above; that is, the
sample size of this group was small. The previous results were
validated in locally advanced patients in test set I, and it was
noted that there was no statistically significant difference in
MFS among the localized stage patients (p = 0.240, Figure 6D).
This might be because test set I (GSE116918 dataset) includes
patients who received radical radiotherapy/chemotherapy, which
counteracts the hypoxic environment, thereby improving patient
prognosis and prolonging MFS (Schito et al., 2020). In addition,
the expression of genes in the signature was significantly
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FIGURE 5 | Validation of the hypoxia risk score in the test set. (A) Patient survival distribution map and gene expression heat map of hypoxia-related genes at
different risk scores in test set I. (B) GSEA proved that patients in test set I with a high risk score had a hypoxic microenvironment. (C) The hypoxia risk score was an
independent prognostic factor for metastasis-free survival in test set I. (D,E) PCA and tSNE analysis indicated that the model could be used to distinguish between
different risk groups. (F) Kaplan-Meier survival analysis confirmed that patients with a high risk of hypoxia had worse metastasis-free survival in test set I. (G) The
10-year AUC determined by ROC analysis of the hypoxia gene signature was relatively high in test set I, suggesting that the predictive ability of the signature was
good. (H) Compared with that of other clinical characteristics, the average AUC of the hypoxia risk score was the highest in test set I, indicating that the predictive
ability of the risk score was the best. (I) The supplementary cohort was divided into 3 clusters with the remaining hypoxia genes according to the optimal K value.
(J) Kaplan-Meier survival analysis showed that cluster 2 had worse metastasis-free survival than cluster 1 in the supplementary cohort. (K) The remaining hypoxia
genes were highly expressed in cluster 2, which had the worst prognosis.

positively correlated with the Gleason score and T stage
(Supplementary Figure 2).

Functional Analysis and Therapeutic
Response
Enrichment analysis using the KEGG and GO databases
revealed the functional differences between different groups
(Supplementary File 7). Patients in the high-risk group had more
exuberant DNA replication and cell growth and were more prone
to base mismatch and transcriptional disorders (Figure 7A).
Interestingly, in the high-risk group, in addition to the p53 and
PI3K-Akt signaling pathways, the ECM-receptor interaction and
cell adhesion molecule pathways were also activated (Figure 7B).
The results of GO analysis also confirmed that extracellular
matrix remodeling occurred in the high-risk hypoxia group
(Figures 7C,D).

The study also analyzed the resistance and sensitivity to
treatment. As shown in Figure 7E, patients in the high-risk
group were resistant to docetaxel and radiotherapy. Based on
the CellMiner database (Supplementary File 8), the correlation
analysis of commonly used therapeutic medicines for prostate
cancer verified the therapeutic resistance of docetaxel, and the
analysis showed that the medicines were sensitive to the ALDOB
gene, especially oxaliplatin and teraplatin (Figure 7F). Finally,
the first 16 small molecular medicines that are sensitive to genes
(Supplementary Figure 3) were screened, and most of the drugs
showed strong sensitivity to ALDOB.

Immune Cell Infiltration
Considering the possible effects of hypoxia on the tumor
immune environment, several different algorithms were
used to explore whether there were differences in immune
infiltration in different groups (Supplementary File 9).
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FIGURE 6 | A high hypoxia risk score indicated a poor prognosis in different clinical stratifications. (A) A high hypoxia risk score indicated a poor MFS in early-onset
prostate cancer (a, age < 55 years) and non-early-onset prostate cancer (b, age ≥ 55 years) in the training set. (B) A high hypoxia risk score indicated poor MFS in
early-onset prostate cancer (a, age < 55 years) and non-early-onset prostate cancer (b, age ≥ 55 years) in test set I. (C) A high hypoxia risk score indicated a poor
MFS in localized low- to intermediate-risk (a), localized high-risk (b), and locally advanced (c) prostate cancer in the training set. (D) A high hypoxia risk score
indicated poor MFS in localized (a) and locally advanced (b) prostate cancer in test set I. Localized low-risk: PSA < 10 ng/mL, GS < 7 (ISUP grade 1) and cT1-2a.
Localized intermediate risk: PSA 10–20 ng/mL, GS 7 (ISUP grade 2/3) or cT2b. Localized high-risk: PSA > 20 ng/mL, GS > 7 (ISUP grade 4/5) or cT2c. Locally
advanced: any PSA, any GS (any ISUP grade), and cT3-4 or cN+.

In the high-risk group, most of the negative immune
regulatory genes were highly expressed (Figure 8A),
and Treg cells were significantly increased (p = 0.013,
Figure 8B). Further calculation of the immunophenotypic
score confirmed the trend of immunosuppression in the
high-risk group. As shown in Figures 8C,D, suppressor
cells and checkpoints/immunomodulators were significantly
increased in the high-risk group (p < 0.0001). Moreover,
the results of immunophenotyping found that type C3 (good
prognosis) (Thorsson et al., 2018) was clustered with a
lower risk score. C1, C2, and C4 types, which represent a
poor prognosis (Thorsson et al., 2018), showed an increased

risk score (Figures 8E,F). Process files were uploaded to
Supplementary File 9.

Construction and Calibration of a
Nomogram Including Clinical Features
To assess the metastatic risk of prostate cancer, a nomogram
was constructed using the hypoxia score and clinical features
as parameters (Figure 9A). The calibration curve showed the
fitting degree between the predicted probability and the actual
probability of the training set at 5 years and that of the test set at
10 years, indicating that the accuracy of the nomogram was good
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FIGURE 7 | Functional analysis and therapeutic response. (A–D) KEGG and GO enrichment analysis showed that DNA replication, transcription, cell growth, and
extracellular matrix remodeling were active and that the p53 and PI3K-Akt signaling pathways were activated in patients with a high risk of hypoxia. (E) GSEA
showed docetaxel and radiotherapy resistance in patients with a high risk of hypoxia. (F) Correlation analysis between genes and common medicine sensitivity.

(Figures 9B,C). T-ROC curve analysis was used to compare the
predictive ability of the nomogram with that of other models and
parameters. The average AUC of the nomogram was the highest,
suggesting that it had the best predictive ability (Figure 9D).
DCA implied that the nomogram was the most widely used and
had the highest net clinical benefit compared with other clinical
features (Figure 9E).

Hypoxia-Mediated High Expression of
ALDOB Promoted the Proliferation and
Invasion of Prostate Cancer Cells in vitro
The ALDOB gene, which contributed the most to the signature
and was more sensitive to most medicines, was selected for
in vitro experiments to verify its effect on prostate cancer
cells under hypoxia (Supplementary File 10). According to

the sensitivity to androgen, two prostate cancer cell lines,
LNCaP and DU145, were selected. After 72 h of culture, the
expression of ALDOB in the two cell lines increased significantly
under hypoxia, and after si-ALDOB RNA transfection, the
expression was suppressed (Figure 10A). Furthermore, CCK-8
and Transwell assays confirmed that the high expression of
ALDOB promoted the proliferation and invasion of the 2 cell
lines, which were inhibited after interference (Figures 10B–D
and Supplementary File 10).

DISCUSSION

Hypoxia is a characteristic of tumor development, often
resulting from the growth rate of tumors exceeding the rate of
neovascularization. The adaptation of cancer cells to an anoxic
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FIGURE 8 | Immune cell infiltration in the high- and low-hypoxia-risk groups in the training set. (A,B) Negative immunoregulatory genes were highly expressed in the
high-risk-score group. (C) IPS results of patients with the highest (a) and lowest (b) hypoxia risk scores. (D) The IPS algorithm showed a significant increase in SC
(a) and CP (b) in the high-risk group. (E,F) Immunotyping results showed that C1, C2, and C4 types were increased in the high-risk group.

environment not only promotes the development and invasion
of cancer (Han et al., 2018; Li et al., 2021) but also leads to
the development of resistance to drug therapy, radiotherapy
and chemotherapy and reduces the efficiency of treatment
(Ranasinghe et al., 2013; Fraga et al., 2015; Casillas et al., 2018).
All these effects indicate a poor prognosis. The use of oxygenation
therapy can alleviate the hypoxic tumor microenvironment
and achieve treatment sensitization, but only patients with a
highly hypoxic microenvironment can benefit from this therapy
(Krishnamachary et al., 2020). Therefore, using the expression
of hypoxia-related genes to evaluate the level of tumor hypoxia
can not only distinguish patients with a poor prognosis but also
optimize individualized treatment.

In recent years, research on the development of hypoxia
signature models has increased, and these models have been
used to predict the behavior of a variety of cancers, including
lung cancer, gastric cancer, hepatocellular carcinoma, melanoma,
and oral squamous cell carcinoma (Suh et al., 2017; Liu et al.,
2020; Mo et al., 2020; Zhang et al., 2020; Shou et al., 2021).
Yang et al. (2018) developed a 28-gene hypoxia-related prognostic

signature in 2018 to predict biochemical recurrence of localized
prostate cancer. This is an excellent study, which is convincing
and satisfactory from the design to the results. However, as
the authors noted, hypoxia-related gene signatures have the
potential to be further simplified. Moreover, systemic metastasis
is the main cause of death in patients with prostate cancer, and
the gene signature for biochemical recurrence may ignore the
hypoxia-related genes that play important roles in the process
of metastasis. Therefore, a new streamlined hypoxia-related gene
signature needs to be developed to distinguish patients with a
high risk of metastasis and to guide treatment.

Briefly, this study used advanced bioinformatics analysis
algorithms to determine a hypoxia-related signature composed
of seven genes, which had a strong ability to distinguish
and predict patients with a high metastatic risk in different
cohorts. Functional analysis revealed activation of p53, PI3K-Akt
signaling pathways and active extracellular matrix remodeling
at high hypoxia risk, which may be closely related to the
occurrence of metastasis. Further analysis showed that there
was significant treatment resistance and immunosuppression in
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FIGURE 9 | Construction and calibration of a nomogram including clinical features. (A) By combining the hypoxia risk score and clinical characteristics, a nomogram
was constructed. (B,C) The 5-year calibration curve (training set) and 10-year calibration curve (test set I) showed a good degree of fit. (D) T-ROC analysis showed
that the average AUC of the nomogram was the highest in the training set (left) and test set I (right), indicating that the predictive ability of the nomogram was the
best. (E) DCA confirmed that the nomogram had the greatest scope of application and net benefit.

patients with a high risk score. In addition, the most important
gene in the signature, ALDOB, was tested in vitro to verify the
relationship between its expression and hypoxia and its effect on
prostate cancer cells. The results showed that hypoxia increased
the expression of ALDOB and promoted the proliferation and
invasion of LNCaP and DU145 cells. Finally, to quantify the risk
of systemic metastasis, a nomogram combining clinical features
and the hypoxia risk score was constructed. The calibration
curve, T-ROC curve and DCA curve all proved the high reliability
and accuracy of the nomogram.

Among the genes in the signature, ALDOB made the
greatest contribution to the risk score. Previous studies have
shown that the absence of ALDOB leads to the loss of Akt
inhibition, promotes the development of cancer and indicates
a poor prognosis (Lian et al., 2019; Sun et al., 2019; He
et al., 2020). This seems to be contrary to the conclusions
of this study, but there are also studies that support the
conclusions of this research. The expression of ALDOB is
upregulated in liver metastatic tumor cells, and the upregulation
of glucose metabolism provides energy for metastatic tumor
cells, resists apoptosis and autophagy, inhibits oxidative stress,
and maintains tumor cell proliferation under severe hypoxia,
while a low-fructose diet significantly reduces the growth of
liver metastatic cells (Chae et al., 2016; Bu et al., 2018; Leong,
2018). Are these lines of evidence contradictory? Further analysis

in this study led to a reasonable inference. By comparing the
expression of ALDOB between normal prostate cells and prostate
cancer cells, it was found that ALDOB was highly expressed in
normal tissues, while ALDOB expression was very low in tumor
tissues (Supplementary Figure 4). However, as the Gleason
score and T stage increased, the expression of ALDOB was
upregulated at a very low level, which might be particularly
obvious in liver metastatic tumors, but it was still far below
the level of expression in normal tissues. The above results
suggested that low expression of the ALDOB gene might be a
characteristic of cancer tissue, and upregulation on the basis
of this low expression level might indicate cancer metastasis,
especially liver metastasis. In addition, based on the results of
medicine sensitivity analysis, ALDOB has great potential as a
targeted marker.

This study suggests that extracellular matrix remodeling is an
important pathway for distant metastasis. BGN is a proteoglycan
in the extracellular matrix that undergoes hormone-dependent
regulation, and its expression is closely related to the level
of androgen receptor (Jacobsen et al., 2017). In addition,
17-estradiol (E2) signaling positively regulates BGN expression
(Majumdar et al., 2019). This may provide a continuing
impetus for the invasion and metastasis of prostate cancer
during the androgen deprivation stage, and high expression
of BGN may indicate that prostate cancer has evolved into
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FIGURE 10 | In the DU145 and LNCAP prostate cancer cell lines, the expression of ALDOB was increased under hypoxia (A), promoting cell proliferation (B) and
invasion (C,D).

CRPC or metastasized. HMOX1 encodes heme oxygenase-1
(HO-1), which can maintain the stability of prostate cancer cells.
HMOX1 has a protective effect on androgen-dependent prostate
cancer cells during androgen deprivation therapy, promoting
the transformation into androgen-independent prostate cancer

cells and overexpression (Zhang et al., 2021). It is worth noting
that key bone markers were significantly upregulated in prostate
cancer cells cocultured with primary mouse osteoblasts induced
by HO-1, which proved that HMOX1 plays an important role in
bone metastasis of prostate cancer.
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A hypoxic environment can inhibit immunity and promote
the invasion and metastasis of cancer (Mo et al., 2021). The
conclusion of this study is consistent with these effects: in the
high hypoxia score group, the negative immunoregulatory genes
were in a state of high expression, while a large number of Treg
cells had infiltrated. Notably, PYGM, which is underexpressed in
invasive cancer (Dieci et al., 2016), was found to be involved in
the activation and proliferation of T cells (Llavero et al., 2015).
This process weakens the immune surveillance of invasive cancer
cells in hypoxic environments. Experiments have shown that
hypoxia-targeted therapy can restore T cell infiltration and make
prostate cancer sensitive to immunotherapy (Jayaprakash et al.,
2018). Therefore, PYGM, which is not only related to hypoxia
but also involved in T cell activation, is expected to become an
effective therapeutic target.

There were some limitations to this study. First, different
patients may have been treated differently, which could affect
gene expression, in turn could biasing the data analyzed to
construct the signature, or affecting the comparability of end
points across all cohorts. To reduce this potential bias, more
rigorous prospective cohort studies need to be designed. Second,
this study only conducted in vitro phenotypic experiments for
ALDOB, and further studies on other genes and mechanisms
need to be carried out. Most importantly, there is no doubt that
any newly established nomogram, regardless of its reliability and
predictive power, should be verified in large-scale basic trials and
prospective clinical studies before clinical application.

Limitations cannot belittle virtues, and this study is the first to
use hypoxia gene characteristics to predict metastasis of prostate
cancer. In addition, the study explained the therapeutic response
and immune infiltration observed under hypoxia and speculated
on the possible mechanism of hypoxia gene characteristics.

CONCLUSION

Briefly, this study screened the characteristics of hypoxia genes
to predict prostate metastasis, and with further inclusion of
prostate-specific clinical features, a nomogram was established
to quantify the risk of metastasis. This work can not only
help to identify patients with a high risk of metastasis to
begin individualized treatment as early as possible but also
provide a new possible therapeutic target for the prevention
and treatment of prostate cancer metastasis and new ideas for
future research.
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