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Diabetic nephropathy (DN) is now the single commonest cause of end-stage renal disease (ESRD) worldwide and one of the
main causes of death in diabetic patients. It is also acknowledged as an independent risk factor for cardiovascular disease
(CVD). Since sitagliptin was approved, many studies have been carried out revealing its ability to not only improve
metabolic control but also ameliorate dysfunction in various diabetes-targeted organs, especially the kidney, due to putative
underlying cytoprotective properties, namely, its antiapoptotic, antioxidant, anti-inflammatory, and antifibrotic properties.
Despite overall recommendations, many patients spend a long time well outside the recommended glycaemic range and,
therefore, have an increased risk for developing micro- and macrovascular complications. Currently, it is becoming clearer that
type 2 diabetes mellitus (T2DM) management must envision not only the improvement in glycaemic control but also, and
particularly, the prevention of pancreatic deterioration and the evolution of complications, such as DN. This review aims to
provide an overview of the current knowledge in the field of renoprotective actions of sitagliptin, namely, improvement in
diabetic dysmetabolism, hemodynamic factors, renal function, diabetic kidney lesions, and cytoprotective properties.

1. Introduction

Type 2 diabetes mellitus (T2DM) is recognized as being a
group of chronic diseases characterized by hyperglycaemia
where the importance of protecting the body from excessive
glucose circulation cannot be overstated. The central key
features of T2DM are a defect in insulin resistance and/or
insulin secretion, which lead to hyperglycaemia and disrupt
the normal relationship between insulin sensitivity and
pancreatic β-cell function [1]. Degeneration of Langerhans
islets with β-cell loss is secondary to insulin resistance
and is regarded as the most important lesion for disease
progression [2–5]. Currently, eight central players are
considered to be involved in T2DM pathophysiology—the
ominous octet—composed by muscle/liver insulin resistance,
β-cell failure, enhanced lipolysis, hyperglucagonaemia,
dysregulation of hepatic glucose production, brain insulin

resistance, increased renal glucose reabsorption, and incretin
hormone [glucagon-like peptide 1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP)] deficiency, all
contributing to a persistent state of hyperglycaemia [6].
GLP-1 and GIP are peptide hormones that are involved in
the physiologic regulation of glucose homeostasis. These
hormones are secreted from the gastrointestinal tract after a
meal and stimulate insulin secretion in a glucose-dependent
manner [7]. In T2DM, there is an “incretin defect,”manifested
through the reduction in incretin bioavailability, which in part
is due to their rapid inactivation by dipeptidyl peptidase-4
(DPP-4) [8]. It is now also acknowledged that biochemical
pathways, such as apoptosis, low-grade inflammation, and
oxidative stress, which are mainly fuelled by hyperglycaemia
and hyperlipidaemia, are key mediators of insulin resistance
and β-cell dysfunction and are involved in the overall
aggravation of the diabetic state [3, 9–15]. The persistent
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dysfunction of these metabolic pathways in the “ominous
octet” organs, through the direct and indirect effects of
hyperglycaemia, seems to have an important role in the devel-
opment of T2DM’s major long-term complications [16, 17].

Generally, diabetic complications are divided into macro-
vascular (coronary artery disease, peripheral arterial disease,
and stroke) and microvascular complications (nephropathy,
retinopathy, and neuropathy). T2DM-induced micro- and
macrovascular complications and their pathologies are major
contributors to disease morbidity and mortality, respectively
[18, 19]. It is now known that inflammation promotes devel-
opment and progression of diabetic microangiopathy, which
trigger extracellular matrix protein synthesis and capillary
basement membrane thickening; these conditions contribute
to the development of severe diabetic complications, such as
nephropathy, retinopathy, and neuropathy [20–22].

Diabetic nephropathy (DN) originates insidious chronic
kidney disease (CKD) and is recognized as the single most
common cause of end-stage renal disease (ESRD) and one
of the main causes of death in diabetic patients worldwide,
being also acknowledged as an independent risk factor for
cardiovascular disease (CVD) [23–25].

T2DM can generally be prevented with interventions
such as change in dietary habits and physical activity. How-
ever, individuals with established diabetes should be treated
with antidiabetic drugs [26, 27]. T2DM therapy has vastly
improved in the last 10 years with the availability of new drugs
and drug classes. These pharmacological agents improve
glycaemic control by increasing insulin secretion, amelio-
rating insulin action, decreasing hepatic gluconeogenesis,
and delaying the absorption of carbohydrates [28, 29]. Cur-
rently, T2DM can be managed with biguanides, sulfonylureas,
meglitinide derivatives, alpha-glucosidase inhibitors, thiazoli-
dinediones, selective sodium-glucose transporter-2 (SGLT2)
inhibitors, insulins, amylinomimetics, bile acid sequestrants,
dopamine agonists, and incretin-based therapies, which
include glucagon-like peptide1 (GLP-1) agonists and DPP-4
inhibitors, of which sitagliptin was the first to be discovered
and marketed [29, 30]. Moreover, these drugs may be used
in various therapeutic combinations as an add-on therapy
for improved management of hyperglycaemia [29].

Treatment regimens of T2DM that reduce the levels of
HbA1c to near or below 7% are able to significantly reduce
the risk of microvascular complications and diabetes-related
death [31–36]. Current recommendations by the consensus
of the American Diabetes Association (ADA) and European
Association for the Study of Diabetes (EASD) justify the selec-
tion of appropriate treatment based on its capability to achieve
and maintain desired glycaemic goals [36–38]. Despite all
recomendations, many patients spend a long time well outside
the target glycaemic range and, therefore, have an increased
risk for developing micro- and macrovascular complications
[6, 39]. Currently, it is becoming clearer that T2DM manage-
ment must envision not only glycaemic control but also and
particularly, the mechanisms behind progression of pancreatic
deterioration and evolution of diabetic complications [40, 41].

The ground-breaking incretin-based therapies that
encompass GLP-1 agonists and DPP-4 inhibitors seem to
address a previously unmet need in diabetes by modulating

glucose supply [42, 43]. In fact, DPP-4 inhibitors, and
especially sitagliptin, have progressively increased their
therapeutic prominence in the management of T2DM by
their capability to potentiate incretin activity. Various studies
have described many pleiotropic effects of sitagliptin on
various organs and tissues. The knowledge that DPP-4 has
the highest expression levels in the kidneys of mammals,
which is additionally upregulated in DN [44], indicates that
DPP-4 inhibition by sitagliptin is a plausible therapeutic
target for management of diabetic nephropathy.

This review outlines the evidence found in previous stud-
ies regarding the renoprotective action of sitagliptin in DN,
focusing on renal function and lesions, as well as kidney tis-
sue cytoprotective properties, particularly its antiapoptotic,
antifibrotic, anti-inflammatory, and antioxidant properties.

2. The Incretin System in Diabetic Nephropathy

2.1. Overview of DN Pathophysiology. The kidney, besides
contributing to the aggravation of hyperglycaemia in
T2DM through gluconeogenesis [45] and glucose reabsorp-
tion, does not remain unscathed through diabetic evolution,
developing progressive lesions and functional impairments
that lead to DN [46]. Dysmetabolism, with a central role for
chronic hyperglycaemia, and hemodynamic factors, namely,
overactivity of the renin-angiotensin-aldosterone system
(RAAS) and vascular endothelial growth factor (VEGF) defi-
ciency, have key roles in the pathophysiology of DN. Chronic
hyperglycaemia and dyslipidaemia induce mitochondrial
deregulation and oxidative stress in kidney cells, which acti-
vate several metabolic pathways, including protein kinase C
[47], nonenzymatic glycation [48], oxidative stress [49–54],
and inflammation [55, 59].

Inflammatory response is mediated by diverse types of
inflammatory cells (including macrophages, monocytes,
and leukocytes) and molecules (such as adhesion molecules,
chemokines, and cytokines, namely, TNF-α and IL-1β)
[55, 60]. Besides altering glomerular hemodynamics and
promoting increased vascular permeability, TNF-α activates
several signalling pathways leading to apoptosis and necrosis.
IL-1β also modifies vascular permeability and increases the
expression of chemokines that induce proliferation and
synthesis of extracellular matrix in the mesangium [57].
As inflammation persists, renal tissues are damaged,
occurring endothelial dysfunction, mesangial nodule for-
mation (Kimmelstiel-Wilson bodies), renal fibrosis, and
apoptosis [55, 60].

Hemodynamic factors [61, 62] predominantly mediated
by angiotensin II play a role via overactivity of the RAAS
and promotion of VEGF deficiency. Interaction of metabolic
factors, such as obesity and chronic hyperglycaemia, alters
vasoactive regulating mechanisms of afferent and efferent
arteriolar tonus, leading to increased glomerular capillary
hydrostatic pressure, hyperperfusion, hyperfiltration, and
microalbuminuria. These early renal hemodynamic changes,
combined with systemic hypertension, are important in the
development and progression of renal disease in T2DM [63].

Albuminuria is mostly glomerular in origin, as albumin
must cross the glomerular filtration assembly, which is
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composed of three main cellular barriers that are of
utmost importance for the ultrafiltration process, the fen-
estrated glomerular endothelial cells, glomerular basement
membrane (GBM), and glomerular epithelial cells or
podocytes. Alterations in this three-layered structure, like
increased intraglomerular pressure, loss of negatively
charged glycosaminoglycans in the basement membrane,
and further in disease evolution, and increase in basement
membrane pore size, contribute to albuminuria [64]. An
increasing number of proteins have been identified to be
present in foot projections of podocytes. Nephrin is a
zipper-like protein that plays a functional role in the struc-
ture of the slit diaphragm. The spaces between the teeth of
the zipper allow selective transport of small molecules
(such as glucose and water) retaining, however, large
proteins. Evidence suggests that nephrin could play a key
role in glomerular filtration barrier and development of
proteinuria as it is found to be downregulated in kidney
failure and in diabetic rats [51]. In diabetes, early flatten-
ing and retraction of podocytes’ foot processes are associ-
ated with thickening of the GBM. Thickening of GBM, as
well as accumulation of mesangial matrix, and increased
numbers of mesangial cells are considered as initial micro-
scopic abnormalities. As the disease progresses, there is a
close relationship between mesangial expansion and declin-
ing of glomerular filtration. Mesangial expansion also corre-
lates inversely with capillary filtration surface area, which
itself correlates to glomerular filtration rate [64]. Long-term
persistence of the previous factors ultimately induces histo-
logical abnormalities in glomeruli, tubules, interstitium, and
renal vascular tissues, affecting basement membranes, podo-
cytes, endothelial, and mesangial cells, which eventually
become irreversible [64–68].

The cumulative presence of cooperative risk factors,
namely, obesity, hypertension, insulin resistance, hypergly-
caemia, dyslipidaemia, and microalbuminuria, appears to
support not only the aggravation of CKD but also the
development of CVD called the cardiorenal metabolic syn-
drome [69]. However, the underlying mechanisms of micro-
and macrovascular complications of diabetes are not yet
completely clarified. It seems that diabetic microangiopathy
in conjunction with the aforementioned diabetogenic factors,
together with neovascularization of vasa vasorum, can lead to
macrovascular complications. Consequently, alterations in
small arteries and capillaries may be responsible not only
for the enduring microvascular complications but also for
CVD in diabetes and, thus, may constitute one more link
between DN and CVD [18].

2.2. The Role of the Incretin System in the Pathophysiology of
DN. The presence of the incretin hormone GLP-1 and of its
receptor (GLP-1R) in the kidneys suggests that the incretin
system can play a role in the modulation of kidney function
[70, 71]. Incretin dynamics, which are significantly altered
in T2DM, seem also to be implicated in alteration of vascular
tonus, natriuretic, and diuretic properties in the kidney [72].
The localization of GLP-1R in endothelial cells and in the
proximal renal tubules plays a role in regulating the compo-
sition of urine. Stimulation of the GLP-1R in blood vessels

results in relaxation of smooth muscle and increased renal
blood flow [73].

In the normal kidney, stimulation of GLP-1R by GLP-1
results in inactivation of the Na+/H+ exchanger isoform 3
(NHE3) transporter, blocking Na+ and other electrolytes
retrieval from tubular fluid, thus resulting in natriuresis and
water loss, and possibly, lowered blood pressure [74]. How-
ever, DPP-4 has its highest cellular expression in the kidneys
of mammals, being found in the brush border of the proximal
tubules, endothelium of the glomerular capillaries, and epi-
thelium of Bowman’s capsule [8, 44, 75]. In T2DM, DPP-4
is additionally upregulated in glomeruli of patients with
DN, being implicated in the reduction of the half-life of
GLP-1 in the kidney [44, 76] and altering its natriuretic and
diuretic properties [76].

Other pathophysiological interventions by DPP-4 seem
to involve its interaction with extracellular matrix proteins
in the kidney during the development and evolution of DN,
but there is still insufficient data demonstrating that selective
DPP-4 inhibition is able to affect these independent interac-
tions [75]. The association between DPP-4 and integrin β1
appears to promote endothelial-to-mesenchymal transition
(EndMT) by negatively regulating endothelial viability sig-
nalling via suppression of the VEGF-receptor 2 and induc-
tion of VEGF-receptor 1 in endothelial cells. It seems that
DPP-4 inhibition is capable of inhibiting EndMT and trans-
forming growth factor-β2- (TGF-β2-) induced Smad3 phos-
phorylation, and thus, the progression to renal sclerosis.
EndMT is a known contributor to the accumulation of acti-
vated fibroblasts and myofibroblasts in kidney fibrosis [77].

Furthermore, DPP-4 might be implicated in the inac-
tivation of stromal-derived factor-1 alpha (SDF-1α), a
chemokine linked to the migration of hematopoietic and
endothelial progenitor cells (EPCs) to sites of ischemic
injury, involved in tissue repair and in the response to
tissue hypoxia [44]. It has been reported that DPP-4 inhi-
bition is able to recruit EPCs to sites of [78].

Direct effects of DPP-4 on immune cells and indirect
effects through GLP-1-dependent and GLP-1-independent
pathways suggest that enzyme inhibition may have beneficial
effects beyond glycaemic control, which may contribute to
CKD and CVD outcomes [71].

3. Sitagliptin

3.1. Pharmacokinetic and Pharmacodynamic Properties of
Sitagliptin. Sitagliptin is an oral antidiabetic drug with a rec-
ommended dose of 100mg once a day. Oral absorption is not
affected by food. Sitagliptin displays 87% of bioavailability
and a reversible fraction bound to plasma proteins of 38%
[79]; its half-life is around 12.4 hours; hepatic metabolism
of sitagliptin is minimal, mainly by cytochrome P450 3A4,
while excretion occurs mainly (70–80%) by the kidney in
its unchanged form, with a renal clearance of approximately
350ml/min [80]. In general, the pharmacokinetic profile of
sitagliptin is similar in both healthy volunteers and T2DM
patients. The pharmacokinetic properties of the drug have
also been evaluated in special patient populations with vary-
ing grades of hepatic and renal dysfunction. As a result of its
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metabolism and elimination route, dose adjustment is only
required in patients with severe renal insufficiency, being
effective and safe in patients with mild/moderate renal or
hepatic impairment [81–85]. No dosage adjustment is nec-
essary related to age, gender and race, or body mass index.
Sitagliptin also has a low propensity for pharmacokinetic
drug interactions [7].

Sitagliptin is a potent and highly selective DPP-4 com-
petitive inhibitor that does not affect the closely related
enzymes DPP-8 or DPP-9 at therapeutic concentrations
[75–86]. Sitagliptin acts by inhibiting over 80% of the activity
of DPP-4 enzyme (at 12 h postdose for 50mg/day and at
24 h postdose for ≥100mg/day), which is responsible for
degrading GLP-1, preventing therefore its inactivation.
This increases and prolongs plasma concentrations of the
active form of GLP-1, allowing the consequent stimulation
of insulin synthesis and secretion from pancreatic β-cells
in a glucose-dependent manner [87–90].

As T2DM patients exhibit relative resistance to the
actions of GIP [91], the main goals of DPP-4 inhibitors are
to prolong the beneficial effects of endogenous GLP-1 [92]
in order to maintain its insulinotropic activity [93]. Glycae-
mic levels are then further regulated by the resulting higher
insulin levels and glucagon suppression from the direct
action of GLP-1 on pancreatic α-cells [94]. Sitagliptin
reduces blood glucose levels, in either the postprandial or
the fasting state. It works differently from the previous drugs
available for diabetes treatment and is orally active [95, 96].

Clinical trials have demonstrated the efficacy of sitaglip-
tin in terms of improving glycaemic control in T2DM
patients, used as either monotherapy, initial combination
therapy (usually with a fixed dose combination of sitaglip-
tin/metformin) or add-on therapy to metformin or to
other antihyperglycaemic drugs, with or without metfor-
min. Sitagliptin showed efficacy in decreasing HbA1c, fasting
plasma glucose (FPG), and postprandial plasma glucose
(PPG) levels and also increasing the proportion of patients
achieving target HbA1c levels (<7.0%), as shown in several
clinical studies [79, 97–100].

3.2. Sitagliptin Affords Protection in Organs Targeted by
Diabetes. Experimental studies performed in animal models
of T2DM that were treated with sitagliptin showed remark-
able beneficial effects on glucose and HbA1c levels, an
improvement of insulin resistance, together with promotion
of weight loss and amelioration of lipid profile [101–110].
Moreover, sitagliptin was able to consistently alleviate
oxidative stress and inflammation, which are key players
in diabetes pathophysiology and in the development of
DN [51, 57, 103, 111].

Sitagliptin promotes a conjoined improvement in dyslipi-
daemia and hypertension, which are interactive factors for
CKD and CVD [104, 107–111]. Sitagliptin attenuates the
progress of atherosclerosis in apolipoprotein-E-knockout
mice via AMPK- and MAPK-dependent mechanisms
[110]. Several reports have corroborated the cardiovascular
protective aspects and have also identified cytoprotective
properties, such as a decrease in heart oxidative stress,
inflammation, and apoptosis [19, 78, 103, 112–118].

Concerning the impact of sitagliptin on lipid profiles in
T2DM patients, the majority of studies reported a benefi-
cial effect on triglycerides (TGs), high-density lipoprotein
cholesterol (HDL-c), and low-density lipoprotein choles-
terol (LDL-c) [119, 120]. DPP-4 inhibition also appears
to improve endothelial function in diabetic patients, in
both a GLP-1-dependent and GLP-1-independent manner
[121, 122]. Furthermore, sitagliptin was able to increase
EPC levels in diabetic patients [78].

Our research group has extensively studied the protective
effects of sitagliptin on various organs targeted by diabetes,
namely, the pancreas, retina, and kidney, in an animal model
of T2DM. Sitagliptin was able to prevent the aggravation of
both endocrine and exocrine pancreatic histopathological
lesions and presented antiapoptotic and anti-inflammatory
properties, as well as decreased insulin resistance and pro-
proliferative and angiogenic actions [103, 123]. In the retina,
sitagliptin treatment prevented changes in the endothelial
subcellular distribution of tight junction proteins and
improved nitrosative stress and inflammatory and apoptotic
states [124]. Later studies in type 1 diabetic rats revealed that
sitagliptin could prevent the increase in blood-retinal barrier
permeability and decrease the retinal inflammation state and
neuronal apoptosis [125]. Our studies in the kidney also
revealed protective properties [8, 126]. Other authors have
also found diabetic lesion improvement in the pancreas asso-
ciated to antiapoptotic, pro-proliferative [111, 127–131], and
anti-inflammatory properties [132–134].

Besides decreasing insulin resistance [5, 135, 136] and
improving hepatic insulin sensitivity, sitagliptin seems also
to prevent steatosis [137] through GLP-1R signalling in the
liver and reduction of endoplasmic reticulum stress [138].
GLP-1R has been found to be expressed in human hepato-
cytes [138]. However, other authors failed to detect GLP-1R
mRNA transcripts in human, rat, or mouse liver [139].
Antiapoptotic effects on human hepatoma cells by DPP-4
inhibition have also been identified [140].

Treatment of nonobese diabetic mice with sitagliptin
not only prevented linoleic acid-induced adipose tissue
hypertrophy but also protected against adipose tissue
inflammation [131, 137].

In T2DM rats with uncontrolled neuropathy, sitagliptin
as add-on to insulin therapy produced neuroprotective
effects and ameliorated hyperalgesia, oxidative stress, and
inflammation, more than either drug alone [141].

4. Sitagliptin Affords Renoprotection in
Diabetic Nephropathy

4.1. Effects of Sitagliptin on Renal Function. The effects of
sitagliptin on DN, using the ZDF rat, noticeably reduced
renal dysfunction and injury in this model. In fact, sitagliptin
treatment was able to decrease blood urea nitrogen (BUN)
levels to values identical to those observed in lean control
rats, suggesting an amelioration of renal function [126].
Nevertheless, serum creatinine levels were unchanged
between study groups, which are in accordance with others
using the ZDF rat as an animal model [106, 142].
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Direct vasodilator effects have also been described for
DPP-4 inhibitors [143]. In this regard, interactions of
angiotensin II and DPP-4/GLP-1 signalling have been
proposed as one of the mechanisms for the blood pres-
sure- (BP-) lowering effect of DPP-4 inhibition [144].
Sitagliptin seems to be able to lower BP in a GLP-1-
dependent manner through GLP-1R localized in renal
endothelial cells and in the proximal renal tubules, which
play a role in regulating the composition of urine. DPP-4
inhibition by sitagliptin administration increases GLP-1
availability which stimulates GLP-1R in blood vessels,
through the sequential activation of the PKA/LKB1/
AMPKα/eNOS axis, thus inducing relaxation of smooth
muscle and improvement of renal blood flow [143, 145].

There are solid evidences that the proximal tubules play a
major role in microalbuminuria in DN, namely, in early
stages of the disease [146, 147]. In addition, stimulation of
GLP-1R in the proximal tubules results in increased loss of
salt, water, and electrolytes in urine. The latter occurs as the
GLP-1Rs situated in proximal convoluted tubules of the
kidneys are functionally linked to NHE3 transporters.
NHE3 promotes recovery of Na+ and other electrolytes
from the tubular fluid (and thus from urine), thereby
returning them into the circulation. Activation of the
GLP-1R by GLP-1 results in inactivation of NHE3, which
leads to increased Na+ loss in urine, consequentially,
through osmotic effects, to increased fluid loss, and possi-
bly, to lowered BP [74]. An association of NHE3 with
DPP-4 was found in the proximal tubule, which might
affect NHE3 surface expression and/or activity [148]. Fur-
thermore, DPP-4 inhibition, in experimental models of
obesity and heart failure, was able to upregulate megalin, a
receptor that mediates endocytosis of proteins in the
proximal tubule [149, 150]. DPP-4 inhibition improved
kidney injury and proteinuria in obese rodent models
[126, 150–152]. Consistently, Aroor et al. have demon-
strated that increased DPP-4 activity, evoked by angiotensin
II, suppresses megalin expression in mice, an effect that was
partially abolished by using a DPP4 inhibitor [153].

Effects of GLP-1 on lowering BP have been reported in
both animal and human studies [154, 155]. The natriuretic
and diuretic properties of GLP-1 were proved in infusion
studies in a rat model of salt sensitivity by chronic intrave-
nous infusion of GLP-1 [72]. Although glycaemic levels
affect renal pathophysiology, the previously mentioned
effects of incretin protection appear to be independent of
these levels, although the underlying mechanisms still
remain to be clarified [156, 157]. Diuretic and natriuretic
actions of DPP-4 inhibitors seem to offer renoprotection
in the setting of hypertension and other disorders of
sodium retention. However, in the case of sitagliptin, avail-
able data is not yet sufficient to confirm this protective
effect [74, 76].

4.2. Effects of Sitagliptin on Renal Lesions. Although DN has
been traditionally considered primarily a glomerular disease,
it is now widely accepted that the rate of function deteri-
oration correlates best with the degree of renal tubuloin-
terstitial fibrosis. This suggests that although the primary

event is a condition marked by glomerular changes resulting
in proteinuria, the long-term outcome is determined by
events in the renal interstitium [158, 159].

In preclinical studies, initial histopathological observa-
tions of DN focused mainly on glomerular lesions, alluding,
only briefly, to tubulointerstitial lesions and considering
their presence as a secondary lesion of DN [160, 161]. The
description of vascular lesions in the kidney was absent in
animal model studies and could be scarcely found in a few
human DN reports. Thus envisioning evaluation conformity
and better correlation between human nephropathy and
renal lesions observed in animal models, the international
histopathological classification, currently approved for
human DN, should be adopted in these studies. This histo-
logical classification was established in 2010 and evaluates
glomerular, tubulointerstitial, and vascular lesions in a semi-
quantitative manner, according to their severity and tissue
distribution [162].

In experimental animal models, diabetic glomerular
lesions initially display thickening of the GBM and mesan-
gial expansion, which are followed by the appearance of
nodular sclerosis and vascular pole hyalinization, accom-
panied by glomerular hypertrophy. With disease aggrava-
tion, glomerulosclerosis and glomerular atrophy become
evident (Figure 1(a)), confirming the link between diabetes
(hyperglycaemia and hyperlipidaemia) and progressive
renal injury [8, 126].

In the tubulointerstitium (Figure 1(a)), tubular hypertro-
phy and associated basement membrane alterations (thick-
ening and irregularity) precede interstitial fibrosis, tubular
atrophy (IFTA), and formation of hyaline cylinders, which
accompany progressive renal dysfunction (Figure 1(a)).
There seems to be a correlation between aggravation of
tubulointerstitial and glomerular lesions, which is suggested
by the aggravation of both glomeruli and interstitium [126].
Interstitial enlargement also correlates with glomerular
filtration, albuminuria, and mesangial expansion. It has been
suggested that the accumulation of protein in the cytoplasm
of proximal tubular cells causes an inflammatory reaction
which leads to tubulointerstitial lesions [64, 163].

Arteriolar hyalinosis and arteriosclerosis are the main
vascular lesions found in human DN and also in some exper-
imental animal models of diabetes (Figure 2(a)), and simi-
larly, also aggravate with disease progression [126, 162].
Various studies have shown that DPP-4 inhibition is able to
improve renal lesions in experimental animal models. In fact,
in the obese diabetic ZDF rat, sitagliptin treatment amelio-
rated glomerular, tubulointerstitial (Figure 1(b)), and vascu-
lar lesions (Figure 2(b)) [126]. Other studies have also
reported that suppression of DPP-4 activity and/or protein
expression resulted in an amelioration of kidney fibrosis,
which was correlated with inhibition of EndMT and reduc-
tion of inflammatory and fibrotic markers [164–166]. Similar
histopathological improvements with incretin therapies have
been disclosed by other studies [166–168].

4.3. Renal Cytoprotective Effects of Sitagliptin. Several authors
have been postulating that gliptins could theoretically
avoid or delay diabetic complications [40, 169–170], namely,
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due to reduction of oxidative stress and inflammation, as
well as by antiapoptotic and pro-proliferative properties
on various organs and tissues, including the kidney
[101–103, 138, 171, 172].

Considering that sitagliptin is not able to completely
normalize hyperglycaemia in studies using low doses
[8, 103, 126], an alternative mechanism for the beneficial
effect on kidney function/lesions can occur by a direct tissue
DPP-4 inhibition, via GLP-1-dependent and/or GLP-1-
independent pathways. The GLP-1-dependent activity is
reinforced by the expression of GLP-1R in the kidney. In fact,
there are several mechanisms by which direct renoprotection

could occur. GLP-1 has been associated with the protection
of mesangial cells, as well as with the reestablishment of
Na+, acid-base and fluid homeostasis, which contributes to
BP lowering and, collectively, to renoprotection [173–175].
The GLP-1-independent effects have been associated with
other known substrates of DPP-4, such as high mobility
group box 1 protein (HMGB1), meprin β, neuropeptide Y
(NPY), and peptide YY (PYY) [76, 164].

It is known that DPP-4 exhibits its enzymatic activity
in both membrane-anchored cell-surface peptidase and as
a smaller soluble form in blood plasma [77, 131, 176]. In
fact, there are some studies suggesting that microvascular
endothelial cells are the main sources of endogenous
DPP-4 [177, 178]. In addition, in vitro studies showed
that both DPP-4 mRNA expression and enzyme activity
were enhanced by exposure of human glomerular endo-
thelial cells to high glucose concentrations [179–181]. In
agreement, our research group has recently demonstrated
that diabetic rats present an increased protein expression
of DPP-4 in the kidney, when compared to nondiabetic
animals [8].
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Figure 1: Effects of sitagliptin treatment on diabetic
nephropathy lesions in an experimental model of type 2 diabetes.
(a) Histopathological lesions in untreated diabetic nephropathy.
Glomerular lesions: (A) glomerulosclerosis, (B) nodular sclerosis,
(C) thickened capsule of Bowman, and (D) normal glomerulus.
All other glomeruli on the image display various degrees of
mesangial expansion. Tubulointerstitial lesions: (E) hyaline
cylinders, (F) irregular shape of hyaline cylinders that indicates
irregular tubular membranes, (G) various degrees of thickened
and irregular tubular basement membranes a characteristic of
interstitial fibrosis and tubular atrophy (IFTA). PAS staining of a
kidney section from an obese diabetic untreated ZDF rat (original
magnification ×100). (b) Improvement of histopathological lesions
in sitagliptin-treated diabetic nephropathy. Glomerular lesions:
Reduction of lesion severity, with global rise in (A) normal
glomeruli and (B) the remainder showing various degrees of
mesangial expansion, an early lesion of disease. Tubulointerstitial
lesions: Most of the interstitium has normal appearance, showing
only a focal patch of moderate interstitial fibrosis and tubular
atrophy (IFTA); PAS staining of a kidney section from an obese
diabetic sitagliptin-treated ZDF rat (original magnification ×100).

(a)

(b)

Figure 2: Effects of sitagliptin treatment on diabetic nephropathy
vascular lesions in an experimental model of type 2 diabetes. (a)
Histopathological lesions in untreated diabetic nephropathy: Renal
arteries exhibiting marked hyperplastic arteriosclerosis and
thickening and detachment of the intimal layer. Endothelial cells
can no longer be identified; PAS staining of a kidney section from
an obese diabetic untreated ZDF rat (original magnification ×400).
(b) Improvement of histopathological vascular lesions in
sitagliptin-treated diabetic nephropathy: A marked reduction in
total wall and intimal layer thickening, showing normal
endothelial cells; PAS staining of a kidney section from an obese
diabetic sitagliptin-treated ZDF rat (original magnification ×400).
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Experimental studies in ZDF rats showed that chronic
hyperglycaemia is associated with increased proinflamma-
tory cytokines, namely, IL-1β and TNF-α in the kidney [8].
These outcomes are corroborated by other authors that
described an increased expression of those proinflammatory
cytokines in the diabetic kidney [58, 77, 182], leading to
enhanced vascular permeability, oxidative stress, renal
hypertrophy, and tubulointerstitial lesions. DPP-4 inhibition
by low-dose sitagliptin has prevented the inflammatory pro-
file and the proapoptotic state observed in the diabetic rat
kidney, which might justify the improvement in renal func-
tion and tissular lesions (glomerular, tubulointerstitial, and
vascular lesions). In fact, sitagliptin was able to prevent the
increase in both mRNA and protein levels of the proinflam-
matory cytokines IL-1β and TNF-α in the diabetic kidneys
of ZDF rats [8].

In Wistar rats treated with low- or high-dose sitagliptin
during 16 weeks, urinary albumin excretion rate (UAER),
serum creatinine, and kidney hypertrophy were significantly
decreased. However, creatinine clearance rate and active
GLP-1 levels were increased, with more pronounced changes
in the high-dose sitagliptin-treated animals. Glomerular
lesions were also improved following sitagliptin treatment.
Protein and mRNA expression levels of podocalyxin and
GLP-1R were significantly increased in both groups, while
expression of signal-regulated kinases 1/2 (ERK1/2) and
transforming growth factor-β1 (TGF-β1) was decreased
[183]. Podocalyxin is a negatively charged transmembrane
glycosaminoglycan that covers the secondary foot processes
of the podocytes, which by electrical repellence keeps
adjacent foot processes separated, maintaining the urinary
filtration barrier open. Podocalyxin depletion is inversely
correlated to albuminuria [64, 184]. These overall results also
confirm a delay in DN progression promoted by sitagliptin,
possibly via the inhibition of ERK1/2 signalling which seems
to be activated by AGEs and is implicated in epithelial-
myofibroblast transition [185]; by decreased TGF-β1 expres-
sion, a cytokine associated with inflammatory responses in
T2DM, which has been recognized to be involved in the
development of glomerulosclerosis and interstitial fibrosis;
and by increasing the interaction between GLP-1 and the
GLP-1R [186].

Recently, in a study involving 164 DN patients treated
with metformin, sitagliptin (100mg, once a day) was able to
decrease UAER, which presented a close correlation with
markers of renal fibrosis: TGF-β1 and platelet-derived
growth factor-BB (PDGF-BB) [187]. Furthermore, PDGF-
BB mRNA has been found to be overexpressed in diabetic
patients and is considered a factor for mesangial cell prolifer-
ation and induction of TGF-β1, which shows a profibrotic
action, being involved in the development of renal hypertro-
phy and accumulation of extracellular matrix in DN [188]. In
addition, DPP-4 inhibition is known to downregulate TGF-
β1 expression in mesangial cells [189]. Li et al. [190] suggest
that the renoprotective mechanism of sitagliptin may be
due to a reduction in protein kinase B (PKB)/Akt levels,
which are involved in apoptosis pathways and restoration of
adenosine monophosphate-activated protein kinase (AMPK)
activity in diverse physiological processes, including ion

transport, podocyte function and cell growth and cellular
energy homeostasis, inhibition of TGF-β1, fibronectin, and
p38/ERK MAPK signalling pathways involved in the regula-
tion of ECM expression.

The activation of signalling pathways linked to cell
death resulting from chronic hyperglycaemia and to a state
of low-grade chronic inflammation contributes to an increase
in apoptosis. A proapoptotic state seems to be favoured in
the kidney of diabetic ZDF rats, which appears to be
mediated by Bax and Bid. Sitagliptin prevented the Bax
to Bcl-2 (mRNA and protein) ratio increase and reversed
the increase in Bid and TUNEL-positive cells induced by
chronic hyperglycaemia in the kidneys of this animal model
[8]. In addition, sitagliptin was able to ameliorate serum
TG content, thus reducing lipotoxicity-evoked apoptosis in
the kidney [8, 190–193].

Additionally, it has been demonstrated that glucose-
induced ROS production initiates podocyte apoptosis and
its depletion in vitro and in vivo, leading to DN [49, 56,
194]. Therefore, the reduction of oxidative stress afforded
by sitagliptin could eventually reduce ROS production and
the consequent risk of cell death. A study on renal ischemia
reperfusion damage in diabetic rats found sitagliptin to sig-
nificantly decrease lipid peroxidation, xanthine oxidase activ-
ity, myeloperoxidase activity, and nitric oxide levels in renal
tissue in comparison to those in untreated rats. Antioxidant
enzymes like glutathione, glutathione peroxidase, superoxide
dismutase, and catalase were significantly increased in
sitagliptin-treated diabetic rats compared to those in the non-
treated ones [195]. Other studies have demonstrated that
GLP-1 receptor activation has also attenuated diabetic renal
injury by reduction of kidney oxidative stress, inflammation,
and apoptosis [196–199].

5. Concluding Remarks

The innovative class of DPP-4 inhibitors, such as sitagliptin,
seem to address previously unmet needs in diabetes. In fact,
DPP-4 has the highest expression levels in the kidneys of
mammals, which is additionally upregulated in diabetic-
induced CKD, indicating that DPP-4 inhibition by sitagliptin
is a plausible therapeutic target for management of DN. In
fact, several studies have been describing putative pleiotropic
effects of sitagliptin on various organs and tissues. Sitagliptin
showed not only the capacity to ameliorate diabetic dysmeta-
bolism but also the potential to avert the decline of insulin
secretion ability in pancreatic beta-cells through cytoprotec-
tive properties; these effects suggest a role in prevention of
T2DM evolution and its complications. In the kidney, sita-
gliptin seems to provide renoprotection by restoring GLP-1
diuretic and natriuretic actions and by other mechanisms,
including antiapoptotic, antifibrotic, anti-inflammatory,
and antioxidant effects. However, additional studies are
needed to clarify whether sitagliptin acts through indirect
action via insulin secretion increment or through direct
tissular DPP-4 inhibition. In addition, further research
should also elucidate the contribution of GLP-1-dependent
(which is sustained by expression of DPP-4 and GLP-1R
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in renal tissues) and/or GLP-1-independent pathways
(reinforced by the existence of multiple DPP-4 substrates).

Due to its unique mechanism of action and pharmaco-
logical properties, DPP-4 inhibitors (including sitagliptin)
have conquered their place in T2DM management. In addi-
tion, the low potential for interactions with other antidiabetic
drugs allows its use in different combinations, with a low risk
of hypoglycaemiac episodes. A fixed-dose combination with
sodium/glucose cotransporter 2 (SLGT2) inhibitor ertugliflo-
zin has been recently accepted and seems to contain the
potential to exert further beneficial effects on the kidney, as
both classes have been reported to lower UAER. Additional
positive effects could be expected from the complementary
mechanism of action of these drugs, with impact on both
renal and cardiovascular systems. Disclosure of its protective
actions on the diabetic kidney could open up the possibility
of using sitagliptin therapy as a renoprotective strategy
against the development and/or delay of DN.
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