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In silico validation of electrocardiographic imaging to reconstruct
the endocardial and epicardial repolarization pattern using
the equivalent dipole layer source model
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Abstract
The solution of the inverse problem of electrocardiology allows the reconstruction of the spatial distribution of the electrical
activity of the heart from the body surface electrocardiogram (electrocardiographic imaging, ECGI). ECGI using the equivalent
dipole layer (EDL) model has shown to be accurate for cardiac activation times. However, validation of this method to determine
repolarization times is lacking. In the present study, we determined the accuracy of the EDL model in reconstructing cardiac
repolarization times, and assessed the robustness of the method under less ideal conditions (addition of noise and errors in tissue
conductivity). A monodomain model was used to determine the transmembrane potentials in three different excitation-
repolarization patterns (sinus beat and ventricular ectopic beats) as the gold standard. These were used to calculate the body
surface ECGs using a finite element model. The resulting body surface electrograms (ECGs) were used as input for the EDL-
based inverse reconstruction of repolarization times. The reconstructed repolarization times correlated well (COR > 0.85) with
the gold standard, with almost no decrease in correlation after adding errors in tissue conductivity of the model or noise to the
body surface ECG. Therefore, ECGI using the EDL model allows adequate reconstruction of cardiac repolarization times.

Keywords Equivalent dipole layer . Electrocardiographic imaging (ECGI) . Inverse problem of ECG . Repolarization . Cardiac
arrhythmias

1 Introduction

Cardiac ventricular arrhythmias are an important cause of
death worldwide [22]. The initiation and maintenance of

potentially fatal reentrant arrhythmias is facilitated by regional
heterogeneities in activation and repolarization times [5].
Early risk stratification of patients therefore is important to
reduce mortality caused by arrhythmias. In addition, non-
invasive determination of size and location of heterogeneities
can be helpful in deciding on therapeutic strategy.

The solution of the inverse problem of electrocardiology
allows the spatial reconstruction of the electrical activity of the
heart (electrocardiographic imaging, ECGI) from the body
surface ECGs and the patient’s heart-torso geometry.
Thereby the ECGI non-invasively determines the sequence
of activation and repolarization. Several inverse calculation
methods exist. The most often used methods are the epicardial
potential model [1, 4, 30, 32] and the equivalent dipole layer
(EDL) model [14, 15, 23, 24]. The latter is used in this paper.

The activation wavefront within the myocardium acts as a
dipole layer of uniform strength [27]. A uniform dipole layer
at the myocardial surface (both epicardium and endocardium)
that encompasses the part of the surface that has been reached
by activation produces the same potentials at the body surface
as the actual activation wavefront (under certain assumptions
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on the myocardial conductivity) [11]. This is the basis of es-
timation of activation times using the EDL. Validation studies
have shown good accuracy for reconstructing activation times
and origins of premature ventricular complexes [15, 24].

The estimation of depolarization sequences is based on an
“on-off” scenario, i.e., tissue is either activated or not. Since
repolarization occurs gradually, estimation of repolarization
sequences cannot be based on this on-off scenario; therefore,
the uniform dipole layer approach is no longer applicable.
Geselowitz has shown that this theorem can be adjusted to
include the complete cardiac cycle by considering a non-
uniform dipole layer with a strength that is proportional to
the local transmembrane potentials at the surface (provided
that the ratio between the conductivity along the fibers and
perpendicular to the fibers is the same for the intracellular and
extracellular media) [12]. This adjusted theorem to estimate
repolarization times has never been adequately tested before.

The inverse problem is ill-posed [1, 14], making it sensitive
to small perturbations in the measured body surface potentials,
such as noise. Since the electrographic T wave has lower
amplitudes and less steep slopes than the QRS complex, it
may be even more sensitive to noise. Additional errors in
accuracy may come from the use of incorrect tissue conduc-
tivity values, considering a lack of consensus in the literature
about measured conductivity values [8]. These errors influ-
ence the forward-calculated ECG [17], and may also influence
the inverse calculation of cardiac repolarization times.

We aimed to assess the accuracy of the EDL model in
calculating the repolarization times, as well as the method’s
robustness by adding noise to the ECGs or adding errors in
conductivity of surrounding tissue. The EDL model was ap-
plied to simulated electrocardiographic data containing differ-
ent activation and repolarization patterns produced indepen-
dently by a detailed propagation and volume conductor model
[15, 34].

2 Methods

2.1 Anatomical modeling

Thoracic magnetic resonance images (MRI) of a 27-year old
healthy volunteer were used as a basis to create an inhomoge-
neous, anisotropic volume conductor mesh [15]. The torso
MRI data had a voxel size of 1 × 1 × 2 mm3, while the heart
was imaged with the resolution of 1 × 1 × 1 mm3. The seg-
mentation was performed in a semi-automatic manner using
region growing and active contours methods. The tetrahedral
mesh included lungs, thorax, ventricular myocardium, and
intracavitary blood volumes of both atria and ventricles.
Transmembrane potentials (TMPs) during the complete cardi-
ac cycle were computed using an anisotropic monodomain
model [34]. A voxel mesh with a resolution of 0.4 mm

(3,019,701 myocardial voxels) was used for this purpose.
Nearest neighbor interpolation was then used to transfer the
TMPs from the voxel mesh to the tetrahedral heart domain of
the volume conductor mesh, consisting of 48,671 nodes
(mean edge length: 2.1 mm). This resolution is sufficient to
represent TMPs during repolarization, as they are character-
ized by low spatial frequencies during this phase. These TMPs
were used as gold standard for comparison with the recon-
structed TMPs. With the obtained TMPs, forward calculation
was done using the finite element method (FEM) to compute
electrocardiograms at chosen positions on the thorax model.
These body surface ECGs were used as input for the EDL-
based inverse procedure. The EDL method is a nonlinear op-
timization routine reconstructing the distribution of activation
and repolarization times, given a template for temporal course
of the TMP. These inverse calculations were performed inde-
pendently from the method to compute the ECGs, using the
boundary element method (BEM) and surface meshes of the
compartments of the geometrical model. In the BEM model-
based inverse calculations, the myocardial surface mesh
consisted of 1500 ventricular nodes (a subset of the points
within the FEM grid) and isotropic bulk conductivity for the
myocardium was used (being the sum of the intra- and extra-
cellular conductivities from the FEM model). The repolariza-
tion patterns on the ventricular surfaces reconstructed by the
EDL inverse method were compared with those extracted
from the anisotropic monodomain model simulated TMPs
(gold standard) at these 1500 nodes.

The simulation workflow is visualized in Fig. 1, and the
various steps of the inverse method are described in more
detail below.

2.2 Simulating body surface ECGs

The TMPs were computed by solving an anisotropic
monodomain model with the parallel solver acCELLerate [34].
Ionic currents were defined by the ventricular cell model pro-
posed by Ten Tusscher and Panfilov [36]. A rule-based approach
was used for creation of the fiber orientation [17], and different
heterogeneities for calculation of the TMP distributions were
integrated into the model according to Wilhelms et al. [38].

The TMPs were generated for three conditions as follows:
sinus rhythm and two ventricular ectopic premature beats, one
originating from the interventricular septum and the other
from the right ventricular base. For sinus rhythm, a rule-
based endocardial stimulation profile imitating the Purkinje
fibers was used [16, 17]. For simulating ectopic beats, a spher-
ical area with two voxel radii was stimulated in order to initi-
ate excitation. The computed TMPs throughout the myocar-
dial tissue were subsequently used in the forward FEM calcu-
lation of electrocardiograms at 120 electrode positions on the
body surface in the FEM thoraxmodel. The volume conductor
model included an equal anisotropy ratio for the myocardium,
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whereby the conductivity values along the myocardial fibers
were set to be three times larger than perpendicular ones, and
were equal for the intra- and extracellular media [15].

The constructed body surface potential maps were contam-
inated with 20 μV Gaussian white noise (baseline noise) and
served as input for the EDL-based inverse procedure.

2.3 EDL-based inverse

The inverse solution using the EDL source model en-
tails iterative forward calculations of body surface po-
tentials in order to optimize the model parameters (acti-
vation and repolarization time on the myocardial sur-
face) by determining the best match with the simulated
body surface potentials. Since the reconstructed body
surface potentials depend on the model parameters in a
non-linear way, the iterative process must apply a non-
linear parameter estimation procedure starting from an
initial estimate for activation and repolarization time.

2.3.1 TMP template

In our implementation of the EDL model, a template for
the time course of the TMP was constructed. This tem-
plate is shifted and stretched to construct the TMP for
an individual node to fit its depolarization time τ and
the repolarization time ρ. During the QRS complex, the
transmembrane potential at the myocardial surface can

be considered to be either “at rest” or “activated.” This
is implemented in the TMP template by a Heaviside
step function (i.e., H(t − τj) = 0 for t − τj < 0 and H(t
− τj) = 1 for t − τj > 0), and is known as phase 0 of the
action potential.

The repolarizing part of the TMP template (phases 1,
2, and 3 of the action potential) is individualized by
taking the “dominant T-wave”; i.e., the shape of the
T-wave from the root-mean-squared body surface poten-
tials. The dominant T-wave reflects the first-order deriv-
ative of the averaged transmembrane potential of the
myocytes during repolarization, and therefore, its inte-
gral describes a generalized transmembrane potential
during repolarization [25, 26]. From all body surface
potentials resulting from the cardiac activation model,
the root-mean-square (RMS) is taken. Based on this
RMS signal, the shape of the dominant T-wave is de-
termined. The flipped integral of this dominant T-wave
shape provides a template for the repolarizing part of
the TMP waveform. This template is rescaled for each
individual node at the myocardial surface so that at the
repolarization time ρ the TMP has decreased in ampli-
tude by 80%.

2.3.2 Computing body surface potentials

The transmembrane potential (based on depolarization time τ
and the repolarization time ρ as explained above) is used as

FEM-based forward calculation 
of potentials on body surface

Simulated body surface ECGs

BEM-based inverse calculation of 
activation and repolarization times

Different values for tissue 
conductivity

OUTPUT

INPUT

+ noise

Compare

Inverse calculation of activation and 
repolarization times

Monodomain simulations of TMP and 
associated activation and repolarization times

Fig. 1 Study workflow scheme. The top part shows how the TMP
simulations are used to calculate the body surface ECGs. The bottom
part shows how the simulated body surface ECGs are used as an input
in the inverse method to reconstruct activation and repolarization times.

To test the robustness, we repeated the workflow for different levels of
noise added to the input ECGs and for different conductivity sets within
the BEM model
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source activity to compute the resulting potential φi(t) at elec-
trode position i on the body surface at time t:

φi tð Þ ¼ ∑
j¼1

Nv

Aij TMP j tð Þ;

where Nv is the number of discretization elements of the ventric-
ular surface, Aij indicates the potential generated at i by an equiv-
alent dipole layer element of unit strength at element j of the
ventricular surface, and TMPj(t) is the transmembrane potential
at location j of the ventricular surface determined by activation
and repolarization time at j. The transfer matrix A was computed
using BEM as previously described by Janssen et al. [15].

2.3.3 Initial estimate of activation and repolarization

The initial estimate of activation is provided by the fastest
route algorithm, as previously described [7, 15]. In brief, each
node on the heart surface is considered an initial focus, and
corresponding activation times on the heart surface are com-
puted assuming different propagation velocities along the
myocardial surface. The activation pattern creating body sur-
face potentials that correlate best with the simulated body
surface ECGs is chosen as initial estimate. In the same way,
additional foci are added until there is no further significant
improvement of the correlation.

The repolarization pattern depends on the depolariza-
tion sequence, with generally longer action potential du-
rations in early activated regions and shorter action poten-
tial durations in late activated regions [9, 29]. Although
this rule of thumb is not always applicable, it is compat-
ible with the common observation in (12-lead) ECGs that
the T-wave is concordant with the QRS polarity, indicat-
ing that, overall, repolarization occurs in a direction op-
posite to depolarization direction. Therefore, we used an
initial estimate for the repolarization times that is inverse-
ly dependent on the depolarization times for sinus beats
[6]. However, in a premature ventricular complex, the T-
wave is often discordant with the QRS complex, indicat-
ing a similar direction of activation and repolarization
[33]. Accordingly, we used an initial estimate of repolar-
ization for the ectopic ventricular beats that matches the
initial estimate for activation with a time delay equal to
the time from the J-point (end of QRS) to the end of the
T-wave.

2.3.4 Non-linear optimization

Starting from the initial estimates, the depolarization and re-
polarization patterns were iteratively optimized byminimizing
the difference between measured and reconstructed body sur-
face potentials. For this non-linear optimization procedure, we
used a dedicated version of the Levenberg–Marquardt

algorithm [6, 21]. In each iterative step, optimization of depo-
larization and repolarization was done alternately. Thereafter,
the ECG reconstructed from the inverse estimated activation
and repolarization times and the simulated body surface ECG
were compared. Iterative optimization continued until no fur-
ther improvement in ECG correlation was detected.

2.3.5 Regularization

Since the inverse problem of electrocardiology is ill-posed,
measurement and modeling noise will cause substantial devi-
ations from the true solution. In the EDL-based inverse, this is
limited by not minimizing RD (the relative difference between
simulated and reconstructed ECGs, see section 2.5), but by
minimizing RD+λ ∙REG, where REG is the regularization
function. For depolarization, this function is defined as the
root mean square of the Laplacian of the depolarization times
at the heart surface elements, multiplied by the square root of
the surface area of these elements as follows:

REG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
Ns

i¼1
Δτ i

ffiffiffiffi

ai
pð Þ2

s

;

with τi the activation time at node i, ai the surface area at node
i, and Ns the number of nodes at the heart surface. Defined this
way, REG is independent of the number of nodes in the mesh,
as well as the size of the heart (provided that activation prop-
agation velocity is the same for all heart sizes). For repolari-
zation, REG is defined analogously.

As the L-curve method to find the optimal value for lambda
often leads to over-regularization [3], we set beforehand a target
value for REG that results in physiologically realistic timing
patterns. We found that a REG value of 25 s/m corresponds to
realistic activation patterns, while a REG value of 10 s/m corre-
sponds to realistic repolarization patterns. We assume this to be
an inherent property of the (healthy) heart. Consequently, we
selected a value for the regularization parameter λdep and λrep that
results in REG ≈ 25 s/m and 10 s/m, respectively.

2.4 Determining robustness

We determined the robustness of the inverse method by
changing one of two factors; (i) tissue conductivities or (ii)
amount of noise on body surface signals.

(i) In the forward sense (upper part of Fig. 1), the tissue
conductivity values were taken from Gabriel et al. [10]. The
inverse calculation (lower part of Fig. 1) was either done with
the same conductivity values or with other conductivity values
provided in the literature [17] (Table 1), performed on the
body surface ECGwith baseline noise (20 μVGaussian white
noise).
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(ii) The forward simulated body surface ECG was by de-
fault contaminated with 20 μV Gaussian white noise, which
was increased to either 40, 60, or 80μVGaussian white noise.

2.5 Data presentation

The root-mean-square error (RMSE) and correlation (COR)
between simulated and reconstructed repolarization times
were calculated, as well as interquartile ranges (IQR) of abso-
lute differences. In addition, the COR and relative difference
(RD) values between the simulated and inverse reconstructed
body surface ECGs were determined. The RD was defined as
the Frobenius norm of the difference between the simulated
and reconstructed signals relative to the Frobenius norm of the
simulated data.

3 Results

3.1 Regular cases without addition of errors or noise

The repolarization times at the ventricular surface that
resulted from the monodomain model for a sinus beat is
shown in Fig. 2 a, while the inverse estimated repolar-
ization pattern in shown in Fig. 2 b. Figure 3 and
Supplementary Fig. 1 show the results for ectopic ven-
tricular activations beat 2 and beat 3 in the same for-
mat, respectively. Without addition of errors and noise,
all three beats show an inversely reconstructed repolar-
ization pattern that is very similar to the original pat-
tern, with only small differences. There is a good cor-
relation between the repolarization patterns in all beats,
showing early and late repolarization in the same re-
gions in the heart (Table 2). Similarly, the RMSE is
low (12.0, 12.2, and 15.3 ms for beats 1, 2, and 3,
respectively). A difference between the reconstructed
pattern and gold standard is that the range of the recon-
structed repolarization times is smaller. In the gold stan-
dard, the range in repolarization times (min-max) is

101, 127, and 146 ms for beats 1, 2, and 3, respective-
ly, while it is 93, 109, and 101 ms in the reconstructed
patterns. The RMSE was similar for endocardial and
epicardial nodes in beats 1 and 2, and higher in beat
3 (12.3 vs. 11.5 ms in beat 1, 12.8 vs. 11.6 ms in beat
2, and 17.4 vs. 12.6 ms in beat 3 for endocardial and
epicardial nodes, respectively). Figure 4 shows the as-
sociation between original and inverse reconstructed re-
polarization times in blue, and for the inverse recon-
structions with added inaccuracies in gray. It shows a
good overall correlation, with R = 0.87 (p < 0.01).
Table 2 summarizes the correlation data for all recon-
structions. The differences between gold standard and
reconstructed repolarization pattern for beat 1 (Fig. 2
column a–column b) can be seen in Fig. 5. The bottom
part of this figure shows the simulated TMP (dashed)
and reconstructed TMP (solid) on four different loca-
tions on the heart.

3.2 Robustness: Tissue conductivities

Figure 2 b–f show the reconstructed patterns following the
inverse procedure with the five different conductivity settings
from Table 1 during a sinus beat. Application of the five
different transfer matrices results in similar patterns, with early
repolarization in the apex and late repolarization in the RV
lateral base. The main difference between the results for the
transfer matrices is the smoothness of the patterns (e.g., least
smooth pattern when using transfer matrix A1, panel c). The
correlations between inverse reconstructed patterns and gold
standard was similar in all cases, ranging from 0.87 to 0.90.
The RMSEwas around 12ms, and increased to a maximum of
14.5 ms when using transfer matrix A1 (Table 2). This is
similar for the two ectopic beats (Supplementary Fig. 1 and
2), with good correlation and low RMSE. Only A2 and A4 in
beat 3 (panel d and f in Supplementary Fig. 1) have a correla-
tion that is slightly below 0.90.

3.3 Robustness: Noisy body surface ECGs

Figure 3 b–e show the reconstructed patterns following
the inverse procedure with 20, 40, 60, or 80 μV of noise
added to the body surface ECG for beat 2. There is a
slight increase in pattern error with increasing noise, but
correlations remain higher than 0.85 with a maximum
RMSE of 18 ms (Table 3). Only the reconstruction with
80 μV of noise for beat 3 gives a repolarization pattern
showing a very low correlation with the gold standard
pattern and a high RMSE. Supplementary Table 1 shows
a comparison of the results in relation to robustness of the
activation pattern. It shows that reconstruction of activa-
tion and repolarization has a similar accuracy in estimat-
ing the gold standard pattern.

Table 1 Conductivity values used to construct different transfer
matrices (A), used in the EDL-based inverse, based on common differ-
ences in measured values summarized in [8, 17]. Transfer matrix A uses
same conductivity values as used in the construction of the simulated
body surface potentials

Tissue type Conductivity [S/m]

A A1 A2 A3 A4

Thorax 0.2 0.2 0.2 0.2 0.2

Lungs 0.04 0.06 0.06 0.01 0.06

Blood 0.6 0.6 0.6 0.6 0.75

Heart 0.2 0.1 0.4 0.2 0.3
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4 Discussion

In the present in silico study, we investigated the per-
formance of the inverse reconstruction of repolarization
times using the EDL-based method to reconstruct epi-
cardial and endocardial repolarization times. The results
showed that the EDL model correctly reconstructs the
repolarization patterns (correlation range 0.85–0.95).

The adaptation of tissue conductivities in the transfer
matrix and addition of noise to the body surface ECG
demonstrated that the inverse repolarization reconstruc-
tions were robust, showing good correlations with the
gold standard repolarization times. The accuracy and
robustness of reconstructed repolarization patterns were
similar to the accuracy and robustness of the activation
patterns under the same conditions.

450
Time (ms)

400

350

300

a b c

Anterior 
view

Posterior 
view

Superior 
view

RVOT

RV

LV

LVRV

RVLV

d eGold standard

Fig. 3 Repolarization patterns for beat 2 (ectopic beat with origin on base
of right ventricle). a is the actual repolarization pattern used to calculate
the body surface maps, b–e represent the repolarization pattern
reconstructed with the inverse procedure with different amplitudes of
(Gaussian white) noise added to the body surface potentials (20, 40, 60,

and 80μV for column b, c, d and e, respectively). Above panels b through
e, two leads of the body surface ECG are shown with the different
amounts of noise added. The following anatomical landmarks are given
in panel a: right ventricle (RV), left ventricle (LV), and right ventricular
outflow tract (RVOT)

a b c f Time (ms)
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300
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Fig. 2 Repolarization patterns for beat in sinus rhythm. a is the actual
repolarization pattern used to calculate the body surface maps, b is the
repolarization pattern reconstructed with the inverse procedure. c–f are
the repolarization patterns reconstructed with the inverse procedure when

a transfer matrix with different conductivity values is used, given in
Table 1. The following anatomical landmarks are given in panel a: right
ventricle (RV), left ventricle (LV),and right ventricular outflow tract
(RVOT)
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4.1 Equivalent dipole layer inverse

This is the first study showing that the adaptation of the EDL
method to include repolarization (i.e., from uniform dipole
layer to non-uniform dipole layer with strength proportional
to the local TMPs) leads to accurate results when inversely
reconstructing the cardiac repolarization times. This advance
is potentially clinically relevant, because repolarization disor-
ders underlie life-threatening cardiac arrhythmias [5] and non-
invasive detection of local repolarization changes is therefore
important for diagnosis risk stratification and the evaluation of
therapy.

The shape of the TMP, i.e., the slope of decrease in am-
plitude during repolarization, was determined by the domi-
nant T-wave on the body surface ECG. This allows individ-
ualization of the TMP shape, thereby increasing the proba-
bility of a correct solution. This method lacks the ability to
model the phase 1 notch in TMP caused by the transient
outward current of potassium. Given that this notch occurs
immediately after depolarization, it may influence both
QRS complex and T-wave on body surface ECG. In this
study, the phase 1 notch was included in the simulated
TMPs used for forward calculation of the ECGs (as can be
seen in the TMPs in Fig. 5). The good correlations and low

Fig. 4 Scatter plot of inverse
reconstructed repolarization times
matched with the gold standard
repolarization times for all nodes.
Left shows the results for different
tissue conductivities and right the
results for different levels of noise
added to the body surface ECGs.
Note that the series of blue dots
(i.e., transfer matrix A and 20 μV
of noise) is the same series,
therefore displayed in both left
and right plot

Table 2 Comparison of
repolarization mapping accuracy
with the use of different transfer
matrices

Repolarization pattern Used transfer
matrix

λrep RMSE
(ms)

IQR
(ms)

COR rep
pattern

COR
ECG

RD
ECG

Beat 1 (sinus) A 8e-7 12.0 4.3–14.7 0.89 0.99 0.13

A1 1.5e-6 14.5 5.5–18.4 0.88 0.99 0.14

A2 1.5e-6 11.8 4.2–14.4 0.90 0.99 0.13

A3 1.5e-6 13.2 5.1–17.2 0.88 0.99 0.14

A4 7e-7 13.3 5.2–16.3 0.87 0.99 0.13

Beat 2 (ectopic base
RV)

A 1e-5 12.2 4.0–15.0 0.93 0.99 0.14

A1 7e-6 12.4 3.8–14.9 0.93 0.99 0.13

A2 1e-5 13.0 3.8–15.7 0.93 0.99 0.15

A3 9e-6 11.8 4.0–14.5 0.94 0.99 0.14

A4 1e-5 12.8 3.8–15.3 0.93 0.99 0.15

Beat 3 (ectopic left
side septum)

A 2e-6 15.3 4.2–18.0 0.92 0.99 0.15

A1 4e-6 15.0 4.4–16.8 0.94 0.99 0.15

A2 2e-6 17.3 4.5–19.2 0.87 0.99 0.16

A3 2e-6 14.3 4.0–16.5 0.95 0.99 0.14

A4 2e-6 17.2 4.7–19.3 0.87 0.99 0.15
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RMSE of the inversely reconstructed repolarization times
show that this difference in TMP template does not largely
influence the accuracy of the EDL method.

The current regularization method used a regularization
parameter λrep in such a way that the REG value will be
around 10 s/m. This results in patterns that are smooth enough
to be realistic without having small areas of extreme values for
repolarization times. However, for diseased hearts, it may be
necessary to allow larger values for regularization in order to
detect subtle repolarization heterogeneities. For example, in
hearts with sharp repolarization gradients, smoothing these
gradients by regularization is not a desired effect. Previous

knowledge of the patient’s status could help finding a physi-
ologically valid repolarization pattern, although this is suscep-
tible to bias.

4.2 Previous studies

Previous inverse validation studies using the EDLmodel have
shown good results in in silico, ex vivo, and in vivo validation
for activation, with activation timing errors between 5 and
20 ms [15, 23, 24] and localization errors of the origin of
ectopic beats between 2 and 25 mm [15, 24]. To our best
knowledge, ours is the first study that quantifies the EDL

Time (ms)

-16.3 ms -3.4 ms 23.1 ms -23.2 ms

Fig. 5 Differences between simulated and reconstructed repolarization
times for beat 1, with normal transfer matrix and 20 μV of noise
(simulated minus reconstructed). Bottom part shows corresponding

simulated (dashed) and reconstructed (solid) TMPs at the locations indi-
cated by the colored spheres, with in each graph the repolarization time
difference between the two

Table 3 Comparison of
repolarization mapping accuracy
in the presence of different levels
of noise on the body surface
potentials

Repolarization
pattern

Noise added to body
surface ECG

λrep RMSE
(ms)

IQR (ms) COR rep
pattern

COR
ECG

RD
ECG

Beat 1 (sinus) 20 μV 8e-7 12.0 4.4–14.7 0.89 0.99 0.13

40 μV 1e-6 13.4 5.1–16.4 0.86 0.98 0.21

60 μV 1.2e-6 16.0 8.3–19.0 0.81 0.97 0.30

80 μV 4e-6 18.9 9.1–23.9 0.79 0.93 0.41

Beat 2 (ectopic
base RV)

20 μV 1e-5 12.2 4.0–15.0 0.93 0.99 0.14

40 μV 2e-6 12.9 4.2–15.5 0.92 0.99 0.18

60 μV 2e-6 17.9 5.9–22.2 0.85 0.97 0.31

80 μV 2e-6 15.4 5.0–18.7 0.88 0.97 0.31

Beat 3 (ectopic left
side septum)

20 μV 2e-6 15.3 4.3–18.0 0.92 0.99 0.15

40 μV 2e-6 18.0 5.9–20.7 0.89 0.99 0.20

60 μV 2e-6 17.7 5.0–21.4 0.88 0.97 0.28

80 μV 4e-6 45.6 13.8–49.6 0.05 0.94 0.36

1746 Med Biol Eng Comput (2020) 58:1739–1749



method accuracy for repolarization times. In a study by van
Dam et al., the EDL model was used to reconstruct repolari-
zation sequences without comparison with a gold standard [6].
In that study, repolarization patterns were consistent with prior
physiological knowledge. In the present study, we were able
to directly compare EDL inverse reconstructed repolarization
times with the actual repolarization times on all nodes in the
heart. We found error and correlation values that are similar to
values reported for inverse activation reconstruction.

The accuracy of potential-based inverse reconstruction of
repolarization has been previously investigated. Cluitmans
et al. reported a correlation between measured and recon-
structed repolarization times of 0.73, measured in four dog
hearts at 103 electrode positions [4]. They described that the
correlation improved by determining the repolarization
times with a spatiotemporal approach instead of a temporal-
only approach. This step is not necessary in the EDL-based
inverse method since it directly calculates activation and re-
polarization times. There are also studies describing repolar-
ization reconstruction accuracy in humans. In a study by
Zhang et al., epicardial potentials were measured in patients
undergoing open-heart surgery. They then used a similar ap-
proach as we have applied by calculating the ECG input for
the inverse calculation based on the measured epicardial po-
tentials [39]. They describe that 78% of the 240 compared
epicardial electrograms had a difference between recon-
structed and measured activation recovery intervals of less
than 10 ms with the epicardial potential method. A study by
Graham et al. directly compares reconstructed epicardial re-
polarization patterns with CARTO electroanatomical maps
in patients with structural heart disease, and found correla-
tion of repolarization sequences of 0.55 and RMSE of 51 ms
[13]. Although it is difficult to directly compare these studies
with the current study, our study shows results that are equiv-
alent or even superior to the results from the other studies.
This can be explained by the differences between the inverse
method (potential-based versus EDL) and by the fact that the
current study is an in silico study. In the in silico study, the
conditions are better controlled than in the in vivo studies.
However, we applied various forms of error to simulate
in vivo conditions.

4.3 Robustness of the EDL-based inverse method

Tissue conductivity is a large determinant factor for the rela-
tion between electrical activity on the heart and electrical ac-
tivity (potentials) at the body surface, although exact individ-
ual tissue conductivity values are not certain [8] or are influ-
enced by pathological conditions [28, 31]. In the current
study, we have investigated the influence of tissue conductiv-
ity on the inverse procedure by applying various conductivity
values. These values differed from the conductivity values
used in the FEM-forward calculation of the simulated body

surface ECGs. This approach is equivalent to assuming a con-
ductivity value in patient tissue that deviates from the actual
conductivity of the tissue. Our results show that the effects of
these discrepancies in tissue conductivity have a small effect
on the accuracy of the inverse reconstruction. This corre-
sponds to results from Bear et al. for inverse estimation of
epicardial activation potentials [2], showing that inclusion of
inhomogeneous torso electrical properties (i.e., tissues with
different conductivities) did not improve accuracy of the in-
verse calculation of activation as compared with inverse cal-
culation ignoring these inhomogeneities.

The introduction of noise on the body surface ECGs could
cause problems for the inverse method due to the ill-posedness
of the problem [1, 14]. The noise levels applied in this study
were related to signal-to-noise ratios (SNR) ranging from
20 dB for low noise level up to 6 dB for high noise level.
Average SNR found in human body surface mapping are
around 13 dB [19]. These high levels of noise severely influ-
ence the body surface ECG, thereby evenmasking the T-wave
(Fig. 3, top panels). The SNR for beat 3 at 80 μV being lower
than the SNR for beats 1 and 2 at high noise level (average
SNR of 6 dB for beat 3 versus 9 dB for both beats 1 and 2)
may therefore be an explanation for the bad performance of
beat 3 at 80 μV of noise. The results of the present study show
that the addition of Gaussian white noise of up to 80 μV did
not lead to a significant inaccuracy of the reconstructed repo-
larization pattern.

4.4 Limitations

In the present work, we aimed to determine the robustness of
the inverse solution by using different tissue conductivities for
forward and inverse computations and by adding more noise
to the simulated body surface ECGs. Other factors, e.g., ge-
ometry and electrode positions, remained constant for both
forward and inverse computations, thereby possibly leading
to certain model-to-model bias. However, different
discretization between forward and inverse calculations
(FEM versus BEM), parameterization of TMP for inverse
calculation without inclusion of phase 1 dip and agreement
of the results with the previous in vivo EDL validation study
on depolarization gives credibility to the results of the present
study.

Mechanical contraction of the heart has been shown
to alter the T-wave on the body surface ECG [18, 35,
37]. In the present study, changes in geometry due to
cardiac contraction, blood flow, and respiration were not
taken into account (both in forward calculation of sim-
ulated ECGs as in inverse calculation of repolarization
times). In a human or animal study using inverse
methods, this motion will be present, especially during
repolarization, and will therefore influence the
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projection of repolarization electrical activity on the
body surface [20].

4.5 Clinical application

The EDL-based inverse can be used to determine activation
and repolarization patterns from patients at risk for cardiac
arrhythmias (e.g., due to (family history of) arrhythmogenic
syndromes). Interpretation of the individual patterns can pro-
vide (additional) topical information into treatment strategies,
such as ablation approaches and ICD implantation.
Determination of size and location of electrical heterogeneities
may improve success rates of ablation procedures while si-
multaneously lowering costs by reducing procedure time. In
addition, the reconstruction of both the endocardial and the
epicardial distribution of repolarization by the EDL-based
method can reduce procedure time even more by being able
to start the procedure with the correct (i.e., epicardial or endo-
cardial) initial approach.

5 Conclusion

This in silico validation study shows that the non-invasive
ECG inverse solution using the EDL model has good accura-
cy of repolarization pattern reconstruction, even in the pres-
ence of model disturbances and noise. Together with the (pre-
viously validated) depolarization patterns, better visualization
of the complete electrical activity of the individual patient can
be achieved. This will help improve understanding of cardiac
arrhythmias and may guide clinical decision-making.
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