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Abstract

Emerging data demonstrate important roles for the TYRO3/AXL/MERTK receptor tyrosine 

kinase (TAM RTK) family in diverse cancers. We investigated the prognostic relevance of GAS6 

expression, encoding the common TAM RTK ligand, in 270 adults (n=71 aged <60 years; n=199 
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aged ≥60 years) with de novo cytogenetically normal acute myeloid leukemia (CN-AML). Patients 

expressing GAS6 (GAS6+), especially those aged ≥60 years, more often failed to achieve a 

complete remission (CR). In all patients, GAS6+ patients had shorter disease-free (DFS) and 

overall (OS) survival than patients without GAS6 expression (GAS6−). After adjusting for other 

prognostic markers, GAS6+ predicted CR failure (P=0.02), shorter DFS (P=0.004) and OS 

(P=0.04). To gain further biologic insights, we derived a GAS6-associated gene-expression 

signature (P<0.001) that in GAS6+ patients included overexpressed BAALC and MN1, known to 

confer adverse prognosis in CN-AML, and overexpressed CXCL12, encoding stromal cell-derived 

factor, and its receptor genes, CXCR4 and CXCR7. This study reports for the first time that GAS6 

expression is an adverse prognostic marker in CN-AML. Although GAS6 decoy receptors are not 

yet available in the clinic for GAS6+ CN-AML therapy, potential alternative therapies targeting 

GAS6+-associated pathways, e.g., CXCR4 antagonists may be considered for GAS6+ patients to 

sensitize them to chemotherapy.

Keywords

GAS6; acute myeloid leukemia; prognosis

INTRODUCTION

Constitutive activity of the receptor tyrosine kinase (RTK) family has been observed in 

malignant blasts from patients with acute myeloid leukemia (AML). Members of the RTK 

family include FLT3 and KIT, whose constitutive kinase activity can occur through several 

mechanisms, such as mutationally-induced autophosphorylation, receptor overexpression 

and/or aberrant expression of the receptors’ ligands.1-3 The constitutive activity of FLT3 and 

KIT has been associated with poor clinical outcomes, and therapeutic targeting of activated 

RTKs is currently an area of intense investigation.4-8

In cancer, another RTK family, the TAM RTKs (i.e., TYRO3, AXL and MERTK), has been 

shown to support survival, proliferation, migration, invasion, angiogenesis, metastasis and 

chemoresistance,9-12 and TAM RTK inhibitors are already in pre-clinical and clinical 

development for several solid tumors.11-13 Although TAM RTKs are aberrantly expressed in 

AML,11,14,15 to date, only AXL expression has been reported to adversely impact outcome in 

adults with cytogenetically normal AML (CN-AML).16

No AXL mutations have been described in AML, suggesting activation of AXL may occur at 

least in part via aberrant autocrine expression of GAS6, that binds AXL with high affinity 

and is also the common ligand for all three TAM RTKs.17 GAS6 was shown to be aberrantly 

expressed in AML cell lines.18 These data point to a possible role for the GAS6/TAM RTK 

signaling axis in AML and prompted us to test the clinical impact of GAS6 expression in a 

molecularly characterized cohort of chemotherapy-treated adults with de novo CN-AML.
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METHODS

Patients

Available pretreatment bone marrow or blood samples were obtained from 270 patients with 

de novo CN-AML (aged 18 to 83 years; median, 66 years; n=71 aged <60 years; n=199 aged 

≥60 years) enrolled on Cancer and Leukemia Group B (CALGB)/Alliance companion 

protocols 8461 (cytogenetic analyses), 20202 (molecular analyses) and 9665 (tissue 

banking). Patients were treated on CALGB/Alliance protocols 8525, 8923, 9420, 9720, 

10201, or 19808.19-25 The treatment protocols included cytarabine/daunorubicin-based 

induction but differed with regard to consolidation therapy (for details see Supplemental 

Material). Per protocols, no patient received allogeneic stem-cell transplantation in first 

complete remission (CR). All protocols were in accordance with the Declaration of Helsinki 

and approved by institutional review boards at each center, and all patients provided written 

informed consent.

Cytogenetic and molecular analyses

For the patient’s karyotype to be considered normal, ≥20 metaphases from short-term 

cultures of the bone marrow specimens obtained at diagnosis had to have been analyzed and 

the normal result confirmed by central karyotype review.26 Tissue samples were 

cryopreserved after mononuclear cell enrichment through a Ficoll gradient. The presence or 

absence of FLT3 internal tandem duplication (FLT3-ITD),27 FLT3 tyrosine kinase domain 

mutations (FLT3-TKD),28 MLL partial tandem duplication (MLL-PTD),29,30 mutations in 

the NPM1,31 CEBPA,32 WT1,33 TET2,34 IDH1/2,35 RUNX1,36 ASXL136 and DNMT3A37 

genes, and BAALC,38 ERG,38 and MN139 expression levels were assessed centrally as 

previously described. Patients were also categorized according to the European 

LeukemiaNet (ELN) reporting system.40 CN-AML patients with CEBPA mutation and/or 

NPM1 mutation without FLT3-ITD were classified in a Favorable genetic group and those 

with wild-type CEBPA, FLT3-ITD and/or NPM1 mutation, or wild-type NPM1 in an 

Intermediate-I genetic group

Expression analysis of GAS6 and TAM RTKs

GAS6, TYRO3, AXL and MERTK transcript expression levels measured with Affymetrix 

U133 plus 2.0 array (Affymetrix, Santa Clara, CA, USA) assays. The GeneAnnot chip 

definition file was used to derive a single expression value for each gene per patient 

sample.41 For array normalization and expression value computation, the robust multichip 

average method was implemented separately for samples from older and younger patients.42

Patients were categorized as either expressing GAS6 (yes or GAS6-positive, hereafter 

denoted GAS6+) if the probe-set fluorescence intensity (PFI) was greater than background 

fluorescence intensity (BFI) and not expressing GAS6 (no or GAS6-negative denoted 

GAS6−) if the GAS6 PFI was less than or equal to the BFI. Similarly, patients were 

categorized as either TYRO3+ or AXL+ (if the PFIs were greater than BFI) and TYRO3− or 

AXL− (if the PFIs were less than or equal to BFI). The MERTK PFI was above the BFI in all 

samples and, based on an optimal cutpoint analysis (see Supplemental Material),43 patients 
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were grouped into high expressers (MERTK+) or lower expressers (MERTK−) if they were 

in the upper two tertiles or in the lowest tertile groups, respectively.

Affymetrix-microarray gene expression profiling analysis

To establish a signature of genes differentially expressed between GAS6+ and GAS6− 

patients, we evaluated the aforementioned Affymetrix gene-expression profiles. Normalized 

expression values were compared between GAS6+ and GAS6− patients and a univariable 

significance level of P<0.001 was used to identify differentially expressed genes. A global 

test of significance based on a permutation procedure was performed to determine whether 

or not the number of differentially expressed genes was more than expected by chance. The 

false discovery rate (FDR) was used to assess multiple testing errors. A permutation test was 

computed based on 1 000 random permutations.

The Ingenuity Pathway Analysis tool (IPA Tool; Ingenuity H Systems, Redwood City, CA, 

USA; http://www.ingenuity.com) was used to identify enriched biological networks, global 

functions and functional pathways. Genes with altered expression profile associated with 

GAS6 expression status were imported into the IPA Tool. As a second means for identifying 

enriched ontologies, the web-based Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) tool (DAVID Bioinformatics resources 6.7 http://

david.abcc.ncifcrf.gov/) was used.

Clinical endpoints and statistical analyses

Baseline characteristics were compared between GAS6+ and GAS6− patients using the 

Fisher’s exact test for categorical variables and the Wilcoxon rank-sum test for continuous 

variables. Definitions of clinical endpoints [i.e., CR, disease-free (DFS) and overall (OS) 

survival] and details of outcome analyses are provided in the Supplemental Material. 

Briefly, for time-to-event analyses, we calculated survival estimates using the Kaplan-

Meier44 method, and compared groups by the log-rank test. We constructed age group-

adjusted multivariable logistic regression models to analyze factors associated with the 

achievement of CR, and age group-adjusted multivariable Cox proportional hazards 

models45 for factors associated with survival endpoints. All analyses were performed by the 

Alliance for Clinical Trials in Oncology Statistics and Data Center.

RESULTS

Association of GAS6 expression status with clinical characteristics, TAM RTK expression 
status and molecular markers at diagnosis

Of the 270 patients, 26% of patients were GAS6+, (n=69) and 74% GAS6− (n=201). At 

diagnosis, GAS6+ patients had higher platelet counts (P=0.03), lower percentages of blood 

blasts (P=0.01), more often hepatomegaly (P=0.006) and co-expression of AXL (28% vs 5%, 

P<0.001) compared with GAS6− patients. There was no association between GAS6 and 

TYRO3 expression (P=0.74), whereas more GAS6− than GAS6+ patients were MERTK+ 

(P=0.02, Table 1). Compared with GAS6− patients, GAS6+ patients were more often wild-

type for NPM1 (P<0.001) and CEBPA (P=0.02) and therefore more often in the ELN 
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Intermediate-I Genetic Group (P<.001), and had mutations in RUNX1 (P<0.001) and ASXL1 

(P=0.002), and high BAALC (P=0.02) and MN1 (P=0.05; Table 1) expression.

Impact of GAS6 expression on clinical outcomes of de novo CN-AML patients

In age group-adjusted analyses, GAS6+ expression associated with lower odds of achieving 

CR (P<0.001; Table 2), with CR rates significantly different in patients ≥60 years of age 

[46% GAS6+ (n=54) vs 74% GAS6− (n=145); P<0.001]. None of the TAM RTKs impacted 

on CR (Table S1). To assess whether GAS6 expression independently affects clinical 

outcomes when other known clinical and molecular prognostic features are considered, we 

performed multivariable analyses (MVAs). For CR, GAS6+ status predicted lower 

probability of achieving CR [(P=0.02; odds ratio (OR), 0.46; 95% confidence interval (CI), 

0.23-0.89)], after adjusting for the ELN CN-AML Genetic Group45 status, BAALC 

expression status, white blood cell (WBC) count and age group (Table 3).

GAS6+ expression associated with shorter DFS (P=0.03) and OS (P=0.004) compared with 

GAS6− patients (Table 2 and Figure 1). As single markers, neither AXL nor MERTK 

influenced DFS or OS, whereas TYRO3 expression adversely impacted on both endpoints 

(Table S1). In multivariable modeling for DFS and OS, we noted a significant interaction 

(DFS, P=0.01; OS, P=0.04) between GAS6 expression and the combined TYRO3 and AXL 

expression status. In the dual receptor-positive patients, i.e., positive for one or both TYRO3 

and AXL expression, GAS6 expression did not independently impact outcome, which may be 

reflective of the interplay between the GAS6 ligand and the TYRO3 and AXL receptors 

(Table 3). In the dual receptor-negative patients, i.e., negative for both TYRO3 and AXL 

expression, GAS6 expression remained an independent, adverse prognostic marker. Within 

the subgroup of dual receptor-negative patients, GAS6+ expression was a predictor of 

shorter DFS (P=0.004; hazard ratio (HR)=2.12; 95% CI, 1.27-3.56) and after adjusting for 

WT1 and DNMT3A R882 mutations, BAALC expression and age group; and shorter OS 

(P=0.04; HR=1.55; 95% CI, 1.01-2.38) after adjusting for ELN group, WT1 and DNMT3A 

R882 mutations, BAALC expression, WBC and age group.

A GAS6-associated gene expression signature in de novo CN-AML

To gain additional molecular insights into GAS6+ CN-AML, an Affymetrix microarray-

based gene expression signature was derived. The signature contained 1 238 genes that were 

significantly differentially expressed between GAS6+ and GAS6− CN-AML blasts at 

diagnosis (Table S2). Within this signature, genes for which high expression level is an 

established adverse prognosticator in CN-AML were BAALC and MN1. These were 

overexpressed, respectively, 2.57-fold and 2.41-fold in the GAS6+ subgroup. Although 

hitherto not validated in large, independent patient sets, overexpression of the following four 

genes was reported to have an impact on outcome of AML patients. These were APP, which 

encodes the amyloid precursor protein and whose overexpression was associated with 

shorter survival than that of AML patients without APP overexpression46 (overexpressed 

3.37-fold in GAS6+ patients); SETBP1, whose overexpression leads to PP2A inhibition, 

promoting proliferation of leukemic cells47 (overexpressed 1.73-fold); SPARC, which is 

overexpressed in patients with IDH2-R172 mutations and contributes to AML 

aggressiveness48 (overexpressed 2.05-fold); and CD74, whose lower surface protein levels 
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associated with achievement of CR/partial CR in AML patients ages 60-75 years treated 

with bortezomib in combination with chemotherapy (overexpressed 2.51-fold).49 Moreover, 

overexpressed in GAS6+ CN-AML diagnostic samples were CXCL12 (3.2-fold), encoding 

for stromal cell-derived factor-1, and genes encoding both of its receptors, CXCR4 (1.52-

fold) and CXCR7 (1.72-fold). Overexpression of CXCR4 has been previously associated 

with adverse clinical outcome in patients with CN-AML.50,51

CEBPA was among the 611 genes underexpressed in GAS6+ patients. Mutations in the 

CEBPA gene that encodes a transcription factor are associated with better outcome of AML 

patients (Table S2).32 CD33, encoding an immunotherapeutic target in AML, was also 

underexpressed (1.67-fold) in GAS6+ patients.

Gene expression signatures were not identified for any of the TAM RTKs (less than 10 

genes, with FDRs of 10%; data not shown). Indeed, there was no apparent contribution from 

TAM RTKs in profiling analyses combining GAS6 with each of the TAM RTKs. This 

indicates that it is GAS6 expression status that drives the differential gene expression we 

observed.

Pathway analysis revealed that the GAS6-associated gene expression signature contained the 

following overrepresented molecular and cellular functions: a) cell cycle, b) cellular growth 

and proliferation, c) cell death and survival, d) cellular assembly and organization and, e) 

DNA replication, recombination and repair (Table 4). The top canonical pathways included 

a) IL-8 signaling, b) growth hormone signaling, c) mitotic roles of Polo-like kinase, d) 

CXCR4 signaling and e) Tec kinase signaling (Table 4). Of the top upstream regulators, 

colony stimulating factor 2 (granulocyte-macrophage), CSF2, was predicted by Ingenuity to 

be activated, while the cyclin dependent kinase inhibitor, CDKN1A, was predicted by 

Ingenuity to be inhibited (Table 4). A second analysis using DAVID also identified enriched 

clusters of genes, with the most highly enriched cluster (score of 9.66; Benjamini corrected 

P-values ranging from 2.8E-9 to 3.5E-6) containing genes involved in the cell cycle (data 

not shown).

DISCUSSION

We report herein that GAS6 expressed by AML blasts is a marker of poor clinical outcomes 

in adults with CN-AML, independent of other established prognostic markers in this 

cytogenetic subset. Not only does GAS6 expression predict CR failure, albeit driven by older 

age, it has also a negative impact on DFS and OS in the studied cohort. The MVA revealed 

the negative prognostic impact of GAS6 was in patients whose leukemic blasts did not 

express TYRO3 and AXL. This suggests that GAS6 may contribute to a more aggressive 

disease through signaling mechanisms that are not dependent on AXL and TYRO3 expression 

within the AML cells. Perhaps it is the third GAS6 receptor, MERTK that together with 

GAS6 has a role within the TYRO3−/AXL− patient subgroup. Based on recently published 

data related to MERTK function in leukemia, MERTK, even when expressed at relatively 

low levels appears to contribute to a leukemic phenotype. 14 However, in the current study, 

too few numbers of patients prohibited a reliable GAS6/MERTK subgroup analyses.
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Given that GAS6 expression has an adverse impact on CR achievement, mainly in older 

patients, and on DFS and OS in all patients, this warrants development of novel, less toxic 

and perhaps more personalized therapies targeting GAS6. We recently reported that 

blocking the engagement of GAS6 to the AXL receptor with soluble AXL-Fc chimeric 

protein inhibits downstream signal transduction, inducing differentiation and apoptosis in 

human AML cell lines and patient samples with activated AXL.54 Consistent with our 

work,54 a recent study by Ben-Batalla et al,55 showed that pharmacologic inhibition of 

GAS6/AXL signaling induces leukemic cell death. We did not find an impact of AXL-

positive expression as a sole marker on outcomes in our study, whereas AXL expression 

above the median was associated with shorter OS in the Ben-Batalla and colleagues study.55 

This may be explained in part by therapy differences and differences in patient cohort 

characteristics. Their study exclusively analyzed adult patients ≤60 years of age, whereas 

73% of patients in our study were 60 years of age or older.

As our study measured GAS6 transcript levels, the relationship between GAS6 mRNA, 

protein and secretion in AML is not yet clear. However, there are several studies of various 

solid cancers that report GAS6 mRNA and protein are present within the tumor cells. For 

example, Buehler and coworkers recently reported that GAS6 mRNA and the translated 

protein are both elevated within ovarian cancer.56 Additionally, GAS6 mRNA and protein 

levels were found in 81% and 74% of glioblastoma multiforme tissue samples, suggesting a 

close 1:1 relationship between transcription and translation of GAS6.57 As for secretion, 

Ben-Batalla, and co-workers performed immunohistochemistry for GAS6 on five AML 

patients’ bone marrows and concluded that stromal cells are the primary source of secreted 

GAS6 ligand (their Figure 1 and Supplement Table 3)55

Interaction of the GAS6/TAM RTK signaling axis with the stromal microenvironment in 

solid tumors has been associated with poor progression-free survival,58,59 A similar 

mechanism may be active in chemotherapy-resistant AML patients that express GAS6. This 

suggests a potential for novel therapies targeting GAS6+ leukemic blasts that could also 

simultaneously inhibit negative effects of GAS6 in the microenvironment, ultimately 

improving patient survival. Promising studies using decoy receptors showed significant 

activity against the growth of lung carcinoma cells in a xenograft model,13 and the absence 

of toxicity in normal murine tissues or hematopoiesis is encouraging.60 Given our current 

findings, GAS6-targeted therapeutic agents could lead to higher CR rates, particularly, as 

our data indicate, benefiting older patients, and possibly prolonging survival of the GAS6+ 

subset of CN-AML patients. Furthermore, while our results await independent validation, 

development of GAS6 decoy receptors, in addition to selective small molecule TAM 

inhibitors, appears warranted.

Meanwhile, in the short term, one possibility for improving outcomes of GAS6+ patients is 

alluded to by the GAS6-associated gene expression signature we identified. Overexpression 

of CXCR4 and its ligand was detected in pretreatment samples from patients expressing 

GAS6. In separate reports, overexpression of this signaling axis associated with increased 

risk of relapse and shorter overall survival in AML.50,51 CXCR4 is expressed on normal 

hematopoietic stem cells and regulates stem cell homing and retention in the BM when 

CXCL12, produced by BM stroma, engages the receptor.61 The CXCR4 antagonist, 
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Plerixafor, currently has FDA approval in combination with G-CSF as a stem cell 

mobilizing agent for patients with multiple myeloma and non-Hodgkin lymphoma who 

undergo autologous hematopoietic stem cell transplantation.62 Uy and co-workers63 recently 

reported their results of a phase I/II clinical trial that demonstrated antagonizing the 

CXCL12/CXCR4 axis with Plerixafor induces chemosensitization of relapsed or refractory 

AML blasts. Thus, although GAS6 decoy receptors are not yet available in the clinic for 

GAS6+ CN-AML therapy, potential alternative therapies such as CXCR4 antagonists should 

be considered for GAS6+ patients to sensitize them to chemotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Clinical outcome by GAS6 expression status. Survival curves for (a) disease-free survival 

(DFS) and (b) overall survival (OS) are displayed for GAS6+ and GAS6− patient groups. 

Data were age adjusted (<60 years of age, n=71; ≥60 years of age, n=199).
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Table 1

Comparison of clinical and molecular characteristics of de novo cytogenetically normal AML patients 

according to GAS6 expression status

Variable GAS6+a
(n=69)

GAS6−a
(n=201) Pb

Age, years 0.02

 Median 68 65

 Range 37-81 18-83

Age group, n (%) 0.35

 <60 years 15 (22) 56 (28)

 ≥60 years 54 (78) 145 (72)

Male sex, n (%) 35 (51) 101 (50) 1.00

Race, n (%) 0.81

 White 63 (93) 181 (91)

 Non-white 5 (7) 19 (9)

Hemoglobin, g/dL 0.56

 Median 9.4 9.4

 Range 6.4-12.5 4.8-15.0

Platelet count, ×109/L

 Median 84 66

 Range 11-309 4-850

White blood cell count, ×109/L

 Median 21.1 26.5

 Range 1.0-434.1 1.0-450.0

Blood blasts (%) 0.01

 Median 40 59

 Range 0-96 0-99

Bone marrow blasts (%) 0.87

 Median 70 67

 Range 7-97 4-97

Extramedullary involvement, n (%) 20 (29) 45 (23) 0.33

 Hepatomegaly 8 (12) 5 (3) 0.006

TYRO3 expression group a , n (%) 0.74

 Positive 16 (23) 43 (21)

 Negative 53 (77) 158 (79)

AXL expression group a , n (%) <0.001
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Variable GAS6+a
(n=69)

GAS6−a
(n=201) Pb

 Positive 19 (28) 11 (5)

 Negative 50 (72) 190 (95)

MERTK expression c, n (%) 0.02

 Positive 38 (55) 143 (71)

 Negative 31 (45) 58 (29)

TYRO3/AXL dual receptor d , n (%) 30 (43) 51 (25) 0.006

NPM1, n (%) <0.001

 Mutated 20 (29) 141 (70)

 Wild-type 48 (71) 60 (30)

FLT3-ITD, n (%) 0.56

 Present 26 (38) 68 (34)

 Absent 42 (62) 133 (66)

CEBPA, n (%) 0.02

 Mutated 4 (6) 35 (17)

  Single mutated 4 19

  Double mutated 0 16

 Wild-type 64 (94) 166 (83)

ELN Genetic Group e , n (%) <0.001

 Favorable 12 (18) 115 (57)

 Intermediate-I 56 (82) 86 (43)

FLT3-TKD, n (%) 1.00

 Present 7 (10) 23 (11)

 Absent 61 (90) 178 (89)

WT1, n (%) 0.25

 Mutated 2 (3) 15 (7)

 Wild-type 66 (97) 186 (93)

TET2, n (%) 0.43

 Mutated 15 (22) 55 (28)

 Wild-type 52 (78) 143 (72)

MLL-PTD, n (%) 1.00

 Present 4 (6) 13 (7)

 Absent 64 (94) 182 (93)

IDH1, n (%) 0.83

 R132 5 (7) 24 (12)

 V71I 2 (3) 0 (0)
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Variable GAS6+a
(n=69)

GAS6−a
(n=201) Pb

 Wild-type 60 (90) 173 (88)

IDH2, n (%) 0.72

  IDH2 14 (21) 37 (19)

  R140 8 33

  R172 6 4

 Wild-type 53 (79) 160 (81)

RUNX1, n (%) <0.001

 Mutated 27 (44) 9 (5)

 Wild-type 35 (56) 173 (95)

ASXL1, n (%) 0.002

 Mutated 16 (24) 16 (8)

 Wild-type 51 (76) 179 (92)

DNMT3A, n (%) 0.76

 Mutated 21 (32) 66 (35)

  R882 17 40

  Non-R882 4 26

 Wild-type 44 (68) 124 (65)

ERG expression group f , n (%) 0.33

 High 30 (43) 102 (51)

 Low 39 (57) 99 (49)

BAALC expression group f , n (%) 0.02

 High 44 (64) 93 (46)

 Low 25 (36) 108 (54)

MN1 expression group f , n (%) 0.05

 High 34 (65) 65 (48)

 Low 18 (35) 70 (52)

Abbreviations: FLT3-ITD, internal tandem duplication of the FLT3 gene; ELN, European LeukemiaNet; FLT3-TKD, tyrosine kinase domain 
mutation in the FLT3 gene; MLL-PTD, partial tandem duplication of the MLL gene.

a
All patients with GAS6 probe-set fluorescence intensity greater than the background fluorescence intensity (BFI) are defined as GAS6-positive 

(GAS6+) and those with GAS6 probe-set intensity less than or equal to the BFI as GAS6-negative (GAS6−). Similarly, patients were categorized as 
either TYRO3+ (TYRO3 expression greater than BFI) or TYRO3− (if TYRO3 expression was less than or equal to BFI) and AXL+ (expression 
greater than BFI) or AXL− (expression less than or equal to BFI).

b
P-values for categorical variables are from Fisher’s exact test, P-values for continuous variables are from Wilcoxon rank sum test.

c
All patients in the upper 2/3 of the values of MERTK are defined as MERTK+. All patients in the lower 1/3 of the values of MERTK are defined as 

MERTK−.

d
If patient has AXL+ and TYRO3+ expression, AXL+ and TYRO3− expression, or AXL− and TYRO3+ expression then TYRO3/AXL dual receptor is 

defined to be positive. If a patient has AXL− and TYRO3− expression then TYRO3/AXL dual receptor is defined to be negative.
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e
According to the ELN recommendations,40 Favorable Genetic Group is defined as CEBPA-mutated or FLT3-ITD-negative and NPM1-mutated. 

Intermediate-I Genetic Group is defined as CEBPA wild-type and FLT3-ITD-positive and NPM1-mutated, FLT3-ITD-negative and NPM1-wild-
type, or FLT3-ITD-positive and NPM1-wild-type.

f
The median expression value was used as the cutoff for high and low values.
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Table 2

Age group-adjusted analyses of outcomes by GAS6 positive expression versus no expression in de novo 

cytogenetically normal AML patients

Outcome Endpoint OR/HR (95% CI) P

CR 0.35 (0.20, 0.63) <0.001

DFS 1.55 (1.05, 2.26) 0.03

OS 1.55 (1.16, 2.09) 0.004

Abbreviations: CR, complete remission; DFS, disease-free survival; OS, overall survival; OR, odds ratio; HR, hazard ratio; CI, confidence interval.

Note: ORs < 1.0 means a lower CR rate, and HRs > 1.0 mean higher risk
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Table 4

Biological pathways over-represented in the GAS6 expression signature in cytogenetically normal AML

Molecular and cellular functions (number of genes) a P b

Cell cycle (202) 7.75E-17 to 2.15E-03a

Cellular growth and proliferation (360) 3.48E-15 to 2.41E-03

Cell death and survival (363) 5.28E-15 to 2.44E-03

Cellular assembly and organization (195) 2.76E-11 to 2.33E-03

DNA replication, recombination and repair (136) 2.76E-11 to 2.15E-03

Top canonical pathways a

Interleukin-8 signaling 5.43E-06

Growth hormone signaling 2.28E-05

Mitotic roles of Polo-like kinase 7.24E-05

CXCR4 signaling 1.23E-04

Tec kinase signaling 1.62E-04

Top upstream regulators a

Colony stimulating factor 2 (granulocyte-macrophage), CSF2 9.17E-16

Cyclin-dependent kinase inhibitor, CDKN1A 2.55E-15

a
These data were obtained from Ingenuity’s Pathway Analysis program (see Methods)

b
Significance values shown indicate the range of P-values for each of the genes that were identified within each of the annotated functions listed
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