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Abstract: Glycans are one of the four fundamental macromolecular components of living matter, and
they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In
particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence,
in protein folding process, where the physiological balance between glycosylation/deglycosylation on
the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However,
under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or
anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition
patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect
Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor,
resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has
been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed
highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver
Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss
affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and
cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting
the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other
human pathologies.

Keywords: Multiple Sclerosis; Polycystic Kidney Disease; Polycystic Liver Disease; ER stress;
GANAB; PRKCSH

1. Introduction

Glucosidases are a family of ubiquitous intracellular and extracellular hydrolases
molecules that normally catalyze the selective hydrolysis of glycosidic covalent linkages on
the glycanic substrates.

“Glycan” is a generic term indicating simple and complex carbohydrates or sugars,
which represent all carbon hydrates in nature. They express a wide structural complexity of
polymerization, ranging from the mono- to oligo- and finally to polysaccharides. However,
in all chemical species of glycan a common building block, consisting of [CH2O]n as a
repeated chemical compound, can be recognized, resulting in a hex-ose or pent-ose ring
structural unit. Due to the presence of both carbonyl and alcoholic functional groups in the
same molecule, they can cyclize in hemiketals or hemiacetals, which are further classified
based on ring size [1]. In fact, five-membered ring systems are designated as furanoses,
while the six-membered ones are pyranoses. A part from its D or L chirality, the latter is
also known as β- or α-glycoside, depending on whether the glycosidic bond lies “below”
or “above” the plane of the cyclic sugar molecule. This also determines the sensitivity to
enzymes such as α-amylase, as well as α-glucosidase, only hydrolyzing the α-conformation,
or to others, such as emulsin, which affects only the β one. Furthermore, the polar heads
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forming the [CH2O]n element are hydrophilic, conferring to glycans great solubility and
metabolic compatibility with the cytosolic and extracellular environment. This is the case
of the membrane-bound molecules or many macromolecules subjected to exocytosis and
the sialic acid. In fact, according to the possible modifications in its structure at the C-4,
C-5, C-7, C-8, and/or C-9 positions, more than 50 different types of sialic acids are known,
all constituting the outer cell surface the plasmalemmal glycocalyx [2].

Glycans are also highly represented in the soil and nature in general, being able to play
both a structural and basal metabolic role in organic matter. The fundamental elements
constituting organic matter, which are carbon, hydrogen, oxygen, and nitrogen, collectively
make up 99% of the mass of protoplasm. Phosphorus and sulfur are also common elements,
essential to the structure of nucleic acids and amino acids, respectively. The interaction
degree of these components results in proteins, lipids, nucleic acids, and glycans that in
the living system undergo a further stoichiometric enhancement during the combination
molecules process, usually generating the catalytic synthesis of glycoconjugates. They
comprehend glycolipids and glycoproteins, but also, lipoproteins and essential coenzymes,
including Flavin-Adenine-Dinucleotide (FAD) and Nicotinamide-Adenine-Dinucleotide
(NAD). Much of this structural variability and complexity is conferred just by glycans, due
to their ability to produce polymers and conjugates. In particular, O-glycans (O-Linked
glycans) and N-glycans (N-Linked glycans) can be covalently linked to the polypeptide
via an N-acetylgalactosamine (GalNAc) and an OH-group of a serine (Ser) as well as a
threonine (Thr) residue or asparagine (Asn), respectively. The resulting structure can be
extended into a variety of chemical repetitions, according to the common sequence Asn-X-
Ser/Thr, where X is any amino acid except proline (Pro) [3]. However, unlike N-glycans
having GlcNAc2Man3 as a common sequence, there is currently no consensus amino acid
motif for O-glycans known at moment, but only a common structural theme, consisting
in the polylactosamine unit. The latter can often be added to the various core structures
formed in turn by the repetitive addition of galactose and N-acetyl-glucosamine units.
Moreover, polylactosamine chains can be capped with the sialic acid, or also with a fucose
element, forming a Sialyl Lewis X (sLeX) structure [4].

On the other hand, N-glycans can be composed of N-acetylgalactosamine, galactose,
neuraminic acid, N-acetylglucosamine, fucose, mannose, and other monosaccharides. In
general, O- and N-linked glycans are found on the exterior surface of the plasmalemma
in eukaryote cells, but they can also be found in prokaryotes, although less commonly.
Glycosaminoglycans (GAGs) (or mucopolysaccharides) structurally comprise 2-amino
sugars [containing an amino functional group (-NH2) instead of a hydroxylic (-OH) one]
linked alternately with a uronic acid (acidic monosaccharide constituted by one or more
carboxylic or sulphates groups) resulting in a long negatively charged polymer. All these
glycans represent a heterogeneous group of chemical species exhibiting a regulative bio-
logical function as well. In fact, since the discovery of DNA, we quickly went beyond the
central genetic dogma of “one gene, one protein” to the post-translational analysis of the
proteins, their isoforms and maturation. Enzymatic glycosylation represents precisely one
of the main post-translational mechanisms and the misfolding checkpoint for the nascent
polypeptides. Consequently, the -omics integrative sciences were born to first indicate the
complexity of whole genome (genomics), then of the proteins (proteomics), of the lipids
(lipidomics) and finally of the glycans (glycomics) [5]. These distinctions are consistent
with the complexity of the matter, having reason to exist considering that glycans alone
theoretically provide 1012 chemical species [6].

The spectrum of all glycan structures is immense; in humans, this is several orders
of magnitude greater than the number of proteins encoded by the genome. More than 1%
of the human genome encodes proteins that catalyze, localize or bind to sugar chains [7].
Given this large diversity of oligosaccharide structures and the many possible attachment
points to most proteins, it is often impossible to foresee and classify glycans. Thus, most
study approaches are based on the linkage specificity of enzymes cleaving oligosaccharides,
coupled to the HPLC, MALDI-TOF or other mass spectrometric techniques, to obtain a
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glycan-specific chemical fingerprint. Despite this huge variability and diversity, the key
enzymes regulating glycidic branching and metabolism comprehend few molecule families,
including mainly glycosyltransferases and glucosidases. Glucosidase II belongs to the
latter, which also represents the field of interest in the present work. Specifically, this is an
α-glycosidase, known to be in the pathway of the highly conserved normal protein-folding
machinery, maintained in the cytosol of both prokaryotic and eukaryotic organisms as well
as in eukaryotic mitochondria. In this machinery, N-linked glycosylation begins in the
endoplasmic reticulum (ER) with subsequent glycan processing during the transport to
the Golgi apparatus. Within the Golgi, the interplaying between the glycosidase-mediated
mannose trimming and monosaccharide additions via glycosyltransferases, generates
an oligomannose chain able to modulate the subsequent protein folding and apparatus
homeostasis. In addition, Glucosidase II is involved in human polycystic disease [8–10]
and finally in the demyelinating ones of the central nervous system (CNS), according to the
latest evidence [11].

As far as is known, this molecule exerts, due to the metabolic control on its substrates,
a wide physiological and pathological influence spectrum, that is uncommon for other
similar enzymes, thus arousing our interest. Notably, the knowledge on glycomics is
currently scattered in various publications and databases, resulting in a lack of a holistic
and systematic view of this matter. In 2012, the U.S. National Research Council called
glycoscience a new focus concerning the structures and functions of glycans, also promising
great advances in wide areas ranging from medicine to energy generation and materials
science [12].

In this review, we discuss fundamental concepts in glycobiology, integrating this
context with the recent advances in understanding the key roles of the glucosidase II in
human health and disease.

2. Glycobiology Overview

We can consider the modern history of glycans as beginning in 1902, with the Nobel
Prize for chemistry conferred to German Emil Fischer. The reaction taking his name,
developed in the period 1893–1895, refers to the formation of a glycoside in the presence
of an acid catalyst, by the interaction of an aldose or ketose with an alcohol. In fact, in
these experimental conditions, short reaction times usually lead to the synthesis of the
furanose ring structural unit, while longer reaction times lead to the pyranose one. We
owe the fundamental studies on the carbohydrates structure, as well as the homonym
currently used structural formulas, to Fischer. However, the enormous advancement in the
field has motivated the birth of glycobiology, that is, the study of the structure, biosynthesis,
and biology of saccharides. Due to their chemical spread, the latter had an evolutionistic
advantage, representing, in the cell wall, a fundamental compound of lipopolysaccharide
(LPS) in the GRAM–, of peptidoglycan (PG) in the GRAM+ bacteria, of nucleocapsid in
bacteriophages, of surface in the animal parasitic and free-living nematodes (metazoes),
of glycocalyx in the uni- or pluri-cellular eukaryotes, in plants and algae and so on to
humans. This ubiquitous diffusion of saccharides over the last 2–3 billion years, among
living matter, is sustained by their physical properties, depending on molecular weight
and bonds between the disaccharide repeating units that facilitate the extreme solubility
as well as steric flexibility in the water of the glycans molecules [13]. On the other hand,
the absence of a coding template, unlike proteins, is responsible for the immense chemical
spread of glycans.

On that basis, most glycan functions are mediated not by a single absolutely required
structural sequence, but by a spectrum of similar structures, working more in “analog” than
in lock-and-key “digital” manner [13]. However vast, this molecular diversity is limited, and
a phenomenon of evolutionistic convergence took place during phylogeny. Thus, sulfation
turned out the main dynamic post-translational modification process of glycans. It can
occur in various positions within the GAG backbone and modulates extracellular signals
such as cell–cell and cell–matrix interactions [14]. GAGs in turn are a common key element
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of the pericellular space and extracellular matrix, determining the physical characteristics
of tissues and modulating biological functions of cells. Among these properties, the
negative charge for all GAGs is paramount for their functions, and due to unknown
reasons, positively charged glycans are uncommon in nature [15].

The same convergence mechanism refers to Asn-X-Ser/Thr co-translationally linked
mannose signal Glc3Man9GlcNAc2, a highly conserved oligosaccharide structure. The
latter represents the substrate of Glucosidase II, the key enzyme of the proteins’ quality
control machinery. In fact, the fine balance between glycosylation and de-glycosylation of
substrates modulates many cell structures and biological functions. However, glycans are
also involved in other processes and functions—basal metabolism in the case of monosac-
charide molecules; energy storage in the case of polysaccharides such as glycogen; protein
folding with protein–protein interaction and cell–cell recognition; or the structural role in
the case of glycocalyx constituting the eukaryotic cell wall, of PG or LPS in the prokaryotes
as well as chitin in the arthropods and cellulose in vegetables. Finally, many molecules,
including glycoproteins and glycolipids, are suitable for therapeutic usage in humans.

3. The Roles of Glycans

In both unicellular and pluricellular organisms, the basal metabolism works with
energy extraction through the degradation of carbohydrates, mainly in the form of glucose.
A detailed discussion of this field exceeds the aims of the present work. For a more in-depth
study on this matter, please refer to “Carbohydrates metabolism” of Mondal, 2019 [16]. In
this section, we will limit ourselves to the notions of topical relevance.

Although widespread in nature, the glycolytic pathway shunting from the aerobic to
anaerobic conditions, depending on the oxygen concentration, do not apply to cancer cells.
The latter, in fact, respond to the Warburg effect [17]. In tumor cells, the rate of glucose
uptake dramatically increases, and lactate is produced, even in the presence of oxygen
and fully functioning mitochondria. In this case, the upregulated M2 isoform of Pyruvate
kinase has a key-role [18]. This differential metabolic property of cancer cells is also at the
basis of modern radiometabolic examinations by positron emission tomography (PET) in
discriminating suspected lesions from surrounding normal tissue [19].

On the other hand, gluconeogenesis is the opposing metabolic pathway of glycol-
ysis, but it is not its exact reversal, even though it shares a number of enzymes. The
starting substrates of gluconeogenesis are the glycerol, lactate, and α-keto acids. In-
terestingly, the main sites for the regulation of glycolysis and gluconeogenesis are the
phosphofructokinase-1 (PFK-1) and fructose-1, 6-bisphosphatase (F-1, 6-BPase) catalyzed
reactions. These enzymes regulate the phosphorylation balance of monosaccharides, be-
tween fructose 6-phosphate e fructose 1,6-biphosphate. A large part of gluconeogenic
glucose undergoes cytosolic glycogenesis.

Notably, one-three percent of glycogen is continuously degraded by the lysosomal
enzyme, α(1→4)-glucosidase (acid maltase) with an unknown purpose. However, a defi-
ciency of this enzyme causes an accumulation of glycogen in vacuoles in the lysosomes,
resulting in the serious glycogen storage disease type II called the Pompe disease [20].

At present, other enzymatic defects of the glycans metabolism are known, resulting in
eight glycogen storage diseases (GSD) also called glycogenosis and dextrinosis [21].

Finally, when glucose intake is deficient or insufficient for energy production, increased
mobilization of fat from adipose tissue occurs. The fat metabolism is incomplete when
glycolysis is lacking, resulting in the production of large amounts of ketone bodies, such us
Acetate, Acetoacetate and β-hydroxybutarate. The early phase of this condition is described
as physiological for the CNS, being entirely dependent the glycidic metabolism and also
able to extract the ATP molecules from ketone bodies; instead, the advanced phase, known
as “ketosis”, is characterized by severe acidosis and ultimately by coma [22].

The structural role of glycans is derived from their property to polymerize by forming
biological barriers and structures. Flexibility is another important parameter that deter-
mines the elasticity and the level of interaction with the surrounding environment. Linked
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homopolymers of glucose for cellulose and N-acetylglucosamine for chitin are the most
abundant organic molecules on the planet, providing structures such as plant and fungal
cell walls and arthropod exoskeletons [23,24]. These polymers tend to be rigid and resistant
to physical, chemical or enzymatic agents. In contrast, mucins appear as a dense fluid
layer coating many epithelial surfaces of airways and intestines, providing a critical barrier
against microorganisms [25,26]. In fact, glycosylated secretions produced in large amounts
can serve to physically expel bacterial intruders. However, a concomitant lubrication effect
is also described for mucins in these anatomical sites. This is the case of the muciparous
goblet cells of the respiratory or intestinal epithelium [27]. Solubility in the bloodstream of
unbound molecules is the main effect of glycosylation, without which the process would
probably be impossible. Coherently, the serum protein concentration of ~50–70 mg/mL
in humans implies a remarkable ~2 mM of linked sialic acids [13]. The antifreeze func-
tion, which prevents the formation of ice crystals in body fluids, is also described in some
fish [28]. This property is mediated by polysaccharides with a lipid component [29]. In
vertebrates, many components of the extracellular matrix are glycan polymers such as
sulfated glycosaminoglycans and hyaluronan. These polymers are self-complexed with
specific proteins, resulting in larger macromolecules generating structures such as base-
ment membranes [30,31] and cartilage [32–34]. Finally, emerging observations focused on
glycans in the biofilms of bacterial multicellular communities with new perspectives in
antibiotics discovery [35].

Finally, glycans can have profound effects also on the organization of cell membranes
and glycocalyx. Although a detailed discussion of this field exceeds the aims of the present
work, some critical modulatory roles of glycans need to be highlighted as appropriate.
About this, the ability of glycans to form barriers does not disregard a modulatory role on
them. The structural flexibility and low-force interaction of the intrinsic negative charge
with the extracellular matrix (ECM) components underlie this modulatory property and
confer to them a quality of “plasticity” [36]. Bulky negative charged glycoproteins of
glycocalyx can modulate cell–cell adhesion and cell–matrix interactions also by applying
tension to matrix-bound molecules, resulting in integrin activation and clustering [36]. On
these bases, both the adhesive and the anti-adhesive actions of glycan have been described.
In fact, due to both bulk and negative charges, hyaluronan and polysialic acid can inhibit
cell–cell adhesion and cell–matrix interaction [37,38]. Cell surface glycoproteins can also
modulate the membrane domain organization in this way. This is the case of GPI-anchored
proteins mainly associated with glycolipid-enriched membrane microdomains interacting
with lectins [39,40] or in the case of sialylated ganglioside GM3, which interacts with
tyrosine kinase signaling of EGFR and insulin receptors [41–43]. Some observations suggest
the existence of the self-organizing lectin-based lattices linked to branched glycans [44–46].
These ordered structures within the glycocalyx are thought to alter interactions between
cell surface molecules, until affecting their membrane trafficking by endocytosis.

Furthermore, it is known that various degrees of branching in the N-linked glycans
of surface glycoproteins can affect their functions [47]. This also refers to the regulation
of cytokine receptors and modulation of endocytosis rates, resulting in the control of
cell proliferation and differentiation, as well as clearance from the circulation [48]. Gly-
cosaminoglycans can be so thick on the cell surface that they form growth factor binding
gradients [49].

This particular bulking effect induces, in turn, the morphogen gradient during the
developmental phase [50–53]. The acrosome reaction itself is known to be a glycocalyx-
mediated process. Specifically, N-Glycolylneuraminic acid (Neu5Gc) is a sialic acid, a lack
of which, in males, leads to higher fertilization rates, and, on the contrary, to lower rates in
females [54]. Moreover, the bulking effect of glycans is responsible for biological masking
or protection, avoiding the recognition of the underlying glycan by specific glycan-binding
proteins [55]. In fact, O-acetyl modifications of terminal sialic acid can block the binding of
some influenza viruses [55,56].
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Another example is the sulfate-mediated extracellular removal of binding sites for
heparan sulfate ligands, resulting in modifications of the interferon (IFN)-beta/IFNAR
signaling pathway [57–60]. Glycan branching is also known to modulate malignant trans-
formation and T-cell activation [61,62]. However, larger glycans typically disrupt peptide
loading on T-cell receptors (TCR) during the conjunction with the antigen processing
cell [63], representing a common immune escape strategy of highly glycosylated enveloped
viruses [64,65]. This is a well-known mechanism of protection from immune recognition
that generates immunotolerance. To this end, an unusual pentasaccharide repeat called
polysaccharide A, derived from mammalian gut microbiome, is known to modulate the
host immune system by inducing a tolerant state through the engagement of T-reg [66].
The control of diffusion barriers is another property of glycans, which contributes to the
modulation of the permeability and physical composition of the cell wall.

Main examples of this property are represented by podocalyxin on glomerular
podocyte [67–69] and heparan sulfate glycosaminoglycans on the glomerular basement
membrane [70,71]. These structures are thought to be important in maintaining the integrity
of blood plasma filtration by the kidney.

More recently, the adhesion, tethering and rolling of lymphocytes on the blood–brain
barrier (BBB) during the early phase of CNS invasion are also recognized as mediated by
glycoproteins in Multiple Sclerosis (MS) and related disorders [72,73]. Thus, the complex
signaling pathway is constituted by the sequence of selectins, chemokines and integrins
at the interface blood/CNS, resulting in emperipolesis through matrix metalloproteinases
type 9 (MMP9) activation and tight-junctions disruption [74,75]. It is now evident that
nucleocytoplasmic glycosylation functionally characterizes many proteins according to an
allosteric mechanism [76]. Furthermore, the O-linked N-acetylglucosamine (O-GlcNAc)
modification can work with or against the Ser/Thr phosphorylation, affecting numerous
physiological and pathological processes. Specifically, the size, number, branching and
degree of glycan sialylation can generate numerous glycoforms of a single polypeptide,
influencing its activity. This is the case with erythropoietin [77–79] and granulocyte-
macrophage colony-stimulating factor (GM-CSF) [80,81]. It has been shown that IgG
against GM-CSF and IFN type I, another glycoprotein, are responsible, respectively, for
cryptococcosis and recurrent HSV1 encephalitis in humans [82,83].

Another example of function modulation depending on the structural features of the N-
glycans is the incomplete galactosylation of the IgG-Fc region that has been associated with
chronic inflammatory diseases [84–86]. On the contrary, the sialylation of this region ap-
pears to confer anti-inflammatory properties exploited in therapeutic usage of intravenous
immunoglobulins in humans. Finally, the addition of O-GlcNAc residues to histones-
binding DNA is a key component of epigenetic modifications that regulate chromatin
organization and gene expression. The mechanism involves the O-GlcNAc transferase
encoded on the X chromosome, resulting in inactivation and genetic imprinting [87–89].

4. Recognition Patterns of Glycans

According to the aforementioned chemical and physical properties of glycans, it is
not surprising that numerous pathogens and symbionts have developed highly specific
ways of recognizing glycans on the host cell surface or that highly conserved sequences of
specific glycan-binding proteins participate in a wide variety of cell functions.

Although many researchers claim that the glycan-dependent process is not important,
these assumptions are often obtained under static experimental conditions, making the
glycan role appear marginal. An exhaustive discussion on the glycans recognition patterns
exceeds the aim of the present work, but we believe that it is necessary to cite the most
explanatory cases.

Bacterial, fungal and parasite adhesins are known, as well as viral agglutinins. For
example, Helicobacter Pylori recognition of gastric sialoglycans is particularly interest-
ing, given its involvement in gastric ulcers and cancers [90–92]. Plasmodium falciparum
causes malaria through recognition of densely sialylated glycophorins on target erythro-
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cytes [93,94]. Viral glycan-binding proteins (hemagglutinins) such as 9-O-acetyl ester on
the sialic acid side chain of certain coronaviruses and influenza C and D viruses are critical
for binding host cells [56,95,96]. The bacteriophages themselves recognize the surface
polysaccharides as a bacterial target. Consistently, the diversity of surface polysaccharides
found on some species like pneumococcus can be explained by selection for evasion from
the vertebrate antibody response as well as bacteriophages [97]. In fact, noroviruses can
be affected in their infection spreading as they selectively bind to one blood group of
ABO structure and not another [98,99]. This results in a host escape mechanism. In other
instances, pathogen glycosidases represent a virulence factor. This refers to the flu virus
and vibrio cholerae [100].

As for the influenza virus, its sialic acid-binding (the hemagglutinating, H) activity
is balanced by the sialic acid-releasing enzyme (the neuraminidase, N) resulting in the
cleavage of interfering molecules and accessibility of viruses to the cell surface [101,102].
Not by chance, the specific neuraminidase inhibitor zanamivir (Relenza) [103,104] projected
onto the previously known sialidase inhibitor Neu5Ac2en [105] is the approved drug for
preventing the human infection. Similarly, the neuraminidase of vibrio cholerae confers
virulence by removing all but one specific residue of sialic acid from host surface ganglio-
sides, the GM1 monosialoganglioside. The latter is the specific receptor for the B subunit of
the AB5 choleric exotoxin [106].

In immunological terms, it is also known that immune cells can elicit the innate im-
mune response by detecting damage-associated molecular patterns (DAMPs) or pathogen-
associated molecular patterns (PAMPs) using Pattern Recognition Receptors (PRRs) [107],
such as Toll-like receptors (TLRs) [108,109], NOD-like receptors (NLRs) [110,111] and C-
type lectins [112,113]. Many PAMPs or DAMPs are made up of glycoconjugates such as
LPS, PGs and RNA and DNA-derived (deoxy)ribose-based polymers [114]. This evidence
is even more important considering that an adaptive immune response cannot take place
without the innate one first. Glycans are also known to work as self-associated molecular
patterns (SAMPs) [115], being recognized by intrinsic inhibitory receptors to maintain the
immune tolerance for self-antigens and to dampen immune response. In particular, surface
sialoglycans provide a mechanism to allow the host to discriminate between infectious
non-self from non-infectious self [116].

The same mechanism of glycan or glycoconjugates recognition pattern underlies
the molecular mimicry. Molecular mimicry refers to the pathogenesis of many hu-
man pathologies such as demyelinating diseases such as MS [117] and Neuromyelitis
Optica/Neuromyelitis Optica Spectrum Disorders (NMO/NMOSD) [118,119], Bicker-
staff’s brainstem encephalitis (BBE) [120], chronic inflammatory disease polyneuropathy
(CIDP) [121] and other organ-specific human chronic inflammatory diseases as well as the
acute polyneuropathy and Guillain–Barré–Strohl syndrome (GBS) [122]. In all these con-
ditions, a hypersensitivity process induces tissue damage during cross-reaction against a
foreign self-antigen. Known glycan self-antigens are MOG for MS, Myelin oligodendrocyte
glycoprotein antibody-associated disease (MOGAD) and NMO/NMOSD [123–125]; MAG
for human demyelinating neuropathy [126]; GM1, GD1a, GT1a and GQ1b for GBS [127];
the latter also for BBE [128]; and N-acetylglucosamine-6-sulfatase (GNS) for Rheumatoid
Arthritis [129].

Like molecular mimicry, some microorganisms expressing endogenous glycans can
escape the host defense immune reaction. Consequently, because glycans are often targets of
many infectious agents, intra- and interspecies polymorphisms in the cross-reaction on such
targets can provide herd immunity, resulting in limited disease spread. Finally, the presence
of high densities of terminal Man or GlcNAc residues on foreign proteins or microbes can
trigger their phagocytosis via C-type lectins on antigen presenting cells [130,131].

Intrinsic recognition patterns of glycans substantially refer to intracellular protein
folding, degradation and trafficking as well as triggering of endocytosis and phagocytosis.

Intracellular protein folding and degradation comprehends a complex pathway from
nascent protein regulation to ER-associated degradation (ERAD). In fact, in 1978 Li and
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coworkers fully described the unusual Glc3Man9GlcNAc2-P-P-dolichol as the highly con-
served glycan sequence of lipid-linked oligosaccharide donor for N-glycosylation of nascent
proteins [132]. Based on the presence of mannose 6-phophate, the enzymatic array of glycan-
modifying and glycan-recognizing proteins determines the fate of a glycoprotein molecule
in the ER—whether it will be allowed to go from the ER into the Golgi machinery as a
final destination, or be consigned for ERAD [133,134]. Specifically, O-mannosylation and
O-fucosylation can monitor the folding of newly synthesized proteins by removing them
in case of failed folding, via reverse translocation into the cytosol and finally going to
the proteasome after ubiquitination (see below). The mannose 6-phosphate recognition
system for the targeting of unfolded proteins to lysosomes is also the classic example of
intracellular trafficking of specific glycoproteins involved in triggering endocytosis and
phagocytosis. However, there is also evidence for other lectin-like molecules, which are
thought to be involved in the ER–Golgi pathway [135].

5. Glycosylation in Health and Disease

Glycosylation or deglycosylation is an important topic in cell physiology because
gly-cans contribute to protein functions through their alternative glycosylation. In fact,
the ad-dition of different glycans on the same polypeptide attachment site can modulate
its properties. Glycans express diversified chemical species and functions based on the
gly-cosylation site and the quality of the involved compound, resulting in different types of
gly-cosylation. In particular, the latter can be characterized by macroheterogeneity, referring
to the site occupancy or completeness of glycosylation, while microheterogeneity concerns
variations of glycan structure in a specific site compound [136,137]. Consistently, the degree,
type and heterogeneity of glycosylation significantly impact physical and biochemical
properties of proteins, and they are critical for normal physiology and disease development.

5.1. The Enzymatic Glycosylation and Its Modulation

The enzymatic glycosylation is a form of post-translational modification of a polypep-
tide chain, lipid, polynucleotide, carbohydrate, or other organic compound by the enzyme-
catalyzed covalent attachment of carbohydrate from a donor substrate, generally catalyzed
by glycosyltransferases in the ER. On the other hand, glycoside hydrolases or glycosidases
are enzymes breaking glycosidic bonds from organic compounds [138]. The balancing
between glycosyltransferases and glycosidases confers a specific degree of glycosylation
and the specificity of the compound linked glycides, such as a sugar code. The sugar code
(glycocode) is a coding system based on linked carbohydrates that modulate compounds’
functions [139]. This glycanic coding system is template-free, also having a large capacity
due to the huge theoretical number of mono-, oligo-, or poly-saccharides in nature (much
higher than that formed by nucleotides) [140]. Sequences of glycocode and related pheno-
types can occur through genetic or epigenetic variants of glycogenes. These genes can have
a pleiotropic effect on glycosylation by acting on the glycosyltransferases/glycosidases
balance, influencing, in the end, cell metabolism and functions. Therefore, omics data be-
longing to system glycomics (DNA methylation, transcriptomic, proteomic, glycomics, etc.)
have been shown to improve glycobiology study and comprehension. For example, cytoge-
netic aberrations with hyper-diploidy, 1q21 gain, and 13q14 deletion have been associated
with glycogene expression patterns in multiple myeloma (MM). Among 243 glycogenes,
60 showed a significantly higher expression in MM than normal plasma cell samples, while
20 showed a lower one [141]. Regarding prostate cancer, a net molecular signature sug-
gests a prevalence of glycosylation enzymes with a missense variant rs61752561 resulting
in prostate specific antigen (PSA) extra glycosylation as well as other somatic variants
causing the potential loss of glycosylation [142]. Moreover, an altered expression of a
cancer-associated glycosyltransferase ST6GAL1 has been identified in colorectal cancer
(CRC) [143]. Finally, an altered expression of genes controlling core fucosylation has been
recognized as responsible for hepatocellular carcinoma [144]. Numerous studies using dif-
ferent methodologies have been published indicating various structural alterations such as
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sialylation, fucosylation, degree of branching, and the expression of specific glycosyltrans-
ferases associated with breast, colon, liver, skin, ovary, bladder cancer, and neurological
disorders [145–147]. For example, cerebrospinal fluid glycosylation pattern was used for
early diagnosis of Alzheimer’s disease [147].

Furthermore, most FDA-approved tumors biomarkers currently used in clinical prac-
tice are glycoproteins that mainly show an altered glycosylation pattern [148]. The only
form of glycosylation found in the mammalian nucleus is the O-GlcNAc type, marking
histone, suggesting that the glycosylation itself can regulate gene transcription [149]. There
are other covalent post-translational modifications of histones including methylation, acety-
lation and ubiquitylation. These are dynamically regulated by interplaying enzymatic pairs,
which add and remove these modifications in a fine balance and regulation [149].

Recently, noncoding RNAs have been studied in relation to glycans and several miRNA
regulators mapped on glycogenes indentifying glyco-miRNAs. The glycosylation regulated
by glyco-miRNAs provides a link between miRNA-mediated control of cell phenotype and
cellular glycanic compounds [150]. For example, long intervening/intergenic noncoding
RNAs (lincRNAs) have been linked to O-glycosylation involved in CRC progression [151].
Furthermore, it has been proposed that hypoxia-upregulated transcribed-ultra conserved
regions (T-UCR), named hypoxia-induced noncoding ultra-conserved transcript (HIN-
CUT), are critical for the optimal O-GlcNAcylation of proteins in oxygen deprivation in
cancer [152]. Finally, recent mass spectrometry studies recognized glycolipids as potential
biomarkers for various physiological and pathological processes, being involved in the de-
velopment of neurological and neurodegenerative diseases, including Parkinson’s disease
(PD), Alzheimer’s disease (AD), Lewy body and frontotemporal dementia [153].

5.1.1. N-Linked Glycosylation

N-linked glycosylation is a very prevalent form of glycosylation in nature, being
required for the proper folding of some eukaryotic proteins in the ER. Thus, a fourteen
carbohydrate-long common oligosaccharide precursor (2 N-acetylglucosamine, 9 man-
nose and 3 glucose) is linked to the asparagine of the core nascent protein in the ER.
This fourteen-carbohydrate common precursor is classified into three types, based on
residues linked to the (Man)3(GlcNAc)2-Asn-peptide core. (1) “oligomannose”, con-
sisting solely of mannose residues; (2) “complex”, constituted by “antennae” initiated
by N-acetylglucosaminyltransferases (GlcNAcTs); (3) “hybrid”, consisting of mannose
residues attached to the Manα1–6 arm of the core and one or two antennae to the Manα1–3
arm [47]. Once transferred to the nascent peptide chain, N-glycans undergo an extensive
process, resulting in the removal of three glucose residues, as well as several mannose
residues, depending on the N-linked glycan in elaboration. N-linked glycans are ex-
tremely important in proper protein folding in eukaryotes. The removal of these residues
depends on the correct protein folding that occurs for translocation to the Golgi appa-
ratus. Here, mannose residues can be removed and replaced by other monosaccharides
(e.g., N-acetylglucosamine, N-acetylgalactosamine, galactose, fucose and sialic acid) to
elongate the N-linked oligosaccharides [154]. Conversely, a mannose-6-phosphate sequence
serves as a signal to move towards the lysosome, the unfolded protein to which this glycan
is attached. This recognition pattern is allowed by the activation of two specific endocytic
receptors for the glycanic sequences, the cation-independent mannose-6-phosphate recep-
tor (CI-MPR) and the cation-dependent mannose-6-phosphate receptor (CD-MPR) [155].
Moreover, the clearance of secreted glycoproteins can also depend on the sialic acid. In fact,
the loss of sialic acid from glycoproteins triggers clearance by the Kupffer cells carrying
receptors for asialoglycoproteins [156]. Finally, N-linked glycans also play an important
role in cell–cell interactions. This is the case of the CD337 receptor on Natural Killer cells
indicating the recognized cell as cancerous [157].
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5.1.2. O-Linked Glycosylation

It is known that O-linked glycans are mainly catalyzed in the Golgi complex [158].
Here, the C-1 of N-acetylgalactosamine is covalently bonded to the hydroxyl of serine or
threonine of the nascent core protein [158,159]. Once the N-acetylgalactosamine residue has
been added, other carbohydrate residues such as galactose, fucose, N-acetylglucosamine
and sialic acid can be added [160,161]. Thus, different types of O-linked oligosaccharides
have been identified, including O-fucose, O-mannose, O-glucose and O-N-acetylglucosa-
mine. The resulting structures play a role in modulating protein activity via different
mechanisms: (1) phosphorylation, (2) protein–protein interactions, (3) protein degradation,
(4) protein localization and (5) transcription [162–164]. Regarding the phosphorylation,
many studies have found sites of attachment for O-phosphate and O-GlcNAc to be mapped
to the same residue [163,164]. These data suggest that O-phosphate and O-GlcNAc modify
proteins by competing for the same serine or threonine residues. Therefore, by acting on
the availability of the latter residues, O-GlcNAc regulates protein function resulting from
the phosphorylation patterns [163]. This is a biological topic, as an altered phosphory-
lation pattern can change enzymatic cascade and signaling pathways with consequent
modification in expression level of genes encoding, for example, glycosyltransferases and
glycosidases whose ration generates, in turn, the modulatory glycocode. In fact, cova-
lent modification of proteins and enzymes through phosphorylation/dephosphorylation
constitutes a sophisticated control system in cell homeostasis [165]. Moreover, proteins
coupled to O-GlcNAc are efficiently shuttled from the cytoplasm to the nucleus in Aplysia
neurons, suggesting a functional role of O-GlcNAc as alternative nuclear localizing or
cytosol retention signal [163,164].

However, O-glycans are thought to work in general on the outer cell surface, through
mucins, sLeX and selectins [26]. Specifically, unlike mucins that are GalNAc-linked, the ad-
dition of GlcNAc does not typically occur in the Golgi apparatus and is not extended [166].
This synthesis is regulated through O-GlcNAc-transferases (OGTs) and O-GlcNAcases
(OGAs) [167]. These enzymes and their stoichiometric ratio exist depending on the subcel-
lular compartment as well as gene expression. They perform a rapid cycle of addition and
removal of GlcNAc from protein substrates. This dynamic process seems to be unique to
this glycosylation motif also regulating metabolism and other cellular functions.

sLeX are important in ABO blood antigen determination and immune response.
P-selectin released from Weibel–Palade bodies on blood vessel endothelial cells are in-
volved in the contact mechanism between endothelial cells and bacterial peptidoglycan as
well as lymphomonocytes or neutrophils during inflammation [166]. P-selectins can bind
to the plasmalemmal sLeX on the neutrophils in the bloodstream, helping the extravasation
of these cells during infection [168], but also the mononuclear cells during tethering and
rolling over the BBB in the early phase of neuroinflammation detected in MS and related
disorders [169].

Other significant O-linked glycoproteins are glycophorin of the erythrocyte cell mem-
branes; notch, the transmembrane receptor involved in development and cell fate; throm-
bospondin; coagulation factor VII and IX; and the urinary type plasminogen activator.
GAGs are polysaccharide polymers classified into four groups, based on the disaccharide
core; they generally work in the ECM [170]. Heparin/heparan sulfate (HSGAGs) and
chondroitin sulfate/dermatan sulfate (CSGAGs) are synthesized in the Golgi apparatus,
where protein cores made in the rough endoplasmic reticulum are post-translationally mod-
ified with O-linked glycosylation by glycosyltransferases forming proteoglycans [171–173].
Keratan sulfate can have a N- or O-linked glycosylation core of the proteoglycan [174].
Finally, the hyaluronic acid is synthesized by integral membrane synthases [175]. The latter
secrete the disaccharide chain that undergoes dynamic elongation. Therefore, GAGs are
represented by heparin, heparan sulfate, chondroitin, keratan and dermatan. Some of these,
such as heparan sulfate, are bound to the plasmalemma through a tetrasaccharide linked to
a protein via a xylosyl residue [170].
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5.1.3. C-Linked Glycosylation

C-linked glycosylation or C-mannosylation concerns only 18% of human proteins
because the sugar is linked to a carbon atom, a species that is less reactive than nitrogen
or oxygen [176]. Only in 2011 was the first C-mannosylated protein determined using
crystallography, the human complement component 8 [177]. This type of glycosylation
implies that a mannose molecule is added to the first tryptophan residue in the sequence
W–X–X–W, where W indicates tryptophan and X is the amino acid [178]. Thus, a C–C
bond can be formed between the first carbon of alpha-mannose and the second one of
tryptophan [178]. However, for reasons of binding energy, this is true only for two thirds of
the cases because the second amino acid is preferred if belonging to the polar ones (Ser, Ala,
Gly and Thr), for mannosylation to occur. Recently, the technique for predicting whether
or not the sequence expresses a mannosylation site has advanced, providing an accuracy
of 93% [176]. Thrombospondins are one of the main C-mannosylated proteins, as well as
Type I cytokine receptors [179]. Numerous studies have shown that C-mannosylation is an
important process in the secretion of proteins which are retained in the ER, if they do not
undergo this type of glycosylation [176]. This also holds true for erythropoietin [180].

5.1.4. Glypiation

Glypiation consists of the formation of GPI anchors that bind proteins to lipids through
glycan linkages [181]. This special form of glycosylation frequently concerns ER enzymes
involved in the maturation process of proteins [181].

5.1.5. Phosphoglycosylation

Phosphoglycosylation is a rare alternative glycosylation type involving a number of
newly identified glycoproteins containing oligosaccharides linked to serine or threonine
in a peptide backbone via phosphodiesters [182]. This refers to xylose in Trypanosoma
cruzi [183]. Meanwhile, mannose has been reported in Leishmania Mexicana [184], in
mice and especially in Mus musculus on the cell-surface laminin receptor alpha dystro-
glycan [185]. Given the highly conserved form of alpha dystroglycan from vertebrates to
mammals, the severe human dystrophies induced by its mutations are not surprising [186].

5.2. The Non-Enzymatic Glycosylation

Non-enzymatic protein glycosylation (glycation) is a common spontaneous post-
translational in vivo modification of proteins, resulting from covalent attachment reactions
between carbonyl group of a reducing sugar (mainly glucose or fructose) and the amino
groups of peptide chains. These reactions take place across, or close to, water channels
and protruding tubules not needing enzymatic intervention, and alter the structure and
activity of the involved proteins, resulting in permanent residues known as advanced
glycation end products (AGEs). The formation of AGEs (the Maillard reaction) starts with
the reaction of sugar aldehydes with the N-terminus of free-amino groups of proteins to
form a so-called Schiff base [187]. Rearrangements of the instable Schiff base lead to the
formation of Amadori products. A small subset of Amadori products will undergo further
irreversible reactions with oxidation, reduction, dehydration, condensation, fragmentation
and cyclization leading to the formation of AGEs [188]. Currently, the incubation of proteins
with lipid peroxidation products is an alternative method of generating AGEs as well as the
polyol pathway [189]. The latter promotes the conversion of glucose into fructose; fructose
may further be converted into 3-deoxyglucose and fructose-3-phosphate, both of which are
very potent non-enzymatic glycation agents.

In the first classification system, the most extensively studied AGEs are N-carboxyme-
thyllysine (CML), pentosidine, crossline, pyrraline and hydroimidazolone [190]. The
second group includes AGE-1 (glucose-derived AGEs), AGE-2 (glyceraldehyde-derived
AGEs), AGE-3 (glycolaldehyde-derived AGEs), AGE-4 (GO/glyoxal, MGO/methylglyoxal-
derived AGEs), AGE-5 (glyoxal-derived AGEs), AGE-6 (3-deoxyglucosone-derived AGEs)
and acetaldehyde-derived AGEs (AA-AGEs) [191]. Specific modifications of proteins are
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also considered AGEs; for example, glycated haemoglobin (called HbA1c) is actually
an Amadori product, not an AGE, albumin (the experimental bovine serum albumin
(BSA)-AGE), eye crystallin, collagen type IV and others [192]. Notably, the main sources
of these N-glycosylated proteins in serum are the B-cells (immunoglobulins) and the
liver (albumin), but also macrophages (cytokines) and other cell types. Finally, defined
glycotoxins AGE-2, AGE-3 and AA-AGE are referred to as toxic end products of advanced
glycation (TAGE) [193]. There is also compelling evidence that non-TAGE molecules, such
as CML, GO, MGO, pentosidine, pyrraline and crossline may be cytotoxic, with LD50 of
CML calculated to be >5 mg/kg [194]. In fact, in the presence of MGO, the translocation of
Nrf2 from the cytosol to the nucleus is inhibited, which results in a decreased expression
of detoxifying enzymes such as heme oxygenase-1 [195]. Nrf2 belongs to the fumarate
pathway of action. Although, AGEs are generated endogenously during degenerative
diseases and aging, also becoming markers of their pathological processes. Cooking foods
and smoking are associated with exogenous AGEs as well [196,197]. Thus, some of the
exogenous AGEs are carcinogenic, for example acrylamide or heterocyclic amines [198].
Interestingly, the average human diet consists of ~75 mg AGEs per day, 10–30% (30–80% in
another report) of which is systemically absorbed and about 30% in turn removed in the
urine [199].

In all cases, AGEs act through multi-ligand plasmalemmal receptors for advanced
glycation end-products (RAGE) inducing NADPH-oxidase activity, with activation of
Nf-κB and increased iNOS expression as well as STAT3, HIF-1α, AP-1 and CREB. This
molecular cascade leads to oxidative stress, promoting inflammatory processes with a
final cytotoxicity [194]. These effects are attenuated by antioxidants, such as thioctic acid,
N-acetylcysteine, and active ingredients contained in green tea; garlic; resveratrol; red
wine; curcumin; cinnamic acid derivatives, such as ferulic acid and quercetin [200]. In
addition, the aminoguanidine, a Maillard blocker, induces a positive effect in reducing AGE
accumulation in tissues in experimental diabetes and preventing the age-related cardiac
hypertrophy and arterial stiffening [201]. Nevertheless, its side effects make it very difficult
in human chronic use. This is important as glycated proteins, especially large ones, are
resistant to proteolytic enzymes, making it more difficult for them to be eliminated from
the body.

Among RAGE ligands, there are also pro-inflammatory molecules including amyloid
peptides, S100/calgranulin proteins, high mobility group box 1 proteins (HMGB1) and
LPSs [202–204].

As for glycans in general, there are also problems in the measurement of the in vivo
chemical species for AGEs. The use of advanced methods such as chromatographic, im-
munoenzymatic (ELISA) or fluorescent has improved our detecting sensitivity [192,205].
Thus, accumulated AGEs in the skin can currently be estimated using the non-invasive
autofluorescence measurement [206]. The studies derived from these techniques evi-
dence a net increased AGEs level in obesity [187], Diabetes Mellitus [207] and chronic
inflammatory diseases, like Rheumatoid Arthritis [208], as well as in age-related diseases,
such as cardiovascular, renal and neurodegenerative pathologies [193,209]. RAGE, GO
and MGO are overexpressed particularly in chronic inflammatory diseases [191]. These
pathologies are associated with the immune-mediated inflammation and cell activation,
resulting in a switch towards glycolysis, high glycolytic rate and AGEs production. In
fact, the activation of CNS-resident microglia and infiltrated macrophages can induce a
metabolic switch, promoting glycolysis over oxidative phosphorylation [210,211]. In MS,
these metabolic modifications refer to T-cells and monocytes, but also to astrocytes after
uptake of myelin and oligodendrocytes [212]. The accumulation of AGEs in the plasma and
CNS of MS patients can contribute to neuroinflammation and progression of this pathology.
In Alzheimer’s disease, β-amyloid peptide depositions and neurofibrillary tangles are
affected by glycation [213], which is also increased in the cerebral cortex, amygdala and
substantia nigra of Parkinsonian patients [214].
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6. Glycodrugs

Many existing biologically active compounds used for therapeutic purposes are glyco-
sides coming from plants, animals and bacteria. A large number of these have been struc-
turally modified, resulting in derivatives and other ex novo synthetized ones, according
to the platform-based or the prevailing click-based chemical approach, respectively [215].
Currently, disposable biopharmaceuticals are glycosylated proteins including monoclonal
antibodies (mAbs), fusion proteins, growth factors, cytokines, therapeutic enzymes, and
hormones. Moreover, advances in molecular glycobiology have clarified the relationship
between aglycone and glycoside activity, often making it possible to develop more active
glycodrugs [215]. In fact, glycosylation affects the pharmacokinetics, pharmacodynamics,
and immunogenicity of a therapeutic compound. It can influence pharmacokinetics also
by protecting proteins from proteolytic degradation in vivo [216]. We know why partially
glycosylated proteins have a shorter lifetime than fully glycosylated ones, due to the
binding of galactose with hepatic asialoglycoprotein receptors expressed on hepatocytes,
which promotes hepatic clearance of the partially glycosylated proteins [217]. The latter, in
fact, unlike the glycosylated ones containing sialic acid, usually contain only a terminal
galactose. Apart from these findings, the main event in the history of glycodrugs was the
Iminosugars discovery in 1970 [218].

Iminosugars, where a nitrogen replaces the endocyclic oxygen atom in the hemiaminal
ring system of structure, are another important class of carbohydrates with medicinal prop-
erties and are also common components of plants [219]. Regardless of their clinical uses,
these molecules enhance our knowledge in understanding the signaling and metabolic
functioning of glucose in the cell, as well as mechanisms of viral and cancer development
through pleiotropic effects deriving from inhibition of glucosidases. Other classes of gly-
codrugs act by interfering on cell compounds synthesis, protein–protein interaction or
recognition pattern. This is the case of mAbs. In fact, IgG Fc glycosylation is critical to
many functions of antibody effectors through modulating Fc-FcγR interactions [220]. The
human FcγR family includes activating (FcγRIa, FcγRIIa, and FcγRIIIa) and inhibitory
(FcγRIIb) receptors. Fc glycosylation plays important roles in modulating the antibody
binding affinities with FcγRs or C1q on effector cells, and thus affects immune effector func-
tions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent
cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC) [221]. These
notions have been fundamental to understanding the mechanisms of action (MOA) of
therapeutic antibodies and their clinical use. A quick excursus of the most representative
drug molecules is described below, with no claims to completeness given the vastness of
this matter.

6.1. The α-Glycosidases Inhibitors: Iminosugars

Suspended in water-soluble fractions of plants and microbial broths, iminosugars
seem likely to be synthetized to protect carbohydrates produced during photosynthesis and
to reduce competition from other microorganisms by inhibiting their glycosidases [222].
However, many of these natural products common in plants, bacteria and fungi are not
inhibitors of any glycosidase. This suggests that iminosugars have other functions, all
supported by the chaperoning activity, resulting in regulatory roles and immunomod-
ulation in mammals. Indeed, iminosugars do not need to be glycosidase inhibitors for
pharmacological activity, but a lack of glycosidase inhibition removes many off-target
activities [223].

The first isolated iminosugar was the 1-deoxynojirimycin (DNJ). In 1976, it was found
in the mulberry tree [224] as a biochemical activity, that is, a glycomimetic α-glucosidase
inhibitor and for medical application as an anti-diabetic, anti-viral and anti-cancer agent
progenitor. After that, the analog 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and others
iminosugars (about 200) were also discovered as glycomimetics, representing a new gen-
eration of carbohydrate-based drug candidates for treatment of diabetes, viral infections
including influenza, HIV, hepatitis C and B, as well as Dengue and cancer [225]. Specifically,
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DNJ induces both an anti-diabetic and a broad-spectrum anti-viral effect by interfering
with protein-folding machinery, complex glucosides hydrolysis and food adsorption by
inhibiting GANAB [218]. Protein-folding machinery, in fact, is exploited by most viruses to
assemble capsid structural compounds after cell infection. Furthermore, the anti-cancer
effect is due to the GANAB inhibition, affecting enhanced glycoprotein turnover, which is re-
flected by an extremely active lysosomal system and membrane trafficking in tumors [226].
However, due to abdominal pain and other adverse effects, DNJ never entered into the
clinical routine but was modified to produce therapeutic derivatives [223,227]. Apart from
iminosugars, ER stress and unfolded protein response (UPR) have been studied in human
pathology, representing an emerging field as well as a fascinating aspect of diseases. In
fact, the pathologic feature of many neurodegenerative diseases is the accumulation of
misfolded proteins in the form of aggregates within affected neurons, although vascular
and metabolic conditions are also thought to be involved [228,229].

6.2. Glycodrugs in Diabetes Mellitus and Thesaurismosis

Acarbose is a pseudo-tetrasacharide derived from cultures of Actinoplanes strain SE 50,
which possesses a nitrogen molecule between the first and second glucose molecules. This
modification confers a particularly high affinity for the α-glucosidase enzyme inhibition,
resulting in a clinically relevant anti-diabetic effect [230,231].

N-hydroxyethyl-DNJ (Miglitol) [232] for diabetes and N-butyl-DNJ (Miglustat) [233]
for Gaucher’s (in the USA) and Niemann–Pick type C disease (in Europe) have been
synthetized and authorized for medical use, with the trade name of Glyset and Zaveska
respectively. In particular, Miglitol establishes enhanced glycemic control by inhibiting the
membrane-bond α-glucosidases of the small intestine and pancreas to hydrolyze carbo-
hydrates into simpler absorbable forms. Since 1996, it has been approved for non-insulin-
dependent diabetes mellitus, in which it reduces the complex carbohydrate digestion with
a consequent decrease in glucose absorption and hyperglycemia.

Pyrrolidine iminosugar DAB, another potent inhibitor of α-glucosidases, has been
shown to reduce glucagon-induced and spontaneous hyperglycemia in rats and dogs [225].
DAB-induced inhibition of hepatic glycogen phosphorylase improves glycemic control in
patients with Type 2 diabetes [231].

Interestingly, DNJ and Miglitol were found to be potent agonists of the human glucose
sensor, sodium/glucose cotransporter type 3 [234]. Miglustat inhibits the glucosylceramide
synthase enzyme, which reduces biosynthesis of glucosylceramide from ceramide, resulting
in reduced glycosphingolipids (GSLs) synthesis and deposition [235]. It also inhibits
α-glucosidase I and II, lysosomal and non-lysosomal glucocerebrosidases, sucrase and
maltase [235]. This decreases the excessive cellular storage of glycolipids in neural tissue,
because Gaucher’s and Niemann–Pick type C are diseases caused by a deficiency in
glucocerebrosidase and a deficiency in the metabolism of cholesterol and other lipids
respectively [218].

Miglustat hydrochloride, (Amigal®®) is a pharmacological chaperone that selectively
binds α-galactosidase A (α-Gal A), increasing physical stability, lysosomal trafficking,
and cellular activity [225]. Disfunction of this enzyme causes the Fabry disease [236].
Importantly, the chaperoning activity of Amigal®® is observed at concentrations that do not
inhibit the α-Gal A or other galactosidases [236]. However, it works as a therapeutic agent.

A promising therapy for Tay–Sachs and Sandhoff diseases involves the use of β-N-
acetylhexosaminidase inhibitors such as 2-acetamido-1,4-imino-1,2,4-tride-oxy-l-arabinitol
(LABNAc) as a chemical chaperone to enhance the enzyme activity above subcritical levels
in order to avoid glycolipid storage [237]. This agent represents an emerging therapeu-
tic tool.

6.3. Viral Infections and Glycodrugs

Regarding the antiviral activity of DNJ, DAB and derivatives, interesting inhibition
properties have been found in vitro concerning viral replication and capsid assembly,
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particularly in flaviviruses [238]. However, the in vivo evidence was disappointing. N-
butyl-DNJ and Celgosivir (6-O-butanoyl- castanospermine) have been shown to inhibit HIV
infectivity in vitro by blocking viral envelope glycoprotein trimming [239,240]. However, in
both cases, the clinical development was problematic due to the compound’s toxicity profile
and competition from other less toxic anti-HIV drugs. Celgosivir has also been shown to
have a 30-fold greater antiviral activity than the parent compound against cytomegalovirus,
influenza and HCV [225,241]. Unfortunately, this agent and the promising castanospermine
also inhibit intestinal glycosidases and cause osmotic diarrhea [225]. Finally, N-Nonyl-
deoxynojirimycin has a further glycosidase-independent antiviral mode of action against
HCV by inhibiting the formation of the p7 ion channel, which is able to perform cation
selective ion channels in planar lipid bilayers [242]. Viral neuraminidases are glycosidases
(sialidases precisely) that hydrolyze the neuraminic acid present in animal tissue and
bacteria during the infectious phase when the receptor bridging to the host cell takes
place by elimination of the steric hindrance induced by the surrounding sialic acid on the
glycocalyx [243]. The neuraminic acid glycomimetic Neu5Ac2en, other than iminosugar,
inhibits sialidases by altering transition state analogue, resulting in neuraminidase inhibitor,
thus working in treatment and prophylaxis of influenza A and B [244]. The FDA-approved
drug is called Relenza.

6.4. Carbohydrate-Based Antibiotics

Several types of carbohydrate-based antibiotic are known, most of which are bacterial
and fungal products. They generally affect the bacterial protein synthesis.

The first type contains molecules in which carbohydrates are linked to cyclitols or
aminocyclitols, known as aminoglycosides such as streptomycin, gentamycin, kanamycin,
amikacin and neomycin [245]. Aminoglycosides irreversibly bind to 30S ribosomal pro-
teins and macrolides block peptide elongation by reversibly binding to the 50S ribosomal
unit [246]. In the second type, carbohydrates are linked to nucleotide moieties such as
liposidomycin, tunicamycin, mureidomycins, and so on [245]. Nucleosides have an in-
hibitory effect over phospho-MurNAc-pentapeptide translocase, resulting in a biosynthesis
block of the peptidoglycan layer [247]. Currently, ramoplanin is the only clinically used
antibiotic of this class. It is known to inhibit the O-GlcNAc transferase gene [245]. In
the third type, carbohydrates can be linked to a macrocyclic lactone ring, constituting
macrolide antibiotics such as azithromycin and erythromycin A [246]. The latter inhibits
protein synthesis by binding to the peptidyl transferase site of the 50S ribosomal subunit,
thus resulting particularly effective on Gram+. Its derivative compound is cethromycin.

6.5. Carbohydrate-Based Cancer Drugs

Swainsonine (mannose analogue) and castanospermine (glucose analogue) are imi-
nosugar alkaloid glycosidases inhibitors, which also express anticancer properties and
act on the protein-folding machinery [248]. These compounds show cytotoxicity and the
inhibition effect on cancer cell metastasis, decreasing the toxicity of chemotherapics, also
acting as immunomodulators [249,250]. However, none of these compounds have currently
entered into the oncological clinical routine.

Cancer is associated with a profound modification of cell glycobiology. The enhanced
expression of various glycosyltransferase enzymes such as N-acetylglucosaminyltransferase
V (GalNAc-TV, GnT-V, MGAT5) are responsible for the increased number of N-glycans in
tumors [251]. These alterations, in turn, are considered the hallmark for cancer progres-
sion. Despite the global scientific effort in drug development against cancer, most of the
molecules are still under investigation. However, the studies on the possible approaches to
this issue are very illustrative for the biology of glycans and tumors. For example, many
groups have attempted to use known tumor-associated carbohydrate antigens (TACAs),
rather than isolate novel ones for anti-cancer vaccine intervention [252]. The NIH Institute,
in fact, has defined TACAs as important prognostic biomarkers [252]. Their glycolipid-
based classification comprehends the gangliosides GM2, GD2, GD3, fucosyl-GM1, Globo-H,
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and Lewis Y (LeY) [253]. In particular, syalo mono-gangliosides (glycosphingolipids) GM2,
GD2, and GD3 are involved in human melanomas and LeY, such as Sialyl Lewis A (sLeA),
sLeX, sLeX-LeX, are human tumor-associated antigens [253]. Unfortunately, TACAs alone
proved to be poorly immunogenic to induce an adequate anti-cancer T-cell dependent
immune response. Consequently, researchers began to conjugate TACAs with T-cell stimu-
lating protein carriers, including keyhole limpet haemocyanin (KLH), tetanus toxoid (TT),
BSA, and diphtheria toxin (CRM197) [254]. These complexes revealed a self-immunogenic
activity resulting in antigen-specific immunogenicity suppression. Thus, TACAs have
been coupled with different compounds, including zwitterionic polysaccharide A1 (PSA1),
Toll-like receptor 2 (TLR2) ligand, Pam3CysSerK4, and T-cell peptide epitopes, to develop
self-adjuvant multi-component cancer vaccines [255]. In these cases, the carbohydrate
compound confers the specificity of the immune response against tumor cells as well as
the immunogenicity of the vaccine itself. Some of these have shown concrete results in
undergoing clinical trials.

Thus, GD3 ganglioside vaccines and anti-idiotypic monoclonal antibodies, which
mimic GD3 gangliosides, were carried out on melanoma patients with evidence of a
low survival outcome [256]. Currently, some experimental vaccine therapeutics are ap-
proved, including GM2 KLH/QS-21 and MGV (GM2/GD2 KLH QS21) for malignant
melanomas [257]; Theratope (sialyl-Tn Ag) for breast cancer [258]; IGN 301 (anti-idiotypic
antibody) for LeY antigen associated with small cell lung cancer [259]. Moreover, the
National Cancer Institute has declared MUC1 as a priority cancer antigen. MUC1 is a
transmembrane protein overexpressed in various tumors (such as lung, breast, pancreas,
kidney, ovary, and colon tumors) aberrantly and differentially glycosylated in cancer cells
as compared to normal cells. Due to these distinguishable features, many research groups
are now attempting to develop a vaccine compound from it [260].

Another adopted strategy for carbohydrate-based cancer drug discovery refers to in-
creasing the number of glucose transporters (GLUTs) and lectins on the membrane surface
as well as increasing the uptake of glucose by cancer cells at a rate higher than that of
normal cells, referred to as the Warburg effect [17]. Several cytotoxic agents, including
glufosfamide, chlorambucil, busulfan, docetaxel, paclitaxel, have been glycoconjugated to
be less toxic to normal cells than parent aglycons [261]. These sugar prodrugs are thought
to be cleaved by intracellular glycosidases, allowing the release of active drugs with im-
provement of their pharmacokinetic properties. However, more observations are required
to validate the GLUT-mediated efficacy of these drugs. On the other hand, the radiolabeled
glucose-analogue, 2-deoxy-2(18F)fluoro-D-glucose (18F-FDG), represents a diagnostic hall-
mark in tumors as cancer cells consume it, and it is detected in PET [19]. A recent overview
by Smith and Bertozzi [262] has resumed the clinical impact of glycobiology in biomedicine
research, according to the glycobiology-targeted therapeutics, including selectins, Siglecs
and mammalian glycans. We report below only a few examples, but we encourage you
to visit the aforementioned article to learn more. For instance, the authors included in
the Pan-selectin antagonist group small molecules like Cylexin for ischaemia-reperfusion
injury in infant heart surgery. The P-selectin antagonists group includes the Crizanlizumab
for vaso-occlusive crisis in sickle cell disease and Inclacumab for myocardial infarction.
Uproleselan (GlycoMimetics) for MM, Gemtuzumab for acute myeloid leukaemia, and
Pinatuzumab for follicular lymphoma and diffuse large B cell lymphoma have been in-
cluded in the E-selectin antagonists’ group; the CD33 antagonists group includes AL003
for Alzheimer’s disease. The Siglec-8 and Siglec-10 agonists groups include Lirentelimab
for Keratoconjunctivitis and CD24Fc for immune-related adverse events associated with
checkpoint inhibitors, respectively; while the group of Siglec-15 antagonists includes the
NC318 for metastatic solid tumors. The MUC1 peptide plus poly-ICLC for lung carcinoma,
the Trivalent (GM2/GD2/GD3–KLH) vaccine with OPT-821 for metastatic sarcoma, the
GD2/GD3 lactone–KLH/OPT-821 vaccine for neuroblastoma have been included in the
Mammalian glycan vaccines. The Anti-glycan antibodies group includes Oregovomab
for ovarian cancer and Dinutuximab for neuroblastoma. Racotumomab for tumors with
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N-glycolylated gangliosides (neuroblastoma, Ewing’s sarcoma, Wilm’s tumour, retinoblas-
toma and glioma), Abagovomab for ovarian cancer have been included in the anti-idiotype
antibodies. The CAR cell therapies include anti-GD2 CAR T and anti-GD2 CAR NKT
for neuroblastoma.

Finally, the inhibition of specific glycosidases blocks the complete N-glycan processing,
resulting in an anti-cancer effect. Some iminosugars such as swainsonine [263], deoxyman-
nojirimycin [264], castanospermine [265] have proved to be good inhibitors. Swainsonine,
in particular, inhibits lysosomal alpha1–3 and alpha1–6-mannosidase and also Golgi alpha-
manosidase II. The inhibition of Golgi alpha-manosidase II by (-)-Swainsonine, in turn,
can block the expression of the beta(1→6)-branched complex type N-glycans in malignant
human and rodent cells. Thus, swainsonine hydrochloride (GD0039) underwent clinical
evaluation, but neither disease progression nor toxicity were not affected in the phase I
trial [263]. Although several carbohydrate agents have been synthesized and studied in
clinical trials, the therapeutic outcomes are disappointing, and similar results come from
commercially available carbohydrate-based therapeutic agents. In conclusion, more com-
prehensive studies are warranted based on the promising ways which have been explored
so far.

6.6. Cardioactive Glycosides

Ouabain is a cardiac glycoside extracted from ripe seeds of Strophanthus gratus and
bark of Acokanthera ouabaio, known in biological studies to inhibit Na+/K+ ATPase pomp in
myocytes [215]. This results in an intracellular increase in sodium ions concentration that
triggers intracellular Ca+ accumulation facilitating, in turn, the release of calcium ions by
sarcoplasmic reticulum, with a final improvement of ionotropism and contractility [266].
Digoxin, instead, is a purified cardiac glycoside found in the foxglove plant Digitalis lanata,
expressing same biological activity and is conventionally used for the treatment of atrial
fibrillation and flutter [267].

6.7. Heparin

Heparin and its analogue heparin sulfate are well-known highly sulfated glycosamino-
glycans found in the cell surface or extracellular protein matrix [171]. They modulate
classical activity such as coagulation but also migration, differentiation, proliferation, and
cancer metastasis. The anticoagulant activity is mediated by the activating antithrombin
III (a serine protease inhibitor), which, in turn, blocks thrombin, thereby inhibiting blood
coagulation factors, Xa and IIa [268]. However, heparin can also activate platelet factor 4 as
well, causing serious side effects such as thrombocytopenia [268].

6.8. Carbohydrate-Based Vaccines

As for anticancer vaccines, carbohydrates also play a twofold key role for antimi-
crobial vaccines, providing the specificity of the immune response against pathogen and
immunogenicity [269]. First in 1983, Pneumovax was marketed, constituted by a cap-
sular polysaccharide. Subsequently, it was modified and presented as Pneumovax 23,
containing isolated polysaccharides from 23 serotypes [270]. Other carbohydrate-based
vaccines approved to date include the ActHiB, OmniHiB (Haemophilus b) for Influenzae
type b; Typhoid Vi (Typhim Vi) for Typhoid fever; and Prevnar (pneumococcal conjugate
Pneumonia caused by Streptococcus vaccine) for pneumonia [271].

6.9. Carbohydrate-Based α-Glucosidases

Benzyl 1,2,3-triazole derivatives, such as ribavirin, were found to inhibit the anti-HIV
retroviral activity by 60–65%, at concentration of 50 µM, and then have been subjected
to clinical evaluation [272]. This molecule belongs to nitrogen-containing heterocyclic
compounds that are indispensable for life, being part of essential building blocks such as
amino acids, nucleotides, etc.
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1,2,3-Triazoles and derivatives are α-glucosidase inhibitors as well as one of the most
important nitrogen-containing five-membered heterocycles, thus having many therapeutic
applications ranging from antiviral, antitubercular and anticancer activity [273–275]. In
particular, click chemistry compounds such as β-d-ribosyl, α-d-galactosyl, and α-d-xylosyl
derivatives displayed maximum α-glucosidase inhibition and underwent assessment for
putative clinical applications [276].

6.10. Glycodrugs Miscellanea

Dapagliflozin, a C-aryl glycoside, another iminosugar, was approved by the FDA in
2014 for glycemic control via sodium-dependent glucose cotransporter 2 (SGLT2) inhibition.
Derivative fluorodapagliflozins have been synthesized by introducing a high-electron-
withdrawing difluoro substituent, which decreases the negative charge of oxygen in the
structure ring, resulting in better affinity with SGLT2 [277].

Topiramate, a sulfamate-substituted monosaccharide, has been approved by the FDA
for the treatment of epilepsy, Lennox–Gastaut syndrome, and for the prevention of mi-
graines [278]. It works by enhancing GABA (A) receptors, reducing membrane depo-
larization by AMPA/Kainate receptor activity, downregulating NMDA receptor activity,
blocking voltage-gated sodium channels, inhibiting the glutamate one as well as the neu-
ronal excitability as expected [279,280].

Vidarabine, an arabinosyl nucleoside analogue, first intended as anticancer drug,
has been marketed as an antiviral drug against infections caused by herpes simplex and
varicella zoster viruses [281]. After conversion to a monophosphate by viral thymidine
kinase, this molecule is further modified to a triphosphate by host enzymes. Vidarabine
triphosphate directly inhibits DNA polymerase, also acting as chain terminator in DNA
replication [282].

Lactulose is a synthetic disaccharide (galactose and fructose) used against chronic
constipation and hepatic encephalopathy [283]. In fact, it decreases the intestinal production
and absorption of ammonia, while inducing an osmotic effect with evacuation [284].

Sucralfate, an aluminum hydroxide complex of sucrose sulfate, is used for the treat-
ment of duodenal ulcers [285]. It dissociates in the acidic environment of the stomach to its
anionic form, resulting in a protective barrier to pepsin and bile. This, in turn, inhibits the
diffusion of gastric acid.

The orally administrated Auranofin, a carbohydrate-containing gold complex, is used
as an antirheumatic agent [286]. Its main MOA is the inhibition of cellular redox enzymes,
resulting in enhancement of oxidative stress and intrinsic apoptotic death.

7. Protein Folding and Folding Quality Control Machinery

The ER is a subcellular organelle where protein folding occurs. This phenomenon
concerns a third of nascent proteins and 90% of all glycoproteins, working with an efficiency
of 20%, albeit enhanced by several lumenal chaperones [287]. About 80% of these peptides
entering the ER via the sec61αβγ translocon are immediately N-glycosylated, obtaining a
Glc3Man9GlcNAc2 covalently asp-linked oligosaccharide [288]. In particular, Bat3, TRC35
and Ubl4A guide and facilitate the insertion of protein into the ER membrane with the aid
of the Get1/2 receptor located on the ER-membrane [289]. Correctly folded proteins are
sequentially deglycosylated and packaged into transport vesicles (part of the cell mem-
branes trafficking system) and translocated to the Golgi complex according to the secretory
pathway. The misfolded ones are retained within the ER lumen in a complex manner with
calcium-dependent lectin-chaperone foldases Calnexin (CNX) and Calreticulin (CRT) [290].
These foldases are thought to be in a dynamic equilibrium with UDP-glucose glycoprotein
glucosyltransferase (UGGT) that re-glucosilates the protein, restarting its folding process
in the so called CNX/CRT cycle [290]. However, terminally misfolded/unfolded proteins
(selected from the CNX/CRT cycle) bind to a critical HSP70 family member, BiP, undergo-
ing ubiquitylation and further degradation via the 26S proteasome, according to the ERAD
process, after retro-translocation to the cytosol mediated by Derlin-1 and Sec61 [291–293].
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Accumulation of misfolded/unfolded proteins in the ER causes ER-stress and activates,
in turn, the specific stress sensor signaling pathway, in the end, leading to the homeostatic
(proteostatic) UPR [294,295]. The UPR modulation determines cell fate, depending on
the quality and persistency of the foreign stressor. Consistently, during the adaptation
phase, the slowed global translation reduces the ER folding load, while the upregulation of
chaperons increases the degradation rate of unfolded proteins.

However, in the case of persisting pathogenic noxa and chronic inflammation, the
proteostatic mechanisms of UPR become inadequate and stressed cells die due to apop-
tosis [296]. Several ER-stressors are known, including glucose deprivation, hypoxia, viral
infection, point mutations promoting folding intermediates and their aggregation as well
as aberrant calcium regulation, resulting in chaperone dysfunction [297,298]. Physiolog-
ical processes such as aging can also influence the protein folding [299]. In summary,
protein misfolding represents an emerging topic in biomedicine, due to its interesting
pathophysiological implications in cancer [300–304], diabetes [305–311], neurodegenera-
tive and chronic inflammatory diseases [312–314], but also therapeutic ones. In fact, the
underlying molecular physiology is quite well-known, providing biological intervention
and possible medications.

The UPR

The molecular physiology of N-glycan-dependent quality control of glycoprotein
folding prevents ER endoplasmic exit of misfolded forms and their aggregates. ER-
resident GluI and GluII sequentially trim the three terminal glucose moieties on N-linked
Glc3Man9GlcNAc2 glycan coupled en bloc to nascent glycoproteins by oligosaccharyltrans-
ferase (OST) [315–318]. First de-glycosidase reactions are essential for proper folding and
cell proteostasis. In particular, the α-GluI operates a first cleavage by removing a glucose
residue from the conserved Glc2Man9GlcNAc2 N-linked glycan attached to nascent glyco-
protein, and the resulting Glc1Man9GlcNAc2 glycan allows it to bind the ER CNX/CRT
and associated chaperone ERp57, belonging to the protein disulfide refolding isomerases
(PDI) [319]. After the α-GluII–mediated second cleavage of the innermost glucose, the
glycoprotein is linked to Man9GlcNAc2 glycan and loses binding affinity for the folding
chaperones. Therefore, if properly folded, the glycoprotein can proceed toward the Golgi
apparatus and secretion. If not, it undergoes UGGT-mediated re-glycosylation and recy-
cling [320]. UGGT is a fascinating sensor for hydrophobic sequences, typical of unfolded
proteins. Recycling enhances protein folding efficiency, avoiding ER loading. However,
in the presence of high levels of unfolded/misfolded proteins in the ER, BiP dissociates
from the N-terminus of ER stress transducers, leading to UPR activation [321]. When
that occurs, a complex signaling cascade is activated through three ER transmembrane
receptors: the activating transcription factor 6 (ATF6), the inositol requiring kinase 1 (IRE1)
and the pancreatic endoplasmic reticulum kinase (PERK) [322,323]. These elements confer
cell protection from stressors and metabolic adaptation. After BiP dissociation, PERK and
IRE1 are activated through oligomerization and autophosphorylation generating p-PERK
and p-IRE1, respectively. In turn, p-PERK phosphorylates eIF2α, forming p-eIF2α that
reduces global protein synthesis and stimulates the translation of ATF4 [324]. The latter
finally de-represses cytoprotective genes, autophagy-related genes, and ERAD-related
genes. p-IRE1 splices XBP1 mRNA to generate the transcription factor sXBP that enhances
chaperones and genes expression involved in ER expansion, ERAD, autophagy, and cyto-
protection, also reducing ER load through a RIDD-dependent mRNA degradation [325].
ATF6α, once dissociated from BiP, transits to the Golgi complex where it is cleaved by the
proteases S1P and S2P forming cATF6α [326]. The latter then migrates to the nucleus, where
it stimulates chaperones, autophagy-related genes, ERAD-related genes, and cytoprotective
genes. p-eIF2α levels are tightly regulated by the protein phosphatase 1 (PP1) and growth
arrest and DNA damage 34 (GADD34) complex, which quickly dephosphorylates p-eIF2α,
preventing detrimental long-term global protein biosynthesis inhibition [327]. Interestingly,
GADD34 is upregulated by the CCAAT/enhancer binding (C/EBP) homologous protein
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(CHOP), a transcription factor whose expression is stimulated by ATF4; thus, the PERK-
eIF2α pathway is regulated via a tight autofeedback loop [328]. Once CHOP is activated,
BCL2 is targeted with final de-repression of caspases system and cytochrome c liberated
by mitochondria, leading to apoptosis [329]. In vitro and in vivo studies have shown that
activation of the PERK-eIF2α pathway leads to activation of NF-κB in oligodendrocytes
and suggest neuroprotective effects of PERK signaling in MS and experimental allergic
encephalitis (EAE), which is the animal model of MS [330].

Not by chance, PERK, GADD34, ATF6 α, eIF2α and CHOP are considered promising
therapeutic targets for myelin disorders and other chronic inflammatory or degenerative
organ specific diseases [328,331]. Moreover, PERK can influence the NRF2 signaling path-
way because the latter is a direct substrate and effector of the PERK-dependent cell survival
pattern [332]. In fact, during ER stress, once PERK has phosphorylated NRF2, it promotes
its dissociation from Keap1 and the translocation to the nucleus where it binds to the
antioxidant response element (ARE) for the transcription’s activation of genes encoding
detoxifying enzymes [332]. These enzymes are the A1 and A2 subunits of glutathione
S-transferase, NAD(P)H:quinone oxidoreductase, γ-glutamylcysteine synthetase, Heme
oxygenase-1 (HO-1) and UDP-glucoronosyl transferase [333]. These data suggest PERK as
a multiple-substrates phosphorylating agent, able to protect cell viability while avoiding
oxidative stress. Coherently, Perk−/− cells accumulate ROS if exposed to ER stress [334].
Notably, NRF2 is the main molecular target of BG12, a disease modifying treatment of
relapsing remitting Multiple Sclerosis (RRMS) [335].

Regarding MS, although ER stress was postulated [336], no specific aggregation or
misfolded protein was found, while in main neurodegenerative diseases such as PD, Hunt-
ington, AD, familial Amyotrophic Lateral Sclerosis (ALS) and Progressive Supranuclear
Palsy (PSP), emerging evidence indicates pathogenic misfolding processes, UPR induc-
ing protein package and well-known cell aggregates such as Lewy bodies (composed by
α-synuclein), mutant huntingtin, neurofibrillary tangles (composed by τ- and phospho-τ-
protein), mutant SOD1 and τ-tangles, respectively [337–341]. BiP and PERK are upregulated
in PD, also expressing cell loss as a common feature of chronic neuroinflammatory and
neurodegenerative conditions [342]. In fact, if UPR fails to restore proteostasis, cells initiate
terminal programs such as autophagy or apoptosis [343].

Autophagy is an evolutionarily conserved cellular pathway in which a cell recycles its
macromolecules and organelles starting from autophagosome. This is composed of a part
of cytosol or cellular organelles, enclosed in a double membrane. It binds to endolysosomal
vesicles, forming the autolysosome. The autolysosome is degraded, in turn, completing the
cycle of autophagy. PERK, IRE1 and cytosolic Ca2+ are known to be autophagy effectors
in ER stressed cells [343]. Programmed cell death is mediated by apoptosis, through the
activation of aspartate-specific proteases, collectively known as caspases [344]. Stress-
induced apoptosis can occur through both mitochondrial-dependent and independent
pathways [345].

Although mitochondrial-independent pathways are not well understood, the mitoch-
ondrial-dependent pathway is, as it is induced by oligomerization of pro-apoptotic proteins,
such as Bax and Bak [346]. Once Bax and Bak oligomerize, they move from the outer
mitochondrial membrane, where they are sequestered in non-apoptotic conditions by the
survival protein Bcl2, to fit into the mitochondrial membrane, breaching its integrity. This
results in a net efflux of cytochrome-c from the mitochondria to the cytosol, initiating the
Apaf-1 mediated caspase-9 activation pathway. Interestingly, Bcl2 is also localized in the ER-
membrane [347]. The release of Ca2+ from the ER into the cytosol in response to ER stress
facilitates this phenomenon, suggesting that this ion is key driver of membrane fission and
caspase activation. In fact, ER is not simply a subcellular environment where reactions take
place, but a stress-sensitive organelle that properly works on actively controlled redox and
Ca2+ homeostasis in ATP-dependent manner, other than cytosol. Indeed, the ER-resident
Flavoprotein Ero1p (ER oxidoreductin 1) is thought to be the oxidative factor serving as
primary oxidase of PDI [348].
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More molecular details of UPR have recently been added. Specifically, ER Hsp40
family proteins co-chaperones ERdj1 to 7 have been found [349]. These molecules play a
critical role not only in stimulating ATP hydrolysis of BiP, but also in regulating its various
activities [350]. Interestingly, dj1 is dysregulated in PD and upregulated in peripheral blood
mononuclear cells (PBMCs) from MS [328,351].

Other protein is ERp44, which is located in the ER–Golgi intermediate compartment
(ERGIC), and engaged in the folding/oligomerization or retention of some proteins [352].
Moreover, one of Selenoproteins is Sep15, which binds to UGGT and presumably works as
a reductase [353]. Proteins that will be degraded if retained longer in the recycle process
may raise the probability of mannose trimming of the polypeptide-bound N-glycans by
ER-mannosidase I, a process known as the mannose timer model [354]. These mannose-
trimmed structures are recognized by EDEM family proteins, belonging to ERAD, and they
promote it [134].

Man7GlcNAc2 form of N-glycans generated after GluI and GluII activity is recognized
by lectins OS9 and XTP3-B, which contain one and two mannose 6-phosphate receptor
homology (MRH) domains, respectively [355].

Finally, unfolded regions of nonglycosylated proteins are recognized by ER chaperones,
mainly by BiP, although the recognition mechanism is apparently distinct from that of
glycosylated ones [350].

8. The GANAB

GANAB is the α-subunit of the glucosidase II heterodimeric enzyme, a member of the
glycosyl hydrolase 31 (GH31) family of proteins. The prologue of its story begins in 1979
when the Glc3Man9GlcNAc2 lipid-linked precursor was isolated by Grinna and Robbins
and assayed enzymatically in rat liver microsomes using phosphate buffer (50 mM, pH 6.75),
and Triton X100 [317]. This dolichol-bound oligosaccharide is a highly conserved structure
in eukaryotes, representing the specific substrate of GluI and GluII [356]. GluI removes
the outermost α1,2-Glc, and then GluII trims second and third α1,3-Glc, by catalyzing
hydrolyses at the Glc-α1,3-Glc and Glc-α1,3-Man glycosidic linkages, according to the
following scheme:

Glc 1.2→ Glc 1.3→ Glc 1.3→ Man

Trimming two inner glucoses α1,3-Glc and α1,2-Glc from protein bound precursors
produces, respectively, the Glc2Man9GlcNAc2-Asn as well as the Glc1Man9GlcNAc2-Asn
and Man9GlcNAc2-Asn structures [357]. However, the kinetic reaction of these compounds
is experimentally different, being immediate for the former, intermediate for the second,
and slow for the third, reflecting, respectively, the step of entry in the maturation pro-
cess, the linkage of chaperones, and finally the release of the latter, starting the secretory
pathway of properly folded peptide [358]. Through these enzymatic assays, the authors
contextually identified the α-(1,2)-glucosidase “O” as different from the α-(1,3)-glucosidase
“AB”, confirming it in 1980 as the well-known heterodimeric enzyme α-glucosidase II [317].

8.1. The Structure and Localization Glucosidase II

α-Glucosidase II (GluII or GII) consists of a 110 kDA catalytic α-subunit (GIIα) and
60 kDA regulatory β-subunit (GIIβ). The latter contains a highly conserved terminal
four amino acids, His-Asp-Glu-Leu (HDEL), noncatalytic domain and a lectin domain
with homology to the MRH. It was first identified as a protein kinase C substrate 80 K-H
(PRKCSH) by Hirai and Shimizu in 1990 [359] and determined as a part of the heterodimeric
complex in 1996 by Trombetta and coworkers [360], finally as a Glc removing factor from
protein precursor in 1999 by Herscovics and in 2002 by Trombetta and Parodi [361,362]. The
co-expression of both subunits resulted in ER localization, suggesting that the active one is
retained within the ER, due to the HDEL ER-retention signal present at the COOH-terminus
of the regulatory subunit [363]. In fact, apart from the active site of the enzyme found in
the β8α8 barrel domain, the domain primarily involved in binding GIIβ occupies the distal
C-terminal side, interacting through the N-terminal one of GIIα-binding domain. In partic-
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ular, two non-overlapping interaction domains, ID1 and ID2, have been identified [364].
ID1 consists of 118 amino acids at the NH2-terminus of the coding region and includes the
cysteine-rich element region of GIIα. ID2 comprises amino acids 273–400 located at the
COOH-terminus of GIIβ including a stretch of acidic residues [364].

The human α-subunit of α-glucosidase II is 944 amino acids long, including an NH2-
terminal hydrophobic signal sequence followed by a 912 amino acid (103 kDa) catalytic
domain containing no transmembrane domains or known ER-retention motifs [360]. The
α-subunit contains a GH31 consensus sequence domain (G/F)-(L/I/V/M)-W-X-D-M-N-E
providing a nucleophile retaining enzyme mechanism [365,366]. The homologue sequence
obtained in S. cerevisiae by gene disruption confirmed this subunit as the catalytic one [360].
Moreover, mutagenesis of the Asp or Glc residue in the last four amino acids, D564MNE567
conserved motif obtained in Sf9 cells, was found to eliminate GluII activity, suggesting that
these residues contribute to catalysis [365].

The human β-subunit of a-glucosidase II is 528 amino acids in length and contains an
NH2-terminal signal sequence followed by a hydrophilic one of 514 amino acids (~58 kDa).
The mature protein contains two EF-Hand motifs (Ca2+ binding loops), an acidic stretch of
consecutive glutamic acids, several cysteine residues at the NH2 and COOH terminals [360],
MRH domain, and a COOH- terminal HDEL sequence for ER retention/retrieval [367].

The primary structure of GII presents overlapping sequences with several other glu-
cosidases as well as MRH domain, but not with glucosidase I [368]. The MRH domain
expresses a flattened, 9-stranded, β-barrel fold similar to other MRH domains, but the
binding pocket was shallower than other homologous structures, probably due to the
need to accommodate a single mannose residue. The MRH domain has four conserved
residues (Gln-384, Arg-414, Glu-433, Tyr-439) essential for the binding of mannose and for
the interaction with the terminal mannose on the 6′-pentamannosyl branch (C-branch) of
the oligosaccharide substrate. Mutational analysis also revealed the functional role of Trp
residue distal from the binding site, but it is essential for contacting the terminal a1,2-Man
residue on the central branch of the Man9GlcNAc2 substrate, while the inner one exposes
the Glc residue to the catalytic site on the GIIβ [369]. Figure 1 shows the GII 3D structure
with functional domains.

The main organ localization of GANAB is the liver, followed by the epididymis ductal
cells as can be noted in Figure 2. As per the focus of our study, we can also find the kidney
among the top sites of GANAB expression.

8.2. Enzyme Activity Assay and Interactions of Glucosidase II

GANAB and other GH31 neutral α-glycosidase C (GANC) are key enzymes in glyco-
gen metabolism that hydrolyze terminal nonreducing 1,4-linked alpha-D-glucose residues
from glycogen in the ER. GII activity can be assayed with several substrates. Specifically,
natural substrates include Glc1-2Man9GlcNAc2 and maltose, but the enzyme does not
hydrolyze glucose from Glc3Man9GlcNAc [370]. The enzyme pH optimum from various
organisms ranges from 6 to 7.5 [371–373], but the human isoform coming from the human
placenta has an even wider pH optimum of 5.5–8.5 [374].

Assays using p-nitrophenyl-a-D-glucopyranoside (pNP-Glc) as substrate (Km 0.85 mM
for the rat liver enzyme) [372] provide reaction conditions containing 4 mM pNP-Glc,
50 mM-Hepes, pH 6.8, and 1% sodium cholate. Reactions are incubated at 37 ◦C and
stopped with 0.5 M Na2CO3. Released p-nitrophenol is quantified through absorbance at
400 nm. A unit of enzyme activity is defined as the amount of enzyme that releases 1 mmol
of p-nitrophenol/min [375]. Assays using 4-methylunbelliferyl-a-D-glucopyranoside
(4-MU-Glc) as a substrate (Km 19 mM for the pig kidney enzyme) [371,373] provide
reactions containing 0.1 mM 4-MU-Glc, 0.1 M citrate-phosphate buffer, pH 6.5. After
incubation at 37 ◦C, reactions are stopped with 0.5 M glycine-NaOH, pH 10.4. Released
4-methylumbeliferone is quantitated using a fluorometer (excitation 360 nm, emission
450 nm). A unit of enzyme activity is defined as the amount of enzyme that releases 1 mmol
of 4-methylumbeliferone/min [371].
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Figure 1. The ribbon structure of α-Glucosidase II heterodimeric complex. The α-subunit N-terminal
trefoil type-P domain is shown in orange, and the N-terminal β-sheet domain is shown in pink.
The α-subunit catalytic β8α8 barrel domain is shown in green. The Proximal and Distal α-subunit
C-terminal domains are shown in yellow and light brown, respectively. Finally, the β-subunit is
shown in blue.
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Regarding interactions, unlike the UGGT that does not have an identified in-
hibitor (apart from its product, UDP) [319], GII inhibitors include the pyranose sugar
analogues 1-deoxynojirimycin, N-5-carboxypentyl-dNM, and castanospermine, all
iminosugars [218,376,377]. Other inhibitors have been identified in rat liver including
p-chloromercuriben-zenesulfonate (Ki 0.8 mM, IC50 0.55 mM), maltose (IC50 1.8–2 mM),
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glucose (IC50 17 mM), D-glucono-1,5-lactone (IC50 40 mM), Tris–HCl, and pH 6.6 (IC50
50 mM); a 10% glycerol solution reduces GII activity by 65 %. Moreover, 1% deoxycholate,
0.1% SDS, 1 M urea, and 0.5% iodoacetamide were found to irreversibly inactivate the
enzyme [372]. Turanose (Ki 19 mM) was also found to inhibit enzymes from pig kid-
neys [373]. Finally, Bromoconduritol (6-bromo-3,4,5-trihydroxycyclohex-1-ene) inhibits the
removal of the innermost α1,3-linked glucose residue from Glc2Man9GlcNAc2, leading to
the accumulation of unprocessed high-mannose N-glycans in treated cells [378].

Regarding GII activators, 10 mM Man (172% activation), 50 mM Isomaltose (142% ac-
tivation), and starch (7 mg/mL, 160% activation) activate the enzyme isolated from pig
kidney microsomes [371].

The purification of the molecule for these assays was performed in rat liver microsomes
using, in general, a combination of ammonium sulfate fractionation, anion exchange chro-
matography (DEAE cellulose and Mono Q), affinity chromatography (ConA Sepharose), gel
filtration (Superdex 200), and hydroxyapatite chromatography providing enough purified
enzyme to obtain peptide fragments for sequence analysis [360]. GIIα clones isolated from
a human liver cDNA library encoded two distinct enzyme isoforms that differed in a 66 bp
insertion, suggesting alternative splicing [363]. However, the co-expression of each isoform
with the GIIβ in COS7 cells resulted in similar levels of enzyme activity [379].

Antibodies recognizing two different regions of the murine β-subunit were also gener-
ated [364].

Regarding gene deletion studies, a lectin-resistant mutant cell line from mouse lym-
phoma was found to be deficient in GII activity [380]. Cells accumulated glycoproteins
containing Glc2-1Man9-8GlcNAc2 glycans, also expressing the complete loss of GII activity
in vitro [381]. Moreover, Prkcsh-null mice used to study the development of autosomal
dominant polycystic liver disease (ADPLD) evidenced that the gene deletion results in
embryonic lethality [382]. Consistently, no multicellular organism is known to survive GII
knockout to adulthood [383], and also homozygous UGGT deletion is embryonically lethal
in mice [384]. In summary, mutations of GII or UGGT genes impair glycoprotein folding
and cause ER retention and/or degradation with loss of function [10,385]. An in vitro
association between CD45 (a transmembrane protein-tyrosine phosphatase, PTP) and α-
glucosidase II has been reported in SAKR mouse T-lymphocyte cell line [386]. Indeed, CD45
is thought to be an essential regulator of T and B cell antigen receptor signaling, working
by the activation of Src family kinases and suppression of JAK kinases [387]. Biologically,
CD45 is known to be an enzymatic molecule, acting as a co-stimulator [388], but the role of
its association with α-glucosidase II still remains unknown.

9. UPR in Human Diseases: The Role of GII

The involvement of GII in human physiology and pathology is evidenced through the
enzyme inhibition effects by iminosugars as well as genetic mutations, such as Polycystic
Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD). In this way, we can obtain a
concrete description of GANAB functions through its therapeutic inhibition, as in a loss-of-
function experiment. Apart from iminosugar contribution, ER stress and UPR have been
studied in human pathology, representing an emerging biological field and a fascinating
physiopathological aspect of diseases themselves. Furthermore, except for MS and PCKLD,
the relation between human pathology and α-glycosidases is only conceivable, based on
the biological knowledge of ER stress, but has not yet been concretely demonstrated. In all
cases, common aspects in the molecular physiology of UPR and ERAD suggest a therapeutic
disease modifying approach, based on the inhibition of key mediators of apoptosis (such as
CHOP, TXNIP, PERK and IRE1). This intervention has just been attempted in some cases.

9.1. Diabetes Mellitus

The glucostatic cycle is dysregulated in the diabetes mellitus, due to an insufficient
number of β-cells that need to produce the required amount of insulin according to the
fasted and postprandial states in order to maintain normoglycemia [389]. To support
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high-level insulin secretion, β-cells undergo highly developed ER stress [305]. Moreover,
preproinsulin is co-translationally translocated in the ER lumen, where its signal sequence
is clipped off and subsequently transformed into proinsulin through the formation of
three intramolecular disulfides by ER-resident oxidoreductases intervention that allow it
to fold to its native shape [390]. In the Akita mice model of disease, the mice suffer from
insufficient insulin production secondary to β-cell loss, reaching toxic gain-of-function,
ER stress with apoptotic pathway activation, and frank diabetes within 4 to 5 weeks after
birth [308,391]. Rare infantile diabetes-causing Akita-like insulin mutations have been
described in humans [392]. Interestingly, genetic removal of proapoptotic transcription
factor CHOP, downstream of PERK, ameliorates β-cell loss and diabetes, emphasizing
the central role of UPR in β-cell degeneration [308]. Coherently, in mice homozygous
deletion of the gene encoding PERK causes massive and rapid β-cell apoptosis, leading to
infantile diabetes. Interestingly, β-cells in Perk-null mice are distended with electron-dense
proteinaceous material, also exhibiting a high rate of apoptosis [393,394].

9.2. Neurodegeneration

Accumulation of toxic protein species can kill neurons, and there is growing evidence
that ER stress is an important mechanism driving this neurotoxicity [395]. In fact, the
pathologic hallmark of many neurodegenerative diseases is already known as the accu-
mulation of misfolded proteins in the form of aggregates within affected neurons [396].
We have previously referred to these topics, but regardless of the disease-specific aggre-
gate, there is evidence of a kind of common final way leading to PERK hyperactivation in
disease-affected brain regions [397]. Moreover, IRE1α activation and UPR induction are
present in postmortem brain and spinal cord tissues in AD [398], PD [399] and ALS [400].
Additionally, spinal cord segments from autopsy of patients with sporadic ALS show ER
stress resulting in the induction of UPR, chaperones, and apoptotic markers [400,401]. Up
to prion pathology, brain samples from Creutzfeldt–Jakob disease show activation of a
number of ER chaperones and other ER stress markers. Based on these data, drug inter-
vention and UPR manipulation have been attempted in mouse models of prion-induced
neurodegeneration. In fact, the oral administration of highly selective PERK inhibitors sig-
nificantly reduces neurodegeneration and clinical disease in prion-infected mice, crossing
the BBB efficiently [402,403].

9.3. Cancer

Tumor cells often invade or metastasize into foreign environments where unfavorable
conditions, such as hypoxia, glucose deprivation, lactic acidosis, oxidative stress, and
inadequate amino acid supply, compromise protein folding in the ER [404,405]. Many
studies have found evidence of sustained and high-level activation of all three branches of
the UPR (PERK, ATF6, IRE1α) in different tumors, including glioblastoma, MM, carcinomas
of the breasts, stomach, esophagus, and liver [304,406–409]. It is currently unknown if ER
stress is a primum movens of the transforming process or its effect. Anyway, in this topic, we
have of a proteasome inhibitor, Bortezomib. This drug leads to myeloma cell death in part
by preventing misfolded proteins through the ERAD pathway, thus triggering ER stress-
induced apoptosis [410,411]. On this basis, inhibitors of the IRE1α RNase activity have
recently been tested on human myeloma xenografts and their antimyeloma activity has
been found [412]. On the other hand, the downregulation of XBP1s expression in myeloma
correlates with resistance to Bortezomib [413,414], suggesting that the comprehension of
UPR effects on tumors is more complicated than we thought. Despite the low tissue and
cancer specificity of GANAB, the latter evidenced prognostic ability in liver and urothelial
tumors. In fact, a statistically unfavorable clinical outcome is predicted in case of the high
expression of this molecule in affected patients, as represented in Figure 3.
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Figure 3. Prognostic relevance of GANAB expression in urothelial cancer (top) and liver cancer
(bottom). In both cases, a high expression of this molecule is a marker of an unfavorable clinical
outcome. (Figure reproduced from https://www.proteinatlas.org/ENSG00000089597-GANAB/
pathology, accessed on 5 March 2022).

9.4. Ischemia-Reperfusion Injury and Atherosclerotic

Reduced blood flow as a result of arterial occlusion or hypotension causes tissue
hypoxia and hypoglycemia [415]. These conditions rapidly induce protein misfolding
and ER stress [416]. When blood flow is restored, reperfusion of affected tissues leads to
oxidative stress and alterations in the redox state of the ER that disrupt the protein disulfide
formation and cause ER protein misfolding [417,418].

Moreover, in the atherosclerotic plaques, there is evidence of UPR activation [419].
Moreover, high cholesterol levels, fatty acids, and oxidative stress can trigger ER stress-
induced apoptosis of macrophages and endothelial cells associated with atherosclero-
sis [420]. Finally, brain regions affected by stroke also show ER stress-induced apopto-
sis [421].

9.5. ADPLD and ADPKD

Autosomal dominant polycystic kidney and liver disease (ADPKD and ADPLD, re-
spectively) have been linked to pathogenic GII variants. These constitute recent phenotypes
of congenital disorders of glycosylation (CDG). CDGs comprise all genetic defects asso-

https://www.proteinatlas.org/ENSG00000089597-GANAB/pathology
https://www.proteinatlas.org/ENSG00000089597-GANAB/pathology


Int. J. Mol. Sci. 2022, 23, 7373 27 of 49

ciated with hyper- or hypo-glycosylation [422]. ADPKD and ADPLD are cases of the
latter condition.

Unlike the mutations in GIIβ associated with ADPLD, the phenotypic picture of ones
in GIIα is less clear, given its link to ADPKD [423,424].

In particular, all genes involved in ADPLD encode proteins involved in the ER traffick-
ing and quality control of glycoproteins. The only exception is the LRP5, a transmembrane
protein, part of the LRP5/LRP6/Frizzled co-receptor complex in the canonical Wnt signal-
ing pathway [425].

In fact, although ADPLD and ADPKD are two distinct genetic disorders, they share
PLD as a major phenotypic feature. Studies revealed that mutations in Prksch or Sec63
greatly reduce the expression, stability and proper trafficking of polycystin-1 (PC1), lead-
ing to cyst formation in a dose-dependent manner [426,427]. The level of functional PC1
at the cilium is thought to be central to the development of both hepatic and kidney
cysts [428]. If the functional level of PC1 drops below a critical threshold, cyst develop-
ment begins. At present, genes responsible for ADPLD are PRKCSH, SEC63, SEC61B,
GANAB, ALG8, DNAJB11 and ALG9, which only explain 25–30% of the genetic spectrum
of disease [429,430]. On the contrary, almost all ADPKD patients harbor gene mutations in
polycystic kidney disease 1 (PKD1) or polycystic kidney disease 2 (PKD2) [431].

However, genetic mutations of GANAB are the only ones that have been shown
to cause polycystic liver disease in patients affected by ADPLD or ADPKD as a kind of
pathogenic continuum between these two forms. Treatment with proteasomal inhibitors
increases levels of PC1 in cells by reversing the phenotype and providing a potential
therapeutic approach [382].

This finding demonstrates the role of GIIα and GIIβ as fundamental in cyst devel-
opment, due to protein folding dysregulation. A first MOA in the common feature of
all truncating mutations in 80K-H/GIIβ is the loss of the HDEL [432]. Without the lat-
ter, enzymatic retention in the ER through HDEL interaction with the Lys-Asp-Glu-Leu
(KDEL) receptor cannot take place, and the molecule would enter the secretory pathway
and be trafficked out of the cell. Currently, similar to PRKCSH and SEC63, also other genes
that encode proteins and belong to the protein biogenesis pathway in the ER are known,
suggesting a unifier mechanistic hypothesis on cystogenesis. Lipid-linked oligosaccha-
ride precursors of N-linked glycans are initially assembled in dolichol element on the ER
membrane. After flipping it into the ER lumen, ALG8 catalyzes the addition of the second
glucose residue [433]. Nascent polypeptides undergo a co-translational translocation via
the SEC61 translocon pore composed of α, β and γ.

γ subunits and associated with SEC62. On the other hand, SEC63 and ERdj1 act in
relation to chaperone BiP, facilitating this translocation process. Once OST catalyzes the
attachment of the glycan moiety to asparagine residues, first, GI removes the outermost
glucose residue, and then GII removes the second one, as expected [433]. This step causes
the nascent protein to enter the folding CNX/CRT cycle. The subsequent removal of the
innermost glucose by GII allows for the exit of the protein, if properly folded. In this case, it
can proceed along the secretory pathway. On the contrary, misfolded proteins meet UGGT
and once again are subjected to the folding cycle. Terminally unfolded proteins undergo
ERAD and, through the SEC61 translocon complex, retrotranslocate into the cytoplasmic
compartment, where they will encounter the proteasome. It is no wonder if PRKCSH,
SEC63, SEC61B, GANAB, ALG8, DNAJB11, and ALG9 encode proteins that function in
the post-translational ER protein biosynthetic pathways. However, mutations in SEC63
and PRKCSH are known to cause PCLD, also reducing directly the working dosage of
PC1 in the bile duct and kidney tubules cells [433]. The PC1 loss of function can induce
cystogenesis in a dose-dependent manner, once the lower threshold is crossed [434].

This continuum also applies to ADPKD, taking into account the lower tolerance in the
PC1 cystogenic values of bile ducts compared to the kidney tubules one. In fact, a reduction
in the steady-state levels of PC1 is documented in ADPLD-patients [382]. Notably, the loss
of Sec61b, Sec63 and PRKCSH results in a severe deficiency of PC1; Alg8 knockout causes
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the hypoglycosylation of PC1; GANAB knockout results in a defective glucose trimming of
N-glycan moieties, resulting in increased apparent molecular mass for PC1 [433]. LRP5 also
seems to be involved in PC1 disfunction, having recently been recognized as a coreceptor
for Wnt noncanonical signaling pathway [435]. Consistently, the silencing of each of
these genes results in activation of at least the IRE1α/XBP1 branch of UPR [436]. From
these observations derive the different abilities of PRKCSH and GANAB in activating
the UPR, despite being subunits of the same GII holoenzyme. In fact, GANAB loss is a
major determinant in inducing cellular severity compared to PRKCSH, suggesting the GII
catalytic subunit’s lead role in ER stress.

9.6. Epididymal Pathology and Male Infertility

Few articles deal with GII activity and male infertility, particularly deriving from
epididymal pathology, such as varicocele and epididymitis [437,438]. Although the exact
role played byα-glucosidase in sperm function is not well understood, it can be speculated
that the enzyme is responsible for sperm differentiation through protein modification
and maturation [439]. In fact, GII activity is significantly reduced when an inflammatory
occlusion distally to the epididymis occurs [440–442], in the case of functional deficiency
of the latter in non-azoospermic patients [443], as well as a poor ability to bind the zona
pellucida, thus suggesting a role of the enzyme also in sperm–egg binding [444]. The latter
finding is consistent with a fine glycosylation control requested for the acrosome reaction
to work normally, also becoming critical in sperm differentiation where high protein
trafficking and maturation takes place. Although it has not entered into the clinical routine,
the determination of GII activity is currently considered a useful tool in the diagnosis of
epididymal patency and sperm abnormality [445].

9.7. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is an autoimmune disease associated with both
genetic predisposition and environmental influences. In 2006, Deng and coworkers at-
tempted to characterize gene expression of CD4+ T lymphocytes in patients suffering
from this disease [446]. Genome-wide expression profiles revealed several upregulated
genes, including GANAB at high levels in the active state of SLE. The authors stated that
gene expressions in CD4+ T lymphocytes could increase apoptosis, resulting in excessive
uploading of self-antigens and a worsening of the disease.

9.8. Multiple Sclerosis

Multiple Sclerosis (MS) is an autoimmune demyelinating disease of the CNS with an
inflammatory and degenerative component, also representing the main cause of nontrau-
matic disability in the young. In 2009, De Masi and coworkers first evidenced GANAB as a
differentially expressed protein from PBMCs in naive patients compared to the RRMS ones
undergoing IFN therapy [447]. In particular, a Spearman rank test applied to a proteomic
approach coupled with MALDI-TOF analysis and quantitative brain MRI segmentation
evidenced a good correlation between GANAB, lesion load (LL) and disease duration (DD).

More recently, De Masi and Orlando, by using Western blotting from PBMCs and MRI
post-analysis of the brain, confirmed these findings and also described a significant correla-
tion between GANAB expression and the Rio score [11]. The Rio score is a gold-standard
method to classify the risk of disease progression based on one-year clinical/paraclinical
observations in IFN-treated MS patients [448]. The molecule, in fact, resulted upregulated
in RRMS untreated patients compared to the IFN-treated ones as well as the ones treated
with disease modifying therapies (DMTs) other than IFN, including Dimethyl Fumarate
(DMF, also called BG12). Moreover, GANAB was downregulated in treatment responder
patients versus nonresponder ones, thus assuming higher expression values in relapsing
patients than in clinically stable ones. Interestingly, levels of the glycozyme were higher in
healthy controls (HCs) than in RRMS untreated patients, although in the latter group, the
GANAB expression correlated with DD and LL values. This different expression between
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HCs and RRMS has been attributed to the well-known phenomenon of immunosenescence
already described in MS [449,450]. Based on this evidence, the authors proposed GANAB
as a biomolecular marker of neuroinflammation and treatment response in MS.

To our knowledge, no other published articles are available in the MS literature
regarding GANAB, but several data indicate the improving effect of iminosugars on
EAE [451–453].

10. Conclusions

During the evolution of the species, phylogenetically diverse organisms have used the
extreme glycans variability to obtain control tools for cellular functions. This variability is
due to the absence of a template, unlike proteins needing DNA for their synthesis. Despite
this variability, the so-called “phenomenon of convergence” took place, resulting in a
common glycocode development, specific for each basal cell function. The glycocode is
determined by the concentration of glycosidase, glucosyltransferase and their substrates.
The ratio of these enzymes is genetically regulated and post-translationally modulated,
resulting in the internal and external cell recognition pattern, critical for cell viability
and adaptation.

Although glycans are subject to micro- and macro-heterogeneity, some glycocodes
have remained unchanged and highly conserved from yeast to mammals, including the
N-glycan one for protein quality control (PQC). PQC is subjected to a fine regulation
through key enzymes, including GII. The latter is linked to the ER membrane through its
regulatory subunit, while the catalytic one is responsible for innermost glucose trimming
on the Glc3Man9GlcNAc2 precursor signal. This reaction allows the nascent peptide to
enter the CNX/CRT cycle for maturation.

The molecular checkpoint of this process is UGGT. UGGT acts in dynamic equilibrium
with GII, according to the reglucosilation/deglucosilation activity, in order to allow access to
the secretory pathway for properly folded proteins or cytoplasmic ERAD for the terminally
unfolded ones. In the case of unfavorable environmental conditions or pathogenic noxa,
cellular stress sensors are activated and UPR occurs. UPR is a secondary metabolic attempt
to stress escape through PERK, IRE1 and ATF6 response by BiP de-repression, resulting in
folding chaperone modulation and downregulation of protein synthesis for physiological
adaptation. Long-acting stressors and chronically unresolved UPR induce unfolded protein
loading and intracellular aggregates accumulation with final apoptosis by targeting CHOP
and XBP1, leading, in turn, to organ pathology. Consistently, UPR and protein aggregates
in target cells are documented in neurodegeneration, experimental diabetes, cancer and
other chronic conditions as well.

Interestingly, emerging findings evidence UPR and related GANAB dysregulation
or direct α-glycosidase involvement only in MS and SLE. Specifically, UPR can affect
MS, resulting in PERK-related alteration of the Nrf2 signaling pathway. Notably, Nrf2,
which belongs to the fumarate MOA, is the main molecular target of BG12 (DMF), a DMT
of RRMS.

This small molecule is thought to affect disease progression and neuroinflammation
by acting on the Hydroxycarboxylic Acid Receptor 2 (HCAR2) as well [454]. However,
the PERK involvement suggests an additional MOA concerning ER stress in MS. The
BG12-induced modulation of GANAB in PBMCs from MS patients was previously found
by our group, corroborating this hypothesis. In addition, this finding is consistent with the
alleviation of psoriasis vulgaris, also biologically characterized by UPR [455,456].

Evidence of the indirect involvement of GII comes from interventional studies con-
cerning the effects of iminosugars on stressed cells in cancer, diabetes and viral infections.
Moreover, genetically-induced loss of function in GII induces PCLD and PCKD, thus consid-
ered an experimentum naturae concerning the cystogenic effects of primitive ER impairment
on protein trafficking in predisposed cells of bile ducts and renal tubules.
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GANAB downregulation in response to DMT and its modular correlation with LL, DD
and the Rio score in MS confirms the importance of this molecule in the physiopathology
of the disease, reflecting neuroinflammation and suggesting MS as a misfolding pathology.

Similar considerations relate to diabetes, cancer and viral infections in which inhibition
of GII by iminosugars attempts to rebalance the stressed system, resulting in improved
glucostatic cycle, affected tumor invasion and capsid replication. All these findings indicate
GII as key factor in physiology and human pathology, by acting on N-glycan substrate
linked to nascent polypeptides in the ER.
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α-Gal A α-galactosidase A;
18F-FDG glucose-analogue, 2-deoxy-2(18F)fluoro-D-glucose;
4-MU-Glc 4-methylunbelliferyl-a-D-glucopyranoside;
AD Alzheimer’s disease;
ADCC antibody-dependent cell-mediated cytotoxicity;
ADCP antibody-dependent cellular phagocytosis;
ADPKD Autosomal Dominant Polycystic Kidney Disease;
ADPLD Autosomal Dominant Polycystic Liver Disease;
AGEs advanced glycation end-products;
ALS Amyotrophic Lateral Sclerosis;
ARE antioxidant response element;
Asn asparagine;
ATF activating transcription factor;
BBB blood brain barrier;
BBE Bickerstaff’s brainstem encephalitis;
BSA bovine serum albumin;
C/EBP CCAAT/enhancer binding protein;
CDC complement-dependent cytotoxicity;
CDG Congenital Disorders of Glycosylation;
CD-MPR cation-dependent mannose-6-phosphate receptor;
CHOP C/EBP homologous protein;
CI-MPR cation-independent mannose-6-phosphate receptor;
CID Chronic inflammatory disease polyneuropathy;
CML N-carboxymethyllysine;
CNS central nervous system;
CNX Calnexin;
CRC colorectal cancer;
CRM197 diphtheria toxin;
CRT Calreticulin;
CSGAGs chondroitin sulfate/dermatan sulfate;
DAB analog 1,4-dideoxy-1,4-imino-D-arabinitol;
DAMPs damage-associated molecular patterns;
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DD disease duration;
DMF Dimethyl Fumarate;
DMT disease modifying therapy;
DNJ 1-deoxynojirimycin;
EAE experimental allergic encephalitis;
ER endoplasmic reticulum;
ERAD ER-associated degradation;
ERGIC ER-Golgi intermediate compartment;
FAD flavin adenine inucleotide;
GADD34 growth arrest and DNA damage 34 complex;
GAGs glycosaminoglycans;
GANC GH31 neutral α-glycosidase C;
GBS Guillain-Barré-Strohl syndrome;
GH31 glycosyl hydrolase 31;
GIIα α-subunit of α-glucosidase II;
GIIβ β-subunit of α-glucosidase II;
GluI/GI α-glucosidases I;
GluII/GII α-glucosidases II;
GLUTs glucose transporters;
GM-CSF granulocyte-macrophage colony-stimulating factor;
GNS N-acetylglucosamine-6-sulfatase;
GSD glycogen storage diseases;
GSLs glycosphingolipids;
HCAR2 Hydroxycarboxylic Acid Receptor 2;
HCs healthy controls;
HDEL His-Asp-Glu-Leu;
HINCUT noncoding ultra-conserved transcript;
HMGB1 high mobility group box 1 protein;
HSGAGs heparin/heparan sulfate;
IFN interferon;
IRE1 inositol requiring kinase 1;
KDEL Lys-Asp-Glu-Leu;
KLH keyhole limpet haemocyanin;
LABNAc 2-acetamido-1,4-imino-1,2,4-tride-oxy-l-arabinitol;
LeY Lewis Y;
LL lesion load;
LPS lipopolysaccharide;
MM Multiple Myeloma;
MMP9 matrix metalloproteinases type 9;
MOA mechanisms of action;
MOGAD Myelin oligodendrocyte glycoprotein antibody-associated disease;
MRH mannose-6-phosphate receptor;
MS Multiple Sclerosis;
NAD nicotinamide adenine dinucleotide;
Neu5Gc N-Glycolylneuraminic acid;
NLRs NOD-like receptors;
NMO Neuromyelitis Optica;
NMOSD Neuromyelitis Optica Spectrum Disorders;
OGA O-GlcNAcase;
O-GlcNAc O-linked N-acetylglucosamine;
OGT O-GlcNAc-transferase;
OST oligosaccharyltransferase;
PAMPs pathogen-associated molecular patterns;
PBMCs peripheral blood mononuclear cells;
PC1 polycystin-1;
PCKD Polycystic Kidney Disease;
PCLD Polycystic Liver Disease;
PD Parkinson’s disease;
PDI protein disulfide refolding isomerases;
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PERK pancreatic endoplasmic reticulum kinase;
PET positron emission tomography;
PG peptidoglycan;
pNP-Glc p-nitrophenyl-a-D-glucopyranoside;
PP1 protein phosphatase 1;
PQC protein quality control;
PRKCSH protein kinase C substrate 80 K-H;
Pro proline;
PRR pattern recognition receptors;
PSA prostate specific antigen;
PSA1 zwitterionic polysaccharide A1;
PSP Progressive Supranuclear Palsy;
RAGE receptor for advanced glycation end-products;
RRMS relapsing remitting Multiple Sclerosis;
SAMPs self-associated molecular patterns;
Ser serine;
SGLT2 sodium-dependent glucose cotransporter 2;
SLE Systemic Lupus Erythematosus;
sLeA sialyl Lewis A;
sLeX sialyl Lewis X;
TACAs tumor-associated carbohydrate antigens;
TAGE toxic end-products of advanced glycation;
TCR T-cell receptor;
Thr threonine;
TLRs Toll-like receptors;
TT tetanus toxoid;
T-UCR transcribed-ultra conserved regions;
UGGT UDP-glucose glycoprotein glucosyltransferase;
UPR unfolded protein response.
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