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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless
infections and caused millions of deaths since its emergence in 2019. Coronavirus disease
2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant
immune response, cytokine storm, and an imbalanced hyperactive immune system. The
cytokine storm further results in multiple organ failure and lung immunopathology.
Therefore, any potential treatments should focus on the direct elimination of viral
particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune
system. This review focuses on cytokine secretions of innate and adaptive immune
responses against COVID-19, including interleukins, interferons, tumor necrosis factor-
alpha, and other chemokines. In addition to the review focus, we discuss potential
immunotherapeutic approaches based on relevant pathophysiological features, the
systemic immune response against SARS-CoV-2, and data from recent clinical trials
and experiments on the COVID-19-associated cytokine storm. Prompt use of these
cytokines as diagnostic markers and aggressive prevention and management of the
cytokine storm can help determine COVID-19-associated morbidity and mortality. The
prophylaxis and rapid management of the cytokine storm appear to significantly improve
disease outcomes. For these reasons, this study aims to provide advanced information to
facilitate innovative strategies to survive in the COVID-19 pandemic.

Keywords: COVID-19, cytokines, chemokines, infection, diagnostic markers
INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated pathology,
coronavirus disease 2019 (COVID-19) are of particular concern because of the global pandemic
they have unleashed. COVID-19 continues to challenge medical health systems globally, and as the
scenario is inevitably worsening (1, 2), developing prophylactic and therapeutic approaches is
urgent. The number of cases requiring intensive care has emerged as a critical point in the epidemic.
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Therefore, it is important to understand in more detail the
pathophysiology underlying severe disease, particularly the
factors that drive severe lung pathology after infection with the
highly pathogenic human coronaviruses (3).

The hyperactive host immune response to SARS-CoV-2
infection leads to an exaggerated inflammatory reaction.
Elevated circulating levels of interleukin (IL)-1b, IL-2, IL-6,
IL-7, IL-8 (CXCL8), IL-9, IL-10, IL-17, IL-18, IL-22, IL-33,
granulocyte-colony-stimulating factor (G-CSF), granulocyte-
macrophage colony-stimulating factor (GM-CSF), interferon
(IFN)-g, tumor necrosis factor (TNF)-a, chemokine (C-X-C
motif) ligand (CXCL)10, monocyte chemoattractant protein 1
(CCL2 or MCP-1), macrophage inflammatory protein 1 (MIP-1)
A (CCL3), CX3CL1 and MIP-1B (CCL4) (4, 5) have been
reported in patients with COVID-19, particularly in those
admitted to the intensive care unit (ICU). The overexpression
of cytokines and chemokines triggers the severe cytokine release
syndrome (CRS), which increases the severity of the disease even
more (6, 7). Moreover, samples of the bronchoalveolar lavage
fluid (BALF) of patients with COVID-19 show the accumulation
of various immune attractant chemokines, including C-C motif
chemokine ligand (CCL)2, CCL3, CCL4, CCL7, CCL8, CCL20,
CXCL6, and CXCL11 (4, 8, 9). Many of these chemokines are
secreted by monocytes or macrophages (4, 5, 10). Researchers that
have analyzed cytokine profiles in patients with COVID-19
suggest that cytokine storms correlate directly with lung injury,
multiorgan failure, and unfavorable prognosis in severe COVID-
19 (11).

Using available data from experimental and clinical studies,
this review aims to provide up-to-date knowledge on cytokine
and chemokine secretions induced by host immune responses in
COVID-19 as well as on cytokine storm and related
pathophysiological features. Identifying the distinct cytokine/
chemokine profile(s) and pathophysiological features of
COVID-19-induced cytokine storm has practical implications
as it can predict clinical deterioration, e.g., the requirement of
intubation or mortality. Understanding the nature of the
immune response that can lead to recovery from severe
COVID-19 remains key to developing effective treatments (12).
CYTOKINE SECRETION INDUCED BY
SARS-CoV-2 INFECTION

SARS-CoV-2 infects cells by attaching itself to the
angiotensin-converting enzyme 2 (ACE2) (13) and/or type II
transmembrane serine protease (TMPRSS2) receptors (14).
Subsequent viral replication and release cause the host cell to
undergo pyroptosis and unleash pathogen-associated molecular
patterns (PAMPs). In the first few days following infection,
innate immune cells, including macrophages, dendritic cells
(DCs), neutrophils, and natural killer (NK) cells, are activated
when they recognize viral PAMPs (15). Next, PAMPs trigger the
production of several proinflammatory cytokines and
chemokines, including TNF, IL-6, type-1 IFN, CCL2, CCL3,
CCL4, and CXCL10 (IFN-g-induced protein 10 kDa [IP-10])
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(16, 17), which lead to the recruitment of monocytes,
macrophages, and T cells to the infection sites. These
processes promote further inflammation and recruit NK cells
(3) and T cells, which produce more IFN-g (18). Innate antigen-
presenting cells, such as DCs and macrophages, at the infection
site also present viral antigens to virus-specific T cells. This leads
to the activation of the body’s adaptive immunity, which is
mediated by virus-specific B (humoral immunity) and T cells
(cellular immunity) (10, 19).

When SARS-CoV-2 binds to the ACE2 receptor to enter the
target cell, the renin-angiotensin system (RAS) is activated, and
angiotensin II (Ang II) levels increase in circulation (20, 21).
Studies have shown that the ACE2-Ang II axis can induce the
infiltration of macrophages and secretion of certain cytokines,
including IL-6, CCL2, vascular cell adhesion molecule 1
(VCAM-1), and E-selectin, to induce endothelial dysfunction,
thrombin formation, and impaired fibrinolysis (20, 22–24). In
addition to the ACE2-Ang II axis, viral protein Nsp5 and spike
(S) in SARS-CoV-2 can potently induce inflammatory cytokines
and chemokines IL-1b, IL-6, TNF-a, IL-2, CXCL1, CXCL2, and
CCL2 expressions in monocytes/macrophage through NF-kB
signaling pathways (25, 26).

Both aspects of adaptive immunity, i.e., cell-mediated immunity
and humoral immunity, have critical roles in COVID-19 (27).
Lower absolute numbers of T lymphocytes (CD4+ and CD8+ T
cells) occur in both mild and severe infection, with a more notable
decrease in severe cases. The decrease in IFN-g expression by CD4+

T cells is also greater in severe cases than in moderate ones (28).
Moreover, pyroptotic cell death can lead to higher serum IL-1b
levels and triggerneutrophilmigrationandTcell activation (29, 30).
Indeed, neutrophil cytotoxicity releases leukotrienes and reactive
oxygen species, thereby triggering acute lung injury (ALI) and a
cytokine storm. Neutrophils may also lead to endothelial injury,
which can further promote systemic virus dissemination (17, 30–
32). Furthermore, increased serum levels of IL-1b, IFN-g, CXCL10,
and CCL2 strongly point toward the activation of T helper 1 (Th1)
cell function (33, 34).Thus, inadequate innateandadaptiveantiviral
defenses, in addition to high proinflammatory cues, lead to
multiorgan damage (10, 35).

To further illustrate the effect of SARS-CoV-2 on cytokine
and chemokine production, 27-plex cytokine assay panels and
the Bio-Plex 200 system were used to analyze plasma cytokine
and chemokine levels during the acute phase of the illness, and
available results indicate that the plasma concentrations of
specific inflammatory cytokines and chemokines highly
correlate with the severity of COVID-19 disease course. In
particular, the expression levels of IL-2, IL-7, IL-10, GCS-F,
CXCL10, CCL2, CCL3, and TNF-a were significantly higher in
ICU patients than in non-ICU patients (33). By contrast, other
cytokines, including IL-1b, IL-1RA, IL-7, IL-8, IL-9, IL-10, basic
fibroblast growth factors (FGF), GCS-F, GM-CSF, IFN-g,
CXCL10, CCL2, CCL3, CCL4, platelet-derived growth factor
subunit B (PDGFB), TNF-a, and vascular endothelial growth
factor-A (VEGF-A), showed higher expression in both ICU and
non-ICU patients with COVID-19 (33, 36, 37). Of note, the
expression of some cytokines, such as IL-5, IL-12, p70, IL-15,
April 2022 | Volume 13 | Article 832394
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CCL5, and eotaxin, were similar in healthy adults and SARS-
CoV-2-infected patients (5, 6, 28, 33, 38–40).

Due to the importance of cytokines in COVID-19 disease
development, several clinical trials have been focusing on
cytokine modulation. According to the ongoing clinical trials,
many potential COVID-19 therapeutic drugs, such as anakinra
(IL-1 receptor antagonist) (13), siltuximab (IL-6 neutralization)
(41), sarilumab (IL-6 receptor antagonist) (41), tocilizumab (IL-6
receptor antagonist) (42), secukinumab (IL-17 neutralization)
(43), baricitinib (Jak inhibitor) (44), IFN-b-1a (inducing type I
IFN-stimulated genes) (45), recombinant human IFN drugs (46),
eculizumab (inhibition of complement activation) (47), G/10
(innate response regulation) (48), CD24F (innate response
regulation) (48), anti-GM-CSF monoclonal antibody (49) and
NKG2D-ACE2 CAR-NK cells (50) have been applied to
COVID-19 patients to boost their immune system, inhibiting
viral replication or cytokine storms (42, 44, 48, 51–56).
Accordingly, these trials indicated that some cytokines, such as
IL-1 (57), IL-6 (58), TNF (57), IFN (59), and GM-CSF (57),
could be potential targets to develop as diagnostic markers and
personalized drug targets (58). In addition to the potential
targets, there are a number of small-molecule drugs under
clinical trials to benefit COVID-19 patients. Paxlovid, a
ritonavir-boosted protease inhibitor, is the first oral antiviral
drug to receive FDA granted EUA in December of 2021 (41).
Both remdesivir (60) and molnupiravir (61, 62) can inhibit viral
replication by inhibiting RNA-dependent RNA polymerase
(RdRp) (60–64).

This section aims to investigate the distinct cytokine profiles
associated with COVID-19 immunopathogenesis. They include
interleukins (IL), interferon (IFN), tumor necrosis factor (TNF)-
a, and chemokines. Changes in immune mechanisms, cytokine,
and chemokine secretion caused by SARS-CoV-2 infection, and
reported druggable targets are described in the following sections
and summarized in Figure 1 and Table 1.

Interleukins (ILs)
ILs, a family of cytokines, are involved in immune cell
differentiation and activation, directing them to the infection
sites, enhancing acute-phase signaling, activating epithelial cells,
and mediating secondary cytokine production (113). Both IL-6
and IL-1b are major proinflammatory cytokines released during
viral infections (65) to induce acute-phase protein secretion by
hepatocytes which activate the complement system. The
complement system cascade further increases inflammatory and
opsonization. IL-1b may also enhance inflammatory responses in
the bronchi and alveoli of patients with lung injury (66, 114).
Furthermore, higher IL-2, IL-17, and IL-8 levels have also been
noted in patients with COVID-19 (67, 115). Of these cytokines, IL-
6 deserves a more extensive discussion with respect to its
involvement in the coronavirus-induced cytokine storm (68).
However, a previous study showed that compared to the
standard care, treatment with IL-6 and IL-1 inhibitors could
reduce the neutralizing activity of SARS-CoV-2 antibodies at
day 30, which may indicate that patients with cytokine-inhibitor
treatments may be at risk for re-infection (116).
Frontiers in Immunology | www.frontiersin.org 3
IL‐6
IL-6 is critically involved in inflammation owing to its role in
regulating the acute-phase protein response (113). It is produced
by nearly all stromal cells, B lymphocytes, T lymphocytes,
macrophages, monocytes, DCs, mast cells, and other
nonlymphocytic cells, such as fibroblasts, endothelial cells,
keratinocytes, glomerular mesangial cells, and tumor cells
(117). Of note, IL-1b and TNF-a increase IL-6 production
(68), and in turn, IL-6 can promote T cell proliferation and
resist T cell apoptosis by activating STAT3 (118). Furthermore,
TGF-b, along with IL-6 and IL-21, promotes Th17 cell
development by enhancing RORgt expression (119). IL-6 can
also activate Th2 cytokines and dampen the production of TReg

cells via the STAT3 pathway (120–124). Moreover, high IL-6
levels can activate the coagulation system and increase vascular
permeability, thereby enabling the rapid spread of inflammation
(69). IL-6 dysregulation has also been described to promote cell
necrosis and apoptosis (125). Owing to these pleiotropic
properties, IL-6 plays an important role in the pathogenesis of
the cytokine storm (68).

Recent studies have suggested that the spleen and lymph
nodes are infiltrated by macrophages that express ACE2 and that
the nucleoprotein antigen is significantly associated with IL-6
production. This suggests that they contribute to excessive
inflammation in COVID-19 (6, 70, 107, 126). Further, IL-6
produced by CD14+CD16+ monocytes was significantly higher
in ICU-treated patients than in non-ICU patients (6, 127). SARS-
CoV-2 can dysregulate host immune responses. For example, the
number of Th17 cells could be raised by a virus-driven increase
in IL-6 production (68). SARS-CoV-2 may also elevate the levels
of IL-10, and TNF-a, which would negatively regulate T cells by
increasing exhaustion markers such as PD-1 or Tim-3 (71, 72).
Moreover, IL-6 plays a crucial role in the pathology of COVID-
19 as it modulates the chemotaxis of neutrophils and lymphocyte
exhaustion and necrosis (38). Patients with COVID-19 also
display selective induction of the macrophages that produce
IL-6, but not TNF-a and IL-1b, and this then directly
promotes lymphocyte necrosis (38).

Systematic reviews and meta‐analyses have found higher
serum levels of IL-6 in >50% of all patients with COVID-19
(70, 128). Moreover, patients who subsequently developed
certain adverse clinical outcomes, including the cytokine
storm, ICU admission, acute respiratory distress syndrome
(ARDS), or death tended to have higher IL-6 levels (5, 70, 89,
129) than healthy cohorts. The IL-6 levels were elevated nearly
threefold in complicated COVID-19 cases, and there were several
systemic and extrapulmonary disorders not found in patients
with uncomplicated disease (28, 38, 39, 67, 68, 73, 103, 130–133).

In addition to the level association, a combination of multiple
cytokines, including IL-6, IL-10, and IL-8, combined into one
score may also predict disease severity (74). Thus, serum IL-
6 levels (>24 pg/mL) can be used at the initial assessment to
predict hypoxemia that requires hospitalization. This may help
in the early identification of patients who need hospitalization
because it has excellent sensitivity and good specificity
(134, 135).
April 2022 | Volume 13 | Article 832394
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As they do in SARS-CoV, high serum IL-6 levels correlate with
shock, respiratory failure, ARDS, and multiorgan dysfunction in
severe COVID-19 (58, 73, 75). IL-6 overexpression can induce
other complications, including fever, vascular leakage, anemia,
cardiomyopathy, acute kidney injury (AKI), interstitial edema,
and myocardial dysfunction. In support of this, patients with
severe COVID-19 (5) exhibited higher IL-6/IFN-g ratio and
greater lunch damage while a higher risk of hypercytokinemic
immune dysregulation (or cytokine syndrome), respiratory failure,
and death (76) was characterized by elevated IL-6 levels ≥80 pg/mL.
When assessed in parallel, the findings could be associated with a
Frontiers in Immunology | www.frontiersin.org 4
cytokine storm favoring lung damage, than those with moderate
COVID-19 (104). Taken together, blocking the IL-6 signaling
pathway might inhibit excessive inflammation from SARS-CoV-2
infection (136).

To evaluate the therapeutic efficacy of IL-6 inhibition, clinical
trials have tested several monoclonal antibodies, including
siltuximab (IL-6 neutralization), sarilumab (IL-6 receptor
antagonist), and tocilizumab (IL-6 receptor antagonist) (137). The
earliest IL-6-blocking therapies first emerged in China (138), and
most of the randomized trials with IL-6 receptor blockers did not
have a significant effect on mortality (139–143). Tocilizumab
FIGURE 1 | Cytokines and chemokines expression induced by SARS-CoV-2 in patients with COVID-19. (A) Epithelial cells have been shown to express TNF-a,
IL-1, IL-6, and other chemokines (e.g., IL-8, CCL2, CCL7, CXCL10, G-CSF, and GM-CSF) as well as initiate immune responses following infection. (B) Innate
immune cells, including dendritic cells, macrophages, circulating monocytes, neutrophils, and NK cells, are activated by SARS-CoV-2 infection to secrete various
cytokines and chemokines to enhance both innate and adaptive immune cells. (C) Adaptive immune cells consisting of functional CD4+ T cells, Th1 cells, Th2
cells, Th17 cells, CD8+ T cells, and gdT cells defend against SARS-CoV-2 infection. The cytokines and chemokines expressed by adaptive immune cells interact
in a positive feedback loop to strengthen innate immune responses. The cellular origin of each cytokine and its regulatory roles are shown in figure and Table 1.
The persistent escalation of these responses leads to uncontrolled cytokine and chemokine expression, resulting in a life-threatening systemic inflammatory
response syndrome, also known as “cytokine storm”. (D) Selected cytokine/chemokine modulation drugs that have been applied in COVID-19 clinical trials are
shown in the upper right of the figure. They include neutralized antibodies (siltuximab, secukinumab, certolizumab); receptor antagonists (anakinra, sarilumab,
tocilizumab), human recombinant proteins (IFN-b-1a, IFN-a-1b, IFN-a-2b); small-molecule drugs (baricitinib, remdesivir, molnupiravir, etanercept); and cell
therapy (NKG2D-ACE2 CAR-NK cells). The drugs have been applied to COVID-19 patients to boost their immune systems and inhibit viral replication or cytokine
storms. Figure created with BiorRender.com.
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showed no significant improvement in clinical outcome ormortality
compared with placebo (140). Nevertheless, recent studies that used
a combination of tocilizumab and siltuximab have shown promising
results, including clinical and radiographical improvements, as
reported by the Randomized, Embedded, Multifactorial Adaptive
Platform Trial for Community-Acquired Pneumonia (REMAP-
CAP) (144) and other studies (144–147). In the REMAP-CAP
study, mortality among patients treated with tocilizumab and
sarilumab was 27% compared with 36% in the control group
(144). Furthermore, one of the largest initial observational studies
in New Jersey has shown reducedmortality owing to tocilizumab, in
particular, the mortality rate among 547 ICU patients with COVID-
19 treated with tocilizumab was 46% compared with 56% among
134 individuals provided standard care (147). At present, the
therapeutic efficacy of IL-6 inhibitors in patients with COVID‐19
appears promising; however, more evidence is needed to establish a
definitive benefit (73).

IL-1 Family
Several well-known cytokines in the IL-1 family, including IL-1b
and IL-18, have important roles in inflammation, hematopoiesis,
and fibrosis (148), and SARS-CoV-2 has been shown to induce
the secretion of IL-1 family cytokines, where their levels correlate
with virulence (5, 130, 149). Some reports have also indicated
that higher levels of IL-1 family cytokines present in the plasma
of patients with COVID-19, that levels are higher in severe cases
compared with mild cases, and that the levels strongly associate
with the Murray score (57, 108, 130, 149, 150). Of note, gene
expression analyses concur with these findings, i.e., IL-1-related
proinflammatory pathways are highly upregulated in severe cases
(151). Therefore, the IL-1 blockade treatment by anakinra (an
anti-IL-1 receptor antagonist) may be an effective alternative
option for COVID-19 patients (152).

IL-1b
IL-1b is a proinflammatory cytokine that not only responds to
infection and inflammation but also plays an important role in
acute and chronic autoinflammatory diseases (153). Elevated IL-
1b levels have been associated with SARS, hypercoagulation,
disseminated intravascular coagulation, and most severe
COVID-19 cases (100, 154). Clinical and laboratory parameters
indicated that SARS-CoV-2 appears to promote both the
activation and maturation of IL-1b and this, in turn, activates
other proinflammatory cytokines, including IL-6 and TNF-a.
Further, IL-1b dysfunction drives Th1 cell activation (12, 68),
macrophage activation syndrome (8, 28, 67, 89, 90), fever (77),
ARDS (8, 77, 78), and cytokine storm (100, 155). Using single-cell
transcriptomic (156, 157) and flow cytometric analyses (90, 158),
some studies have identified that peripheral blood mononuclear
cells (PBMCs) from patients with COVID-19 contained IL-1b-
associated inflammasome signatures (159).

IL-18
IL-18 is a proinflammatory cytokine produced by macrophages
during the very early stages of a viral infection (160). It induces
the production of IL-6 and IFN-g, which are considered
important for optimal viral host defense (160, 161). It also
Frontiers in Immunology | www.frontiersin.org 5
drives Th2 cytokine production from CD4+ T cells and NK
cells and regulates both Th1 and Th2 responses (93).
Additionally, IL-18, along with other cytokines (CCL2,
CXCL10, CCL20, IL-18, IL-3, IL-6, G-CSF, GM-CSF, IFN-g), is
suggested to be involved in regulating neutrophil function (162).
The activated neutrophils contributed to the formation of
neutrophil extracellular traps (163) and increased neutrophil-
induced inflammatory response (162). In addition, aberrant
production of IL-18 can cause severe tissue injury (160).
Patients with severe COVID-19 had higher IL-18 serum
concentrations than those with mild symptoms (94, 160), with
no difference in IL-18 concentrations between healthy subjects
and asymptomatic COVID-19-infected individuals (160). As
serum IL-18 concentrations consistently rise with an increase
in the severity of pneumonia, significantly higher concentrations
were observed in patients who developed macrophage activation
syndrome, ARDS (164), or liver damage (77). Further, serum IL-
18 levels were higher in males than in females (94, 164). Thus, the
serum IL-18 concentration may be used to identify patients who
might subsequently need hospitalization (160).

IL-10
IL-10 functions as an anti-inflammatory cytokine, and it is a
crucial feedback regulator that exerts immunosuppressive effects
on both innate and adaptive inflammation, autoimmune
pathologies, and Th1 cell activity (79, 95, 165–173). It is
secreted by multiple cell types, including Th1, Th2, Th17 cell
subsets, TReg cells, CD8+ T cells, B cells (167, 174–178), mast
cells, eosinophils, macrophages, and DCs (179–181). IL-10 is
dramatically elevated in COVID-19, and this was believed to be a
negative feedback mechanism to suppress inflammation and to
induce ARDS (96), acute-phase protein response (77, 97), severe
pneumonia, and damage to vital organs (33, 71, 107, 182, 183).
Studies have reported higher IL-10 levels in ICU patients than in
non-ICU patients (33, 71, 95). In addition, the increased number
of IL-10-producing regulatory T cells could be correlated with
long-term viral persistence (184). Hence, several lines of clinical
evidence suggest that such dramatic and early elevation of IL-10
might exacerbate pathogenesis in determining COVID-19
severity (95). Moreover, the increased IL-10 expression is
considered an indicator of poor prognosis in COVID-19 (97,
183). In contrast, other recent studies have demonstrated that IL-
10 may directly expand cytotoxic effector CD8+ T cells and
contribute to the hyperactivation of adaptive immunity in
patients with COVID-19 (95). This observation lent credibility
to the idea that both anti-inflammatory and immune-activating
roles of IL-10 may occur simultaneously in COVID-19 (68,
95, 185).

IL-22
IL-22 belongs to the IL-10 cytokine family and is produced by gd
T cells, Th1 cells, Th17 cells, Th22 cells, NKT cells, and group 3
innate lymphoid cells (ILC3) (186–188). In general, IL-22 is a
pro-and anti-inflammatory cytokine involved in tissue
inflammation, immunosurveillance, tissue repair, and
homeostasis through the IL-22R activation pathway (186, 189–
195). In patients with SARS-CoV-2 infection, IL-22 plasma levels
April 2022 | Volume 13 | Article 832394
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were correlated with disease severity (12, 196), and they were
positively correlated with the Th17 population. The increased
Th17 proportions and IL-22 were observed in cases with
headache, hyperinflammation, respiratory system dysfunction,
and ARDS (163, 197). Other studies indicated that IL-22 levels
are negatively correlated with the Th22 levels (188, 198).
Functional assays revealed that both peripheral blood
mononuclear cells (PBMCs) and a human bronchial epithelial
cell line (16HBE) can produce IL-22 (188). This suggests that IL-
22 could be expressed differently in peripheral blood and tissues.

IL-17
IL-17 is produced by Th17 lymphocytes and other cells,
including CD8+ cells and gdT cells, NK cells, and ILC3 (199).
IL-17 acts as a neutrophilic inflammation-promoting cytokine
(79) whose levels increase during inflammatory processes and
autoimmune diseases (200–203). It also plays a role in tissue
damage, physiological stress, and infection (100). IL-17, along
with IL-22 and TNF-a, induces the production of antimicrobial
peptides in the gastrointestinal tract and skin (204, 205). In
addition, because both IL-17 and IL-22 originate in Th17 cells,
the dysregulation of the above cytokines could contribute to
several proinflammatory diseases (206). Therefore, applying
Th17-inhibiting therapies such as thiamine to reduce the Th17
mediated pro-inflammatory response (101) may be an effective
treatment for decreasing cytokine storms (207). In one study, 16
patients a proinflammatory state from alcohol use disorder were
treated with thiamine, and it significantly reduced IL-17 levels
and ameliorated the Th17 responses (207).

Upon SARS-CoV-2 infection, IL-17 levels, along with other
Th17 related proinflammatory cytokines, such as IL-1, IL-6, IL-
15, TNF, and IFN-g, are increased, which has a positive
correlation with disease severity (101, 102, 208). Previous
reports indicating the elevation of IL-17 levels in patients with
SARS-CoV or MERS (209, 210) as well as elevated IL-17 levels in
SARS-CoV-2-induced cytokine storm (33), ALI (102), ARDS
(37), viral load have been reported (77, 211). A Janus kinase 2
inhibitor, Fedratinib, has been used to decrease IL-17 expression
by inhibiting Th17 cells in murine models (212). By contrast, a
recent study illustrated that IL-17 levels were not significantly
different between uninfected individuals and patients with
COVID-19 with severe versus mild symptoms (115). In
addition, secukinumab, a human anti-IL-17 neutralizing
monoclonal antibody, also showed no significant difference in
adverse effects in COVID-19 patients (43).

IL-33
IL-33 is an alarming and crucial immune modulator released by
endothelial and epithelial cells, activated fibroblasts, fibroblast-
like cells, and myofibroblasts to maintain the tissue and immune
homeostasis and inflammation through IL-33/ST2 signaling
(211, 213). IL-33 plays important roles during allergic, fibrotic,
infectious, and chronic inflammatory diseases by activating the
different immune subgroups, such as Th1, Th2, TReg, CD8

+ T
cells, mast cells, group 2 innate lymphoid cells (ILC2s),
granulocytes, macrophages, DCs, NK cells, iNKT cells, and B
cells (209, 210, 213, 214).
Frontiers in Immunology | www.frontiersin.org 6
In COVID-19 patients, increased IL-33 serum levels were
associated with poor outcomes (209, 215–217). IL-33 activation
could induce a type-2 immune response by inducing ILC2s
(217). These might help differentiate pathogenic gd T cells
(216), thus contributing to pulmonary fibrosis induced by viral
infection (216, 218). In addition, transcriptomic analysis of
bronchoalveolar lavage fluid (BALF) from COVID-19 patients
showed an increased population of IL-33-producing cells with
the disease severity (219) and strong upregulation of IL-33
compared to healthy samples (220).

Interferons (IFNs)
IFNs encompass a family of cytokines that play a central role in
providing efficient protection against viral infections by
activating the antiviral or immunomodulatory properties (221,
222). Human IFNs have been classified into three major types
based on signal receptors: IFN type I (IFN-I; IFN-a and IFN-b),
IFN type II (IFN-g), and IFN type III (IFN-l1) (223). Type I
IFNs response can be rapidly triggered when host cells recognize
PAMPs such as viral nucleic acids and have been known to
combat viruses by inducing the expression of IFN-stimulated
genes (ISGs) in epithelial cells, which exert antiviral functions,
inhibit viral replication, and indirectly stimulate both innate and
adaptive immune responses (3, 68, 224, 225).

While IFN-b-1a and IFN-b recombinant protein have shown
great potential in inhibiting SARS-CoV-2 replication in vitro
(226). Paralleling the potential, IFN-l 1/3 has also been induced
in early phases of infection and in convalescent COVID-19
patients (227). The results indicated that IFN-b and IFN-l1
could block virus infection and inhibit the production of SARS-
CoV-2 (226, 228). In addition, the dysregulated production of
type I IFNs and the exacerbated release of proinflammatory
cytokines makes COVID-19 more severe (226, 229). At the same
time, the reduced type II IFN was correlated with disease severity
in vitro (230), and the IFN-g plasma levels of COVID-19 ICU
patients have been significantly reduced compared to other
cohorts (227).

It has been noted that type I IFN, especially IFN-b, can be
effective against SARS-CoV-2 to tackle severe COVID-19 and
prevent clinical deterioration. Analogously, SARS-CoV-2 may
also be sensitive to IFN (231, 232). To evaluate the therapeutic
efficacy of IFN-b, several studies in REMAP-CAP and the
WHO’s Solidarity Trial administered IFN-b recombinant
protein as a potential therapy against COVID-19 (45, 231,
232). A combination of IFN-b-1a, lopinavir/ritonavir, and
ribavirin could eliminate the virus from the nasopharyngeal
swabs in a phase II clinical trial (45, 233). Another study has
shown IFN-b-1a combined with lopinavir/ritonavir or
atazanavir/ritonavir and hydroxychloroquine significantly
decreased mortality on day 28 in a cohort of 42 severe
COVID-19 cases (234). In addition to the combination,
pegylated interferon alfa-2b (PEG IFN-a-2b) along with the
standard of care (SOC) enabled a faster viral reduction in
patients with moderate COVID-19 than with standard care
alone (235). The pegylated interferon lambda (PEG IFN-l)
treatment particularly in patients with a high baseline viral
load (80), accelerated viral decline and increased the
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proportion of patients with viral clearance by day 7 has shown a
similar role as PEG IFN-a-2b.

IFN-I
IFN-I can be produced by many cell types, including DCs,
lymphocytes, macrophages, fibroblasts, endothelial cells, and
osteoblasts (236–238). IFN-I can further stimulate both
macrophages and NK cells via IRF3/IRF7 antiviral signaling to
counter viral infections, and in response to PAMPs,
plasmacytoid DCs have been identified as the most potent and
natural type I IFN-producing cells (229). Nevertheless, viruses
can counteract IFNs by harnessing both structural and
nonstructural proteins and can also efficiently suppress IFN
induction (239). Of note, such inefficient IFN response may
account for progressive virus replication, cytokine storm
development, and death in SARS (240).

Many viruses, including SARS-CoV-2, have evolved
mechanisms to evade the antiviral effects of IFN, and patients
with COVID-19 tend to have suppressed responses to IFN (type
I, II, or III) along with impaired monocytes, macrophages, and
neutrophils (35, 72, 80). Compared with other respiratory RNA
viruses, SARS-CoV-2 is also a poor inducer of IFN-I, both in
vitro and in animal models (35, 241). Patients without IFN-a
production had poorer outcomes and a higher viral load. Thus,
screening patients for IFN production after COVID-19 diagnosis
could be crucial in selecting those who could benefit from early
intervention with IFN treatment (242). Recent studies suggest
that an impaired response of IFN-I in the early stage of the
disease may lead to an acute phase and play a major role in
creating the cytokine storm (243). Adding to the study, a recent
working hypothesis has suggested that the timing of IFN
response to SARS-CoV-2 infection varies based on viral load
and genetic differences (244) with low viral loads characterized
by an IFN response suitable for viral clearance, resulting in mild
infection. In contrast, a high viral load can delay IFN response
and consequently lead to severe disease (245). Studies have
suggested that patients with mild or moderate COVID-19
exhibit greater type I IFN response during days 8-12 compared
with patients with severe disease (4, 8). Moreover, some infected
patients expressed a low level of IFN-I, but ISGs expression was
enhanced in patients’ BALF (240). This suggests that even
limited IFN-I production is sufficient to express relevant genes
(72, 246).

Despite early reports to the contrary, increasing evidence has
highlighted a role for IFN-I responses in severe COVID-19
development (94). A robust type I IFN response has been
reported in patients with severe COVID-19, which through
diverse mechanisms, exacerbated hyperinflammation (94, 247).
Further, a recent longitudinal analysis illustrated that IFN-a
levels in peripheral blood remained high in patients with
severe COVID-19 and that classical monocytes exhibit both
IFN-I and TNF/IL-1b-driven inflammatory responses (94), and
approximately 10% of patients with severe COVID-19 had
neutralizing immunoglobulin (Ig)G auto-antibodies against
type I IFNs (248, 249); hence these patients required plasma
exchange (250). Of note, contradictory results among multiple
Frontiers in Immunology | www.frontiersin.org 7
studies on IFN-I responses in patients with COVID-19 might be
explained by differences in the definition of disease severity,
sampling time points, and/or readout type (for example, IFN-I
itself or cellular responses to IFN-I) (247).

TNF-a
TNF-a is a pyrogenic cytokine secreted by macrophages,
monocytes, Th1 cells, Th17 cells, CD8+ T cells, and DCs
during the acute phase of inflammation or infection (68, 77,
79). It is a central cytokine in viral diseases that increases vascular
permeability (251) and is associated with several chronic
inflammatory conditions and autoimmune diseases (68). For
>20 years now, anti-TNF antibodies have been used for
alleviating the severity of some autoimmune inflammatory
diseases, including rheumatoid arthritis, inflammatory bowel
disease, and ankylosing spondylitis. Further, the United States
Food and Drug Administration has approved four off-label
indications for anti-TNF therapy, implying that TNF is a valid
target in multiple inflammatory diseases (244, 252).

COVID-19 is characterized by unique hyperinflammatory
signatures across all types of immune cells, particularly the
upregulation of TNF-a-, IL-6-, and IL-1-driven inflammatory
responses in severe disease (35). TNF-a presents in the blood
and lungs of patients with COVID-19 (244), and in severe
COVID-19 cases, high systemic TNF-a levels were associated
with respiratory distress syndrome (98, 245, 253, 254), and lower
survival along with pulmonary dysfunction [edema,
proteinaceous exudates, pneumocyte desquamation, and ARDS
(66)] as well as impaired hematopoietic function, disseminated
intravascular coagulation, debilitating hyperlipidemia, liver
damage, chronic kidney disease, diabetes, and hypertension (8,
33, 77, 135, 255). Thus, high TNF-a levels can be an independent
predictor of patient survival (135).

As TNF-a overproduction has been documented in COVID-
19, the efficacy and clinical benefits of anti-TNF antibody therapy
have been investigated (244). One clinical trial showed that
etanercept, a TNF-a inhibitor, can attenuate disease in patients
with severe COVID-19 by suppressing their systemic
autoinflammatory responses (256), and patients with COVID-
19 previously prescribed etanercept treatment did not develop
severe COVID-19 (257). Likewise, another anti-TNF-a
antibody, certolizumab, may have beneficial effects in patients
with COVID-19 (100, 258). A recent study showed that
inhibiting both TNF-a and IFN-g in multiple cytokine storm
models protected against death in SARS-CoV-2 infection and
other inflammatory syndromes, such as sepsis, hemophagocytic
lymphohistiocytosis, and cytokine shock (259). It is still not clear
whether a single cytokine blockade (such as TNF-a inhibitors)
could be effective in CRS associated with COVID-19.
Nevertheless, some results show that anti-TNF therapy should
be explored on hospital admission as it may prevent the need for
intensive care (244).

Histopathological changes and cytokine and chemokine
secretions along with cellular origins in SARS-CoV-2 infection,
which are described in the preceding and following sections, are
summarized in Table 1.
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CHEMOKINES INDUCED BY
SARS-CoV-2 INFECTION

Chemokines, a family of small cytokines, are the crucial mediators
of appropriate immune responses (260). However, their excessive
release is the primary cause of hyperinflammation, whichmay be a
direct cause of ARDS (261). The exaggerated chemokine response
is critical in several viral diseases, such as SARS, MERS, influenza,
and SARS-CoV-2 (262). Further, several clinical investigations
have revealed that chemokines such as IL-8, CCL2, CCL3, CCL7,
CCL8, CXCL2, CXCL16, and CX3CL1 are infiltration signals that
mediate the recruitment of mononuclear phagocytes to lungs (6,
240, 261, 263), and they are directly involved in the pathogenesis
of severe clinical sequelae in COVID-19, including major
complications that cause death in approximately 40% of severe
COVID-19 cases (66, 68, 77, 261, 264). We review the role of
chemokines in COVID-19 pathogenesis to improve the
understanding of the disease immunopathology, which may
further aid in developing possible therapeutic targets for
COVID-19 (261). Chemokine secretions and their cellular
origins in SARS-CoV-2 infection are summarized in Figure 1,
Table 1, and described in the following sections.

CXCL10/IP-10
CXCL10, also known as IP-10 or small-inducible cytokine B10,
belongs to the C-X-C chemokine family. It binds to the CXCR3
receptor and acts as a chemoattractant for immune cells. That
enhances chemotaxis, apoptosis, cell growth, angiostasis, and
recruitment of macrophages, Th1 cells, and NK cells (265).
Alterations in CXCL10 expression have been associated with
inflammatory diseases (including infections), immune
dysfunction, and the development of tumors. Thus, CXCL10 is
a recognized biomarker of varying progression and severity of
disease (265), so it might be used to detect early stages of SARS
(68). In COVID-19 cases, levels of CXCL10 serum are highly
associated with disease severity, viral load (68, 108), and the
Murray score (71, 108). CXCL10 has been found in the BALF
from patients with COVID-19 who had higher proinflammatory
genes (220). In addition, higher circulation levels of CXCL10 can
activate Th1 cell function, and it has been shown to be highly
correlated with COVID-19-induced ARDS in clinical and
experimental studies (266). Therefore, CXCL10 may also be
considered a prognostic and potential therapeutic marker for
COVID-19 progression (108).

IL-8/CXCL8
IL-8 or CXCL8 is produced by macrophages and other cell types,
such as epithelial cells, airway smooth muscle cells, and
endothelial cells (135, 267, 268). Elevated serum IL-8 levels
have been observed in many diseases, including severe lung
injury, and in patients who developed adverse outcomes in
SARS-CoV and MERS-CoV infections (269–272). Upon SARS-
CoV-2 infection, increased IL-8 concentrations are associated
with ARDS (77) and COVID-19 severity (87, 135, 255, 268, 273–
275). Irrespective of demographics or comorbidities (106, 135,
276, 277), lower IL-8 was associated with a shorter duration of
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illness and in convalescent, recovered, and asymptomatic (276,
278). As a neutrophil chemotactic factor, IL-8 recruits
neutrophils to the infection site and activates them (135, 279).
Therefore, neutrophilic infiltration, neutrophil-lymphocyte ratio,
and increased IL-8 expression are considered realistic prognostic
biomarkers of COVID-19 progression and severity (10, 30, 135,
280, 281). However, the correlation between IL-8 levels and
disease severity remains controversial (135, 273–275, 281, 282) as
the positive correlation is shown only in univariate and not in
multivariate analysis (88). Interestingly, the correlation between
sex and IL-8 is also unclear in that while some studies have
documented no significant differences in serum IL-8 levels (135),
others have reported lower IL-8 expression in female SARS-
CoV-2 patients than in male patients (275).

GM-CSF
GM-CSF, a proinflammatory cytokine and chemokine also
known as CSF2, is a member of the CSF superfamily (112).
This monomeric glycoprotein has several cellular origins,
including macrophages, T cells, mast cells, NK cells,
endothelial cells, and fibroblasts (4, 9, 36). GM-CSF was
initially classified as a hematopoietic growth factor, yet it is
now believed to play an essential role in communicating between
tissue-invading lymphocytes and myeloid cells by stimulating the
secretion of proinflammatory cytokines and chemokines (such as
IL-1, IL-6, and TNF) (112). Compared with healthy controls, the
percentage of GM-CSF-secreting immune cells, such as CD4+ T
cells, CD8+ T cells, NK cells, and B cells, was significantly higher
in patients with COVID-19 (110, 111). Increased GM-CSF can
induce greater acute-phase protein expression (77) and activate
Th17 responses (98) to contribute to COVID-19 pathogenesis
(33). In addition, to the COVID-19 patients, particularly those
admitted in ICU, pathogenic Th1 cells increased rapidly
along with GM-CSF and IL-6 secretion (49, 111, 283). Such a
proinflammatory environment can further trigger CD14+CD16+

monocytes to secrete more GM-CSF and IL-6. These aberrant
and numerous GM-CSF+-IL-6+ cells may enter the lungs and
create a hyperinflammatory environment, thereby worsening the
cytokine storm in patients with COVID-19 (10, 49, 111). Thus
IL-6 and GM-CSF are also considered markers of poor prognosis
in the later stages of COVID-19, and these proinflammatory
mediators can predispose patients to respiratory failure and
eventually ARDS (49).

In current COVID-19 clinical trials, the administration and
inhibition of GM-CSF are being therapeutically tested. The
inhibition of GM-CSF signaling may function as a potential
therapeutic target in patients with COVID-19-associated hyper
inflammation and ARDS (49, 284). At present, there are multiple
trials with anti-GM-CSF drugs (e.g., Otilimab, Lenzilumab,
Namilumab, Gimsilumab, and TJ003234) or GM-CSF receptor
antagonists (e.g., Mavrilimumab) (110, 276). On the other hand,
the FDA-approved recombinant GM-CSF, Sargramostim
(Leukine®), is currently being investigated in a phase IV trial
as an adjuvant therapy to restore alveolar anti-inflammatory
macrophages to manage acute hypoxic respiratory failure and
ARDS (NCT04326920) (57, 110, 276).
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TABLE 1 | Representative of Histopathological Changes, Cytokine and Chemokine Secretions, and Cellular Origins in SARS-CoV-2 Infection.

Modulator Main Cell Source Type and Function Clinical Feature Reference

Cytokines
IL-6 Macrophage,

monocyte, activated T
cell, dendritic cell,
Th2, epithelial cell,
endothelium cell,
fibroblast

Proinflammatory cytokine; pyrogenic and antibody-
enhancing function; induces acute-phase reactants
Key player in COVID-19 pathology (neutrophils’
chemotaxis, lymphocytes exhaustion, and
lymphocyte necrosis) and its exacerbated
inflammatory responses; serum circulation positively
correlates with disease severity; negative regulate
T cell by increasing the exhaustion markers; main
player in cytokine storms

Body Fever, anemia, vascular leakage, interstitial
edema, myocardial dysfunction, cardiomyopathy,
complement & coagulation cascade activation,
diffused intravascular coagulation; shock,
respiratory failure, multiorgan dysfunction

(4, 6, 8, 9, 20,
22–24, 28, 36–
39, 58, 65–88)

Lung Acute respiratory distress syndrome (ARDS),
endothelial dysfunction, thrombin formation, and
impaired fibrinolysis

Kidney Acute kidney injury
Liver Increased acute-phase protein

IL-1b Macrophage,
monocyte,
endothelium cell,
activated T cell,
dendritic cell

Inflammasome-induced cytokine
May correlate with inflammation intensity and Th1 cell
activation; activates and increases IL-6 production;
dysfunction drives macrophage activation syndrome

Body Fever (4, 6, 8, 9, 12,
28, 67, 68, 77,
78, 89–92)

Lung ARDS
Liver Increased acute-phase protein

IL-18 Th1, endothelium cell,
fibroblast, activated T
cell, macrophage

Proinflammatory cytokine; regulates both Th1 and
Th2 responses
Associates with type I interferon in COVID-19; serum
concentration correlates with increase in pneumonia
severity

Lung ARDS (8, 12, 68, 93,
94)Liver Liver damage

IL-10 Macrophage,
monocyte, Th1 and
Th2

Anti-inflammatory cytokine; inhibits Th1 cells and
cytokine release
Associated with COVID-19 severity; negative
regulation of T cells by an increase of exhaustion
markers; may expand cytotoxic effector CD8+ T cells,
causes hyperactivation of adaptive immunity; high
concentrations correlate with low viral load.

Lung ARDS (70–72, 77,
79–81, 95–99)Liver Increased acute-phase protein

IL-17 Macrophage, iNKT
cell, Th17, neutrophil

Proinflammatory cytokine; neutrophilic inflammation-
promoting cytokine
Associates with Th17 responses, viral load, severity
of disease in COVID-19

Lung Acute lung injury, ARDS (37, 79, 98,
100–102)

IFN-g Macrophage, Th1
cell, Th17 cell, CD8+

T cell, CD4+ T cell,
dendritic cell, NK cell

Proinflammatory cytokine; activates macrophages
Impaired activity in severe disease; increased levels
strongly correlate with Th1 cell activation

Body Fever, impaired hematopoietic function,
disseminated intravascular coagulation,
decreased serum protein, headaches, chills,
fatigue, malaise, cardiomyopathy, vascular
leakage, production of acute-phase protein.

(4, 9, 12, 28,
36, 68–70, 72,
76, 77, 79,

101, 103–106)

Lung ARDS, lung injury
TNF-a Macrophage,

monocyte, Th1, Th17,
CD8+ T cell, dendritic
cell, epithelial cell,
endothelium cell

Pyrogenic cytokine; increases vascular permeability
Impaired activity in severe patients with COVID-19;
increases IL-6 production; main contributor to
cytokine storm interplay; negative regulate T cell by
increasing the exhaustion markers

Body Impaired hematopoietic function, disseminated
intravascular coagulation, debilitating,
hyperlipidemia, flu-like symptoms

(4, 6, 8, 9, 28,
36, 37, 66,

68–72, 77–80,
86, 91, 98,

101, 105, 106)
Lung Alveolar edema, proteinaceous exudates,

desquamation of pneumocytes, ARDS
Liver Liver damage

Chemokines
CCLX Macrophage,

monocyte, activated T
cell, dendritic cell,
alveolar epithelial cell

CXCL9, CXCL10, CXCL11, CCL2, CCL3, CCL4,
CCL7, CCL8, CCL20, CXCL6, CCL5, and IL-8 are
upregulated in COVID-19

Lung ARDS (4, 6, 8, 9, 68,
77, 96, 107)

CXCL10 Macrophage,
dendritic cell, Th2 cell

Interferon g-inducible chemokine; recruitment of
macrophages, Th1 cells, NK cells
Positively correlates with Murray score, viral load, and
disease severity; increased levels strongly indicate
Th1 cell activation

Lung ARDS (9, 68, 70, 71,
77, 79, 91, 98,

108)

IL-8 Macrophage,
monocyte, epithelial
cell, endothelium cell

Recruits neutrophils
Associates with severity of disease in COVID-19

Lung ARDS (4, 9, 37, 77,
79, 91, 109)

GM-CSF Macrophage,
monocyte, activated T
cell, epithelial cell

Proinflammatory cytokine, stimulating
proinflammatory cytokines and chemokines
Associated with Th17 responses; GM-CSF secretion
of immune cells (CD4+ T cells, CD8+ T cells, NK cells,
and B cells) significantly higher

Lung ARDS (4, 6, 9, 36,
70, 77–79, 96,

110–112)
Liver Increased acute-phase protein
Frontiers in Im
munology | www.front
iersin.org 9
 April 2022 | Volume 13
 | Article 832394

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hsu et al. Cytokines and Chemokines in COVID 19 Infections
CCL2/MCP-1
CCL2, also known as monocyte chemoattractant protein-1
(MCP-1), is produced by many cell types, including
endothelial cells, fibroblasts, epithelial cells, smooth muscle
cells, mesangial cells, astrocytes, monocytes, and microglia
(277, 278, 285–287), serving as a regulator of monocyte/
macrophage migration and infiltration. The migration of
monocytes through the bloodstream to the vascular
endothelium plays a key role in the response to inflammation
(286, 288, 289). Both CCL2 and its receptor, CCR2, are known to
be activated and involved in several types of inflammatory
diseases, such as Alzheimer’s disease, parkinsonism, stroke,
ischemic heart disease, arthritis, and COVID-19 (286, 289).
With COVID-19, the increased CCL2 is not only associated
with respiratory failure but also with extrapulmonary
manifestations. The increased CCL2, along with IL-1, IL-6,
TNF-a, MMP-8, and ICAM-1, can increase the permeability of
the barrier between blood and cerebrospinal fluid, increasing the
inflammatory infiltration (290–292). In combination with other
inflammatory cytokines, elevated CCL2 can also increase the
severity of neurodegeneration, cognitive dysfunction, and stroke
(293). Moreover, increased CCL2 levels were reported to be
correlated with the development of acute kidney injury in
critically ill COVID-19 patients (294), and patients with higher
CCL2 expression tend to have detrimental disease progression.

CX3CL1
CX3CL1, also known as fractalkine (FKN), is highly expressed by
activated endothelial cells and is known to be involved in
endothelial dysfunction, contributing to the development of
atherosclerosis and other cardiovascular events (295–297).
Additionally, CX3CL1 serves as an infiltration signal that
mediates mononuclear phagocyte recruitment to the lungs
(261). In COVID-19 patients, increased CX3CL1 is associated
with disease severity (298), and patients with neurological
syndrome (NS) presented with higher CX3CL1 levels than
non-NS patients (299). Studies have shown that CX3CL1
might promote neurological vascular damage and thrombosis
during SARS-CoV-2 infection. Spike protein-mediated
endocytosis reduces AEC2 in the cell membrane, upregulating
the expression of CX3CL1 in the endothelium (300). Increased
CX3CL1 can promote a pro-thrombotic environment and
enhance immune cell recruitment, leading to more severe
COVID-19 and mortality (301). Thus, CX3CL1 may serve as a
predictive marker for identifying COVID-19 patients who are at
risk of developing thrombotic complications and require more
aggressive anti-thrombotic management (301).
CLINICAL SYMPTOMS

The incubation period of COVID-19 ranges between 1 and 14
days. However, the period is predominantly 3-7 days (302–304).
Immune response to SARS-CoV-2 involves both innate and
adaptive immunity (3), and although differentiated
lymphocytes can take days or weeks to become functional, they
Frontiers in Immunology | www.frontiersin.org 10
have an important role in controlling and shaping host immune
responses as they provide multiple immune-related functions
and long-lasting protection. In particular, while T cells can either
kill an infected cell via cytotoxic CD8+ T cells or balance immune
response with the help of CD4+ helper T cells, B cells produce
antibodies against pathogenic antigens, which is also known as
humoral immunity (305). Both innate and adaptive immune
cells are critical for eliminating SARS-CoV-2 infection as they
orchestrate the direct clearance and eradication of pathogens and
contribute to the generation of long-term adaptive immune
responses (10, 80, 306). The hyperactivity of the immune
system stimulates the production of several cytokines,
including IL-6, IL-8, IL-1b, IL-2, IL-4, IL-7, IL-10, IFN-g,
TNF-a, GM-CSF, CCL2, CCL3, CCL5, and CXCL10 (100) (as
described in the previous sections). Cytokine- or chemokine-
specific clinical symptoms are as follows: elevated IFN-g causes
fever, headaches, chills, fatigue, malaise, cardiomyopathy,
vascular leakage, lung injury, and acute-phase protein
production; increased TNF-a causes flu-like symptoms (69,
106); and IL-6 overexpression induces cardiomyopathy and
vascular leakage, and it activates the complement pathway,
coagulation cascade, diffuse intravascular coagulation, and the
cytokine storm (69, 82, 84, 85).

COVID-19 initially presents with “flu”-like symptoms
include fever, dry cough, myalgia, fatigue, dyspnea, and
anorexia. Atypical presentations are diarrhea and nausea,
which can progress to life-threatening systemic inflammation
like the CRS (33, 303, 304, 307, 308), which can cause multiple
lung immunopathologies, including acute lung injury (ALI),
systemic inflammatory response syndrome (SIRS), and ARDS
(65, 129). Further, accumulating evidence demonstrates that
COVID-19 has an extrapulmonary involvement; this includes
the neurological, olfactory, cardiovascular, digestive,
hepatobiliary, renal, endocrinological, and dermatological
systems, with more than one-third of the patients exhibiting a
wide range of neurological symptoms involving the central and/
or peripheral nervous systems (10, 308–311). Moreover, in
patients with severe COVID-19, cardiovascular complications
are accompanied by the accumulation of inflammatory
mononuclear cells (e.g., neutrophils) in infected vascular
endothelial cells (308). Severe cases also show impaired hepatic
function and a higher rate of acute kidney injury (AKI). In
patients with prolonged illness, gastrointestinal symptoms also
frequently occur. Endocrinological manifestations include
exacerbating hyperglycemia, euglycemic ketosis, and diabetic
ketoacidosis (312), and thrombosis and visceral embolization
can trigger tissue hypoxia and ischemia in patients with COVID-
19 (5, 313). Changes in SARS-CoV-2 infection, including
pulmonary and extrapulmonary manifestations, are described
in the following sections and summarized in Figure 2.

Cytokine Storm Syndrome
The terms “cytokine storm” and “CRS” refer to the
overproduction of inflammatory cytokines by hyperactivated
immune cells. This occurs because of immune dysregulation of
varying etiology, and it can cause systemic inflammatory
syndromes and life-threatening multiorgan dysfunction (79).
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FIGURE 2 | Multiple organ failure in SARS-CoV-2: pulmonary and extrapulmonary manifestations. Pulmonary manifestations: (A) Alveolar cells are infected b
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During a cytokine storm, elevated levels of circulatory cytokine
drive a positive feedback loop in immune cells. This leads to the
continuous recruitment of these cells to the sites of
inflammation, causing an exponential increase in both
inflammation and organ damage (66).

Cytokine storms are associated with various infectious and
noninfectious diseases (65), including cancer, autoimmune
conditions, and monogenic disorders (79). Despite the variable
initial drivers of a cytokine storm, its late-stage clinical
manifestations converge and often overlap. As a result, patients
exhibit hyperinflammation, coagulopathy, low platelet counts,
fatigue, anorexia, headache, rash, diarrhea, arthralgia, myalgia,
spontaneous hemorrhage, and neuropsychiatric symptoms.
These manifestations are directly caused by cytokine-induced
tissue damage, acute-phase physiological changes, or immune
cell-mediated responses (79). In addition, many patients develop
respiratory symptoms (cough and tachypnea), which can
progress to acute respiratory distress syndrome (ARDS) along
with hypoxemia that may require mechanical ventilation (314).
Fever, renal failure, acute liver injury or cholestasis, and
occasionally, stress-related or Takotsubo-like cardiomyopathy
are the characteristic manifestations of a severe cytokine
storm (315).

In COVID-19, the virus stimulates various infected cells,
including lung epithelial cells and alveolar macrophages, to release
cytokines and chemokines. The primary cytokines involved in
cytokine storms and CRS are ILs, IFNs, TNFs, CSFs, and the
chemokine family, among others (100). These, in turn, activate
macrophages, DCs, and other immune cells (66) to induce an
aggressive inflammatory response and the subsequent release of a
large number of proinflammatory cytokines to trigger a cytokine
storm (28, 33, 39, 316–318). After which, chemokines recruit
additional inflammatory cells, such as monocytes and phagocytes,
to the inflammation site resulting in a cascading amplification of
infection-induced inflammatory response (66). The abnormal and
uncontrolled cytokine storm has been observed in critically ill or
severe COVID-19 cases (68), and it triggers a systemic
inflammatory response, leading to lung immunopathology and
multiple organ failure (65, 66, 129, 319). In fact, the SARS-CoV-
2-induced cytokine storm is believed to be the cause of sepsis in 28%
of all fatal COVID-19 cases (320). Thus, targeting cytokines could
improve survival rates and reduce mortality (11). Any potential
treatments should include the direct elimination of coronaviruses,
prevention strategies (e.g., vaccine development), and counteracting
the imbalance and hyperactivity of the immune system.

Pulmonary Manifestations
Histopathological changes in COVID-19 occur primarily in the
lungs (304). Upon first contact with the respiratory mucosa, the
virus binds to the surface receptors of ACE2 and TMPRSS2 to
enter the alveolar cell (14); this event activates the renin-
angiotensin system (20, 21). In the first few days after
infection, innate immune cells [including macrophages, DCs,
and monocytes (Figure 2)] recognize viral pathogen-associated
molecular patterns (PAMPs) via PRRs (10, 15). The activated
ACE2-Ang II axis can trigger macrophage infiltration and induce
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the secretion of several cytokines, including IL-6, CCL2, VCAM-
1, and E-selectin, which induce endothelial dysfunction and,
subsequently, coagulation (20, 22–24, 65). Therefore, an increase
in plasma Ang II levels is considered a marker that correlates
with viral load and lung injury in COVID-19 cases (10, 66). IL-
1b can enhance inflammatory responses in the bronchi and
alveoli in patients with lung injury, and the levels of
inflammatory cytokines such as IL-1 and TNF are elevated in
the lungs of patients with COVID-19. The increased levels are
believed to represent a significant induction of hyaluronic acid-
synthase-2 (HAS2) in the CD31+ endothelium, EpCAM+

alveolar epithelial cells, and fibroblasts, which may lead to
bronchoconstriction (321).

An unbalanced immune response and elevated proinflammatory
cytokines contribute to the major complications of pulmonary
coronavirus infection, including sepsis, ARDS, acute lung injury
(ALI) (66, 71), SIRS (65), and PF (322, 323); these complications
result in respiratory failure and subsequent mortality (324). Nearly
15% of all COVID-19 patients and pneumonia develop ARDS, a
common consequence of the cytokine storm in the lung tissue and
in systemic circulation (325). In such patients, predominant
pulmonary pathologies in the lung tissue, which include low
blood oxygen levels, diffuse alveolar damage, alveolar edema, and
proteinaceous exudation, alveolar wall thickening, evident
pneumocyte desquamation, and hyaline membrane formation
(114, 311, 326), provide indicators for ARDS. Damaged alveolar
epithelial cells and endothelial cells, and extensive phlegm secretion
and exudation can trigger coagulation, hyperfibrinolysis, and small
blood vessel thrombosis. They can also inhibit lung ventilation
significantly (66), thereby increasing hypoxemia, hypotension and
shock, promoting pulmonary embolism, and further increasing the
severity of the disease (83, 327–330). Hence, ARDS-induced low
oxygen saturation and respiratory failure are major causes of
mortality in COVID-19 cases; they are the cause of death in 70%
of all fatal COVID-19 cases (328, 330).

The factors that drive severe lung pathology during infection
with highly pathogenic human coronaviruses are poorly
understood. Computed tomography images revealed that
COVID-19-infected lungs accumulate fluid-filled white patches
called “ground-glass opacities” (303); however, the nature of the
clear jelly remains to be determined. Potential mechanisms
include high rates of viral replication that could be responsible
for enhanced host cell cytolysis and the strong production of
inflammatory cytokines and chemokines by infected epithelial
cells and the delayed induction of antiviral IFN responses owing
to virus escape mechanisms such as the production of IFN
inhibitory proteins that perpetuate viral damage and lead to
the excessive accumulation of monocytes, macrophages, and
neutrophils (6, 302).

Susceptibility to SARS-CoV-2 infection is not age-dependent
(median age at infection is approximately 50 years). However,
evidence suggests that clinical severity differs with age (33, 71,
328, 331, 332). In general, compared with young people, children
are either asymptomatic or they suffer only from mild
pneumonia, whereas older men (>60 years old) with
comorbidities are more likely to require intensive treatment,
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develop severe respiratory disease, or even die (28, 304, 331, 332).
Moreover, men with COVID-19 tend to exhibit more severe
morbidity and mortality than women (321, 333), and meta-
analyses have shown that men with COVID-19 have threefold
higher odds of requiring hospitalization and 2.4-fold higher
mortality rate (321, 334).
Extrapulmonary Manifestations
Neurological Manifestations
Coronaviruses primarily target the human respiratory system.
However, COVID-19 infection has also been reported to trigger
neurological manifestations and has neuroinvasive capabilities
that permit its spread from the respiratory tract via the olfactory
bulb, causing inflammation and demyelination in the central
nervous system (CNS) (335, 336). Owing to the ACE2 receptors
in olfactory cilial cells, the virus could potentially reach the CSF
within seven days (325), while additional studies suggest that the
virus could enhance inflammatory cytokines, including TNF-a
and IL-6, leading to structural and metabolic damage in the CNS.
Moreover, the levels of IL-8, CCL2, CCL3, CCL4, CCL7, CCL12,
and CX3CL1 were higher in both the serum and CSF samples of
COVID-19 cases with neurological syndrome (NS) (299).

More recent studies demonstrate that the epithelial cells of the
blood-cerebrospinal fluid barrier (BCSFB) in the choroid plexus of
theventricles canact as a conduit for SARS-CoV-2 into theCNS(337,
338), leading to inflammation and disruption of the BCSFB integrity
(339). The vulnerability to the CNS can result in exposure to
complications such as neuroinflammation and encephalitis (340).
The inflammation further upregulates the expression of CCL2, IL-1,
IL-6, TNF-a, MMP-8, and ICAM-1, increasing the infiltration of
inflammatory immune cells, such as monocytes, and enhancing the
permeability of the BCSFB (290–292). In addition, CD4+ cells
secreting cytokine IL-6, along with mast cells secreting cytokines
andchemokines (including IL-1b, TNF-a,CCL2,CXCL10, andGM-
CSF)accelerateneurodegeneration, cognitivedysfunction, andstroke
(293, 326). As a result, approximately 36% of all patients with
COVID-19 have neurological manifestations (312).

Neurological symptoms, involving the central/peripheral
nervous system, have been predominantly reported in adults;
however, children also experience various neurological insults
owing to COVID-19 (341). For example, 28% of pediatric
patients in the United States experienced headaches (342), and
some developed febrile seizures (335, 343). In adults, neurological
manifestations range from mild symptoms, such as headache,
dizziness, anorexia, anosmia, myalgia/fatigue, and ageusia (33,
303, 328), to severe manifestations, including acute stroke (344,
345), confusion, or altered consciousness (343, 346), acute
inflammatory demyelinating polyneuropathy (Guillain-Barré
syndrome) (107, 347), meningoencephalitis, and acute
necrotizing encephalopathy of the brainstem and basal ganglia
(348, 349). While the cause and correlation of the neurological
manifestations of COVID-19 have not been appropriately
established, long-term effects on the nervous system deserve
further investigation (335). Similar to the respiratory and cardiac
manifestations of COVID-19, neurological complications present
differently on the basis of age and underlying comorbidities (341).
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Cardiovascular Manifestations
Cardiac manifestations have been reported in patients with no
clinical features of respiratory disease, and patients with preexisting
cardiac-related ailments, such as dyslipidemia, obesity, and
diabetes, carry a greater risk of developing severe COVID-19
(350). The severity and lethality of COVID-19-associated cardiac
dysfunction are attributed to viral-induced damage to the heart and
blood vessels (337). Infection with the SARS-CoV-2 virus directly
infects cardiomyocytes to damage the myocardium, and it induces
T cell activation. This further increases IL-1, IL-6, and TNF-a
secretions (338), and it contributes to COVID-19 post-infective
acute myocarditis. In addition, an inclusion can form in the
myocardium when SARS-CoV-2 particles are surrounded by pro-
inflammatory cells, such as neutrophils, macrophages, and
lymphocytes. The inflammatory cells release cytokines such as IL-
1b, TNF-a, and CCL2, which are noxious factors to the heart
contributing to hypoxia and shock (351). Subsequently, the
heightened metabolic rate elevates the demand for myocardial
oxygen, whereby hypoxia, respiratory distress, metabolic acidosis,
and fluid or electrolyte disturbances are triggered (351, 352). In
severe cases, activated neurohumoral systems may trigger cardiac
arrest and damage as well as even induce myocarditis, myocardial
infarction, and malignant arrhythmias (66, 83, 339, 340, 353–355).
Multiple retrospective reports have suggested that in China,
cardiovascular disease incidence ranges from 5% to 16%,
hypertension incidence ranges from 15% to 31%, and coronary
artery disease incidence is 11% (356, 357). Other countries have
reported even higher incidence rates of these comorbidities (356).

Renal Manifestations
Acute kidney injury (AKI) is also frequently observed inpatientswith
COVID-19, and its manifestations include hypotension,
microvascular damage and contraction, decreased renal perfusion,
and hemostasis, and related sepsis (13, 66). In the kidneys, SARS-
CoV-2 may infect ACE2-expressing cells, like proximal tubules and
podocytes, to accumulate Ang II and further promote an imbalanced
RAS. This may result in glomerular dysfunction, fibrosis,
vasoconstriction, and inflammation (358). Several studies also
illustrated the importance of cytokines, which can interact with
kidney-resident cells and induce endothelial and tubular
dysfunction. They include IL-6, IL-1b, IL-1RA, IL-7, IL-8, IL-9, IL-
10, fibroblast growth factor (FGF), GM-CSF, IFN-g, G-CSF,
CXCL10, CCL2, CCL3, PDGF, TNF-a, and VEGF (33, 89, 123,
359). Inparticular, elevated IL-6would cause renal endothelial cells to
secretepro-inflammatorychemokines likeCCL14andCCL2, leading
to kidney vascular permeability (360, 361). Moreover, IFNs could
cause the loss of podocytes and stimulate glomerulosclerosis to
promote AKI persistence (362). One autopsy report has indicated
that renal pathology in COVID-19 shows podocyte damage,
significant acute proximal tubule injury, and coronavirus particle
clusters in podocytes and renal tubular epithelial cells (363).

Hepatobiliary Manifestations
Liver damage in COVID-19 can be directly caused by the viral
infection of liver cells, and hepatic injury is, therefore, associated
with the degree of disease severity (364). Mechanisms causing
liver injury in patients with COVID-19 remain unclear; however,
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multiple theories have been postulated: (1) ACE2-mediated
direct viral infection of gastrointestinal epithelial cells to
dysregulate liver functions (351); (2) critical patient status and
immune-mediated injuries, such as cytokine storm or
pneumonia-associated hypoxia, or IL-6-mediated activation of
the complement system and consequent increase in vascular
permeability (364); and (3) drug hepatotoxicity (352).

As reported, given the higher ACE2 expression of
cholangiocytes as compared to the population of hepatocytes
(59.7% vs. 2.6%), SARS-CoV-2 uses ACE2 to gain entry in the
cells (351, 365). Cholangiocytes are correlated with liver physiology
and adaptive immune responsemechanisms. Thus, the impairment
of cholangiocyte functionwould result inhepatobiliary damage and
disrupt the barrier and bile-acid-transporting functions (366) to
further contribute to SARS-CoV-2-related liver injury (367).
Second, an exaggerated hyperinflammatory response from
significantly elevated C-reactive protein (CRP), LDH, ferritin, and
IL-6 levels contributes to liver injury or even develops into liver
failure in critically ill patients (364). After the entry of the virus,
pathogenic T cells are activated rapidly, producing GM-CSF, IL-6,
and IFN-g. GM-CSF further induces CD14+CD16+ inflammatory
monocytes to produce increased IL-6 (368, 369). This could activate
more macrophages and contribute to an inflammatory storm (251,
368, 369). This immune-mediated injury, accompanied by elevated
concentrations of IL-1, IL-2, IL-10, and IFNg, would lead to
systemic inflammatory response syndrome (SIRS) (368, 369). As
for drug toxicity, it is possible that impairment to the liver is caused
by drug hepatotoxicity. This might explain the large variations
observed across different cohorts (370).

Multiple reports have indicated that some COVID-19
patients have an abnormal liver function; e.g., the American
College of Gastroenterology reported that approximately 20%-
30% of patients had elevated liver enzymes, and another study
from China suggested that 50.7% of SARS-CoV-2-infected
patients had liver abnormalities (371). Of note, elevated liver
function results were reported to be associated with moderate-
high degree fever and lower T cell function (both CD4+ and
CD8+ T cells) (371), and patients with preexisting liver disease
(such as hepatitis B infection) carry a higher risk of developing
severe disease (372, 373).

Multisystem Inflammatory Syndrome in
Children (MIS-C)
Despite initial optimism with respect to children being spared the
worst effects ofCOVID-19, it is now clear that they can also develop
severe COVID-19 symptoms and a rare secondary inflammatory
syndrome: multisystem inflammatory syndrome in children (MIS-
C) (374). MIS-C was first identified in Northern Italy, followed by
the UK, and is described as a post-COVID-19 inflammatory
syndrome that is approximately 30-fold more common in the
COVID-19 cohort than in healthy children (375). MIS-C
symptoms range from mild, e.g., fever, rash, and mucocutaneous
inflammation, to severe, including vasculitis, cardiac dysfunction,
shock, and neurological involvement (376). This post-COVID-19
inflammatory syndrome was originally diagnosed as Kawasaki
disease; however, patients with MIS-C display more pronounced
lymphopenia, thrombocytopenia, anemia, and elevated serum
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IFN-g, IL-1b, IL-6, IL-10, and IL-17 levels (377, 378). However,
these effects are not as severe as those seen in severe cytokine storm
syndromes, and while increased IL-10 level is correlated with a
lower viral load (99), its presence, alongwith elevated TNF levels, is
the optimal marker for distinguishingMIS-C from severe COVID-
19 symptoms (379).

Similar to the neuroinvasive capabilities of SARS-CoV-2 and
its CNS sequelae observed in adults, children with MIS-C also
develop neurological phenomena along with respiratory
symptoms and multisystem inflammation (341). Moreover,
multiple studies have described neurological symptoms ranging
from mild (headache and altered mental status) (380–382) to
severe neurological complications, including seizure, coma,
encephalitis, demyelinating disorders, encephalopathy, aseptic
meningitis dysarthria, dysphagia, cerebellar ataxia, and
peripheral neuropathy; the latter leads to global proximal
muscle weakness and reduced reflexes (383).
DISCUSSIONS AND PERSPECTIVES

The present review describes significant cytokine and chemokine
secretions induced by innate and adaptive immune responses in
COVID-19 and virus-associated immunopathogenesis. Available
data from basic and clinical studies on critical cytokines and
chemokines have been presented in this review in addition to a
summary of pulmonary and extrapulmonary pathophysiological
features of cytokine release syndrome, consequent systemic immune
response to SARS-CoV-2, and potential immunotherapeutic
approaches. This review suggests that understanding the nature of
the COVID-19-induced cytokine/chemokine profile(s) and
pathophysiological features of correspondent immune response to
control excessive inflammatory response is as important as targeting
the virus itself as fatalities are primarily caused by abnormal and
exaggerated cytokine storms. Future research should focus on
identifying cytokine biomarkers to define the immune correlates of
protection and disease severity for the effective triage of patients.
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