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1 Laboratoire de Génie Civil et géo-Environnement, Univ. Lille, IMT Lille Douai, Univ. Artois, Yncrea Hauts-

de-France, ULR4515—LGCgE, Lille, France, 2 Univ. Lille, CNRS, UMR 8198 - EEP - Laboratoire Evolution

Ecologie Paléontologie F-59000 Lille, France, 3 Department of Immunobiology and Environment

Microbiology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University

of Gdansk, Gdansk, Poland, 4 Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical

Research, Jagiellonian University, Krakow, Poland, 5 Department of Evolutionary Immunology, Institute of

Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland

* Barbara.plytycz@uj.edu.pl

Abstract

The lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) have been used as model

organisms for studies on hybridization. Previously they have been identified by species spe-

cific sequences of the mitochondrial COI gene of maternal origin (‘a’ or ‘f’) and the nuclear

28S gene of maternal/paternal origin (‘A’ or ‘F’). In experimental crosses, these hermaphro-

ditic species produce progeny of genotypes Ea (aAA), Ef (fFF) and hybrids (aAF and fFA)

originating by self-fertilization or cross-fertilization. To facilitate studies on new aspects of

the breeding biology and hybridization of earthworms, polymorphic microsatellite markers

were developed based on 12 Ea and 12 Ef specimens and validated on DNA samples

extracted from 24 genotyped specimens (aAA, fFF, aAF and fFA) from three laboratory-

raised families and 10 of them were applied in the present study. The results indicate that

microsatellite markers are valuable tools for tracking interspecific gene flow between these

species.

Introduction

The uniformly reddish Eisenia andrei (Ea) and striped ‘tiger worms’ E. fetida (Ef) are widely

used in toxicology, ecotoxicology, ecology, environmental studies [1, 2] and in biomedicine as

a source of bioactive molecules [3, 4], all of which require accurate species identification. How-

ever the existence of hybrids was revealed by mixed patterns of electromorphs of esterase activ-

ity in laboratory mated specimens [5] and then relicts of past hybridization between Ea and Ef

were recognized in natural populations from Scandinavia [6]. Asymmetrical hybridization has

been experimentally proven in the progeny of laboratory-paired Ea and Ef virgin specimens

delimited by species-specific sequences of the mitochondrial COI gene of maternal origin and
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the 28s rRNA gene of maternal/paternal origin [7, 8]. The first generation offspring of these

hermaphroditic species included self-fertilized Ea and Ef specimens and fertile hybrids derived

from Ea ova fertilized by Ef spermatozoa, while sterile hybrids from Ef ova fertilized by Ea

spermatozoa appeared only among progeny of back-crossed Ea-derived hybrids with Ef paren-

tal specimens [7–10]. Although the reproductive capabilities of hybrids was gradually impaired

[9], interspecies gene flow was documented by intermediate pigmentation patterns and by the

presence of Ea-specific fluorophore not only in hybrids but also in a few Ef specimens [4, 8].

Novel species-specific genetic markers are needed for detailed studies on mechanisms of

hybridization and gene introgression in these convenient model species.

Microsatellites are highly polymorphic, very short nucleotide sequences inherited in a

codominant way and repeated many times in the nuclear genome [11] that can be used for

addressing questions concerning the mating systems, genetic diversity, and population struc-

ture of a diverse array of organisms [12]. Since next-generation sequencing (NGS) has become

more and more accessible, the identification and characterization of species-specific microsat-

ellites is currently faster and requires less effort.

Polymorphic microsatellite markers have been developed for several earthworm species,

including Aporrectodea longa [13], Aporrectodea icterica [14, 15], Allolobophora chlorotica [16,

17], Hormogaster elisae [18], Dendrobaena octaedra [11], Amynthas cortices [19], several Lum-
bricus sp. [12, 20–25], Drawida gisti [26], and Eisenia fetida [27], but not for E. andrei.

Thus, in response to the continuously growing need for new species-specific markers for

studies on hybridization, the aim of the present work was to develop polymorphic microsatel-

lite markers for E. fetida and E. andrei followed by their validation on DNA samples from

three families of earthworms genotyped during previous experiments. Our results indicate that

microsatellite markers are valuable tools for tracking interspecific gene flow.

Materials and methods

Earthworms

Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) originally derived from labora-

tory stocks at the University in Lille (France) were cultured for a decade in the laboratories of

the Institute of Zoology and Biomedical Research of the Jagiellonian University (Krakow,

Poland), and in parallel for the last five years in the College of Natural Sciences, University of

Rzeszów [7, 9, 10, 28, 29]. For several years they were used as convenient models for studies of

hybridization of these simultaneous hermaphrodites by genotyping them by species-specific

sequences of mitochondrial COI gene (‘a’ for Ea and ‘f’ for Ef) and diploid nuclear sequences

of 28s rRNA gene of maternal/paternal origin (‘A’ for Ea and ‘F’ for Ef) as aAA, fFF and aAF

or fFA interspecific hybrids [7–10]. Every genotyped specimen from these experiments was

marked by the genetic symbols followed by a unique numerical code and all sequences have

been deposited in GeneBank [7, 9, 10, 28] while ethanol-fixed posterior segments were pre-

served for further use.

Twelve adult specimens of each species, Ea and Ef, derived from Lille, Krakow and Rzeszow

laboratory cultures were chosen to create two separate pools of DNA for microsatellite library

preparation. Then another 15 specimens per species were used to establish numbers of alleles of

potential microsatellite markers. Finally DNA samples from ethanol-fixed posterior segments of

24 earthworms from previous laboratory studies on hybridization [7, 9] were used for a pilot

application of microsatellite markers in tracking interspecific gene flow between Ea and Ef.
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DNA extraction, enrichment and microsatellite library construction

Genomic DNA was extracted from supravitally amputated tail tips (approx. 50 mg of tissue).

Homogenisation was performed by freezing the tail in liquid nitrogen, followed by mechanical

homogenisation with a mortar. Afterwards, the genomic DNA was extracted with Universal

DNA/RNA/Protein kit (Eurx, Poland), following the manufacturer’s instructions. The quality

and quantity of the extracted DNA were checked on the SPECTROstar Nano spectrometer

(BMG LABTECH, Germany). Prior to the NGS sequencing, the quality and quantity of

extracted DNA were rechecked using a 2100 Bioanalyzer (Agilent Technologies, USA). 100 ng

of DNA from each of 12 specimens per species was used to prepare two pools of DNA (one for

Ea and one for Ef). The samples were then sent to the GenoScreen company (Lille, France),

which prepared a microsatellite-enriched genomic library as described previously [30]. Both

pools of DNA were sequenced with Illumina MiSeq flowcell v2 2x250 bp paired-end sequenc-

ing kit. Total DNA was mechanically fragmented, and enrichment was performed with probes

containing 8 microsatellite motifs: TC TG, ACG, AGG, AAC, AAG, ACTC, ACAT. The

QDD v.3 software [31] was used for microsatellite identification from the raw sequences,

including all bioinformatics steps from adapter removal from raw sequences, detection of

microsatellites, detection of redundancy/possible mobile element association, selection of

sequences with target microsatellites and PCR primer design using BLAST (https://blast.ncbi.

nlm.nih.gov/Blast.cgi), ClustalW [32] and Primer3 [33] programs. Only perfect di/tri/tetra

motifs were kept, with A and B designs (according to QDD internal parameters: regions that

do not have multiple microsatellites, nanosatellite, and homopolymers), and a minimum of 20

bp between the primer and the microsatellite.

PCR and data analysis

The PCR reactions were performed in a 10 μL reaction volume (~100 ng genomic DNA, 1X

PCR buffer, 6 pmol dNTPs, 37.5 pmol MgCl2, 0.5 U Taq DNA polymerase, 5 pmol of the for-

ward primer, and 5 pmol of the reverse primer), performed in a Veriti thermal cycler (Applied

Biosystems). The thermal profile of the amplification for all markers had an initial denatur-

ation at 95˚C for 10 min, followed by 40 cycles of: 30 s at 95˚C, 30 s at 55˚C and 60 s at 72˚C,

with a final extension of 10 min at 72˚C. Amplicons were separated using automated high-res-

olution capillary electrophoresis (QIAxcel1—Pure Excellence, Qiagen, Germany).

Alleles were sized using a 50–350 bp standard (LI-COR Biosciences), and genotypes were

scored using SAGA v.3.3 software (LI-COR Biosciences). The species-specific primer sets were

also checked for cross-species amplification under the same conditions as described above.

Results and discussion

Development of microsatellite markers for Ea and Ef

Genetic loci containing simple sequence repeats (SSRs, i.e. microsatellites) can be used as pow-

erful markers in population genetics primarily because they are found throughout the nuclear

genome, generally have several alleles per locus, and are inherited in a codominant way [11].

A total of 1 709 140 reads obtained for Ef were assembled into 918733 contigs, whereas 2

094 624 reads obtained for Ea were assembled into 1 140 654 contigs. Overall, 19 758 pairs of

primers were designed for Ef and 23 255 for Ea. After that, 3 777 primer pairs for Ef and 4 258

primer pairs for Ea were validated with QDD v3 software. Primer sequence, product size and

the sequence of each product are available elsewhere [34].

Out of those, 47 primer pairs per each species, characterized by the largest repeat number,

were selected for amplification and polymorphism tests. In samples of Ef, 36 out of 47 loci
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amplified reliably and showed evidence of polymorphism. In samples of Ea, 30 out of 47 loci

amplified reliably and showed evidence of polymorphism. These markers were initially tested

using 15 Ea and 15 Ef individuals to assess the number of alleles for each marker. Ten micro-

satellite markers demonstrating the largest variability (5 for Ea and 5 for Ef) were used in the

present study because of their potential usefulness in the discrimination between Ea, Ef and

hybrid specimens. Their primer sequences, repeat motif, number of alleles, and GenBank

accession numbers for sequences are shown in Table 1.

Efficacy of microsatellites for investigation of hybridization and gene flow

Offspring of Ea+Ef pair. Eisenia sp. earthworms are simultaneous hermaphrodites, thus

each specimen produces ova and spermatozoa. In contrast to Ea and Ef from Spain, capable of

uniparental reproduction by self-fertilization [35], these species from French, Polish, and Hun-

garian laboratory stocks are unable to self-fertilize when cultured in isolation but the presence

of conspecific or closely related partner (like Ea, Ef and their hybrids) induces copulatory

behavior [10]. As described earlier [7], copulating partners exchange sperm that moves from

the male pores along the external body grooves to the partner’s spermatheca; at this stage, sper-

matozoa from a single individual may be admixed with the partner’s spermatozoa and thus

both auto- and allo-spermatozoa may be stored in spermathecas of copulating partners. Earth-

worms separate after copulation and after several days the clitellum of each individual pro-

duces a mucous tube forming an oval capsule (cocoon) harvesting the individual’s ova and

both auto- and allo-spermatozoa, thus ova within the same cocoon may be either self-fertilized

or cross-fertilized. Thus, the progeny of interspecific Ea+Ef pairs is expected to have both a

new generation of pure Ea or Ef specimens and interspecific hybrids derived either from Ea

ova fertilized by Ef spermatozoa (aAF), and Ef ova fertilized by Ea spermatozoa (fFA) (Fig 1A).

Contrary to such expectations, over a 5-year experiment using laboratory pairings of virgin Ea

Table 1. Characterization of microsatellite loci isolated from E. andrei (a) and E. fetida (f) used in present paper.

marker Primer sequence Repeat

motif

Size range

(bp)

Dye NA Allele size

range

Most frequent

allele size

GenBank Accession

number

a1 ACCATTGAGTGTAAATACATTACTCCA
AGCGCTTATGCAGTGTATTTAGT

(AAT)17 173 6FAM 6 143–180 180 MW521367

a3 AGCAGAAGATTTGAGGCGGT
CTGAGACATCTGCCAGCGAA

(AATG)15 177 VIC 3 143–184 161 MW521370

a5 CACCACGAGTACCAGCTGAA
ACGTCATTGGGTTTAATTATCACCT

(ATC)12 171 PET 5 169–193 169 MW521372

a6 CGCTTTGTTCCAGAAGCTGC
GCACAGGATATGCTTCAATTGCT

(AATG)11 200 PET 4 193–209 197 MW521373

a7 TTTAGAACAGAAATTGAAAGACCGA
GCTGGCTTACAATTGCACCA

(AC)11 147 VIC 4 148–166 166 MW521374

f3 CTAATAGTGTGATGTGGCTGCC
CAACATCCACAACCCATCTGT

(AATC)16 240 NED 8 203–284 203 MW521357

f4 TCCCTCTGCGTTTCTGACAG CCCAAGCTGGCATGCAAT (ATC)16 187 6FAM 4 164–194 194 MW521358

f6 ACTGTATCCGTGCATGGCAT
CCAATAATCAATTTCTAGAGGTTCCA

(AC)15 185 NED 4 178–202 178 MW521360

f7 ACATCTACGTCACTAGCCCTCT
ACTGTTGAACTGAATGCGCTG

(ATC)12 291 NED 3 265–297 297 MW521362

f9 TGATGACAATAATATTGATGGTGACTT
AACACTCGAAGAAGGTTAAGCAC

(AGG)11 140 6FAM 5 124–162 124 MW521365

[Repeat motif–repeat motif with a number of repeats, NA—number of alleles in analyzed population].

https://doi.org/10.1371/journal.pone.0262493.t001
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Fig 1. Scheme of mating of EaxEf earthworm pairs. (A) The germline cells of parental earthworms aAA and fFF,

their gametes (‘aA’ or ‘fF’ ova and ‘A’ or ‘F’ spermatozoa) and self-fertilization or cross-fertilization resulting in zygotes

of the pure Ea (aAA) and Ef (fFF) species or their Ea-derived aAF or Ef-derived fFA hybrids (the latter were lacking in

our experiments); (B) Offspring of aAA+fFF earthworms from previous experiments; each earthworm marked by

genotype followed by unique numerical code [7]; (C) Data concerning selected microsatellite markers (numbers

indicate allele sizes) in particular members of this family; (D) Examples of visualization of a6 microsatellite marker

sizes of the parental specimens aAA25 and fFF26 and hybrid aAF46. The Y-axis shows fluorescence intensity of PCR

products while the X-axis shows the size of particular alleles.

https://doi.org/10.1371/journal.pone.0262493.g001
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and Ef partners, first generation offspring included relatively common aAA, fFF, and aAF

specimens, whereas fFA hybrids were not detected [7–10], as exemplified in Fig 1B.

In this paper, ethanol-fixed samples from the parental specimens aAA25+fFF26 and some

of their offspring from experiments performed in 2018 [7] were analyzed using seven micro-

satellite markers, i.e. a3, a5, a6, a7,f3, f7, f9 (Fig 1C) visualized on an example of the marker a6

on Fig 1D). The results were fully concordant with data obtained using the COI/28S markers,

showing that three aAA offspring share all microsatellites with the aAA25 parent, one fFF off-

spring shares alleles with the fFF26 parent, and two offspring specimens (aAF46 and aAF57/

90) are interspecific hybrids possessing one nuclear allele from Ea and the second from Ef. It is

worth noting that microsatellite analysis cannot clearly determine whether the hybrids were

derived from Ea or Ef ova, thus COI gene was necessary to discriminate this.

Offspring of back-cross aAF+aAA. Each aAF hybrid (numbered as 1 in Fig 2A) produces

two kinds of ova, ‘aA’ and ‘aF’ and two kinds of spermatozoa, ‘A’, and ‘F’. Thus these hybrids

may give four types of progeny: aAA, aAF, aFA, and aFF by self-fertilization (numbered 2–5 in

Fig 2A). The aAA partner (number 8) produces only ‘aA’ ova and ‘A’ spermatozoa, thus may

give the aAA offspring by self-fertilization (number 9). However, neither aAF nor aAA speci-

mens reproduced in isolation but initiated production of fertile cocoons only in the presence

of a closely related partner [10]. Cross-fertilized ‘aA’ ova of the Ea partner give pure Ea speci-

mens (number 11) and aAF hybrid (number 10) (Fig 2A). Cross-fertilized ‘aA’ ova of the

hybrid give aAA specimens (number 6), while ‘aF’ ova give aFA hybrids (number 7). However,

‘aF’ ova may be incompatible due to cyto-nuclear mismatch, and their vitality might be

strongly impaired [36–38], thus mitonuclearly incompatible ova and potentially incompatible

resulting fertilized cells are shadowed (numbers 4, 5, and 7 on Fig 2A).

The offspring of aAFap274/361+aAA362 pair from previous experiments [9] encompassed

both ‘pure’ Ea specimens and the next generation of Ea-derived hybrids (Fig 2B). Each of the

pure specimens may be derived by four different genotype combinations (numbers 2; 6; 9; 11),

while each hybrid by another four different combinations (numbers 3; 4; 7; 10) (Fig 2A). The

microsatellites applied here have helped reduce the numbers of such possibilities (Fig 2C).

Microsatellite marker a1 is heterozygous in parental aAF274/361 hybrid (with alleles 150 and

163) while a1 is homozygous in aAA362 parent (allele 144 only). All investigated hybrid off-

spring (aAF379, aAF347 and aAF444) are heterozygotes with allele 144 inherited from Ea and

163 from the hybrid. This combination of alleles fits the examples numbered as 10 and 7 (the

latter less probable) in Fig 2A.

Among Ea offspring of the investigated pair, only aAA390 specimen originated by self-fertili-

zation of the Ea parent as they share allele 144 of marker a1 (9 from Fig 2A). The two remaining

aAA391 and aAA443 specimens inherited allele 144 from the Ea parent and allele 150 from the

hybrid, as illustrated by 11 in Fig 2A. However it cannot be excluded that allele 150 was inher-

ited from the hybrid and allele 144 from the Ea parent, as illustrated by 6 in Fig 2A.

The same family was analyzed by the marker f4 (Fig 2C) that is heterozygous in both

parents, with allele 198 being shared by both of them, and the results were even less discrimi-

natory as the origin of all Ea offspring and aAF444 hybrid might be explained by the four pos-

sibilities. However, the possible combinations revealed by f4 marker were also shared with the

more discriminatory marker a1, thus the latter were considered as most probable for this fam-

ily (last green column of Fig 2C). Thus the marker a1 was much more valuable for investiga-

tion of this particular family than the f4 marker, but further markers are needed to precisely

discriminate the origins of some particular earthworms, including discerning between possi-

bilities 6 or 11.

The presence of microsatellite marker (e.g. allele 150 of a1 marker) both in the hybrid par-

ent (1) and in the aAA genotype numbered as 11 originating from Ea-derived ova fertilized by
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hybrid-derived spermatozoa is indicative of gene transfer from Ef to Ea. This might be exem-

plified by hypothetically polymorphic genes responsible for Ef-specific striped body pigmenta-

tion pattern of the ‘tiger’ fFF grandparent mated with aAA earthworm, through the aAF

parents (1) to some Ef-like earthworms (11) with mixed pigmentation pattern but genotyped

as aAA by species-specific sequences of COI/28S genes [7, 8]

Fig 2. Considerations on the results of mating the aAF hybrid with aAA parental specimen. (A) Back-cross of aAF

+aAA pair; symbols as on Fig 1. (B) Offspring of pair aAF+aAA (the example taken from [9]. (C) Allele sizes of a1 and

f4 microsatellite markers in particular specimens from the above family and putative identification with genotypes

1–11 in Fig 2A (in yellow for particular markers and in green as most probable).

https://doi.org/10.1371/journal.pone.0262493.g002
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Offspring of back-cross aAF+fFF. Among offspring of back-cross aAF+fFF (Fig 3A),

cross-fertilized ova of aAF hybrids may give a new generation of aAF hybrids (6) and (unique)

mitonuclearly-incompatible aFF specimens (number 7) very rare in our previous experiments

[9] while cross-fertilized ‘fF’ ova of the fFF specimens can give fFA hybrids fertilized by ‘A’

spermatozoa from the aAF parent (number 10) and fFF specimens (number 11) fertilized by

hybrid’s ‘F’ spermatozoa (Fig 3A). Such family is exemplified here by progeny of aAF48+fFF47

Fig 3. Considerations on the results of mating the aAF hybrid with fFF parental specimen. (A) Back-cross of aAF

+fFF pair; symbols as on Fig 1. (B) Offspring of aAF+fFF pair (the example from [7]. (C) Allele sizes of a5 and f6

microsatellite markers in particular specimens from the above family and putative identification with genotypes

numbered 1–11 on Fig 3A (in yellow for particular markers and in green as most probable).

https://doi.org/10.1371/journal.pone.0262493.g003
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specimens from previous experiments [7] that gave two Ef-derived hybrids fFA and four fFF

specimens (Fig 3B) among offspring. Analysis of distribution of a5 and f6 alleles was fully con-

sistent with the only possibility of the origin of Ef-derived fFA hybrids, i.e. cross-fertilization

of ‘fF ova by aAF-derived ‘A’ spermatozoa (10) while new generation of aAF hybrids (6) was

absent among progeny of this family (but they were present among offspring of other back-

crossed aAF+fFF pairs from previous studies [9]).

There are two possibilities of the origin of fFF specimens among offspring of an aAF+fFF

pair, i.e. either self-fertilization (9) or cross-fertilization of ‘fF’ ova by hybrid-derived ‘F’ sper-

matozoa (11). The a5 microsatellite marker, being heterozygous in both parental species, has

shown unequivocally that fFF144 and fFF161 originated by self-fertilization (9) while fFF158

and fFF160 came from cross-fertilization of ‘fF’ from the fFF parent by hybrid-derived ‘F’ sper-

matozoa (11). In the case of the heterozygous f6 marker, allele 177 was present in all members

of this family thus more genotypic combinations were possible, but only those shared by both

markers (a5 and f6) are considered a likely explanation of the origin of fFF offspring (last col-

umn of Fig 3C).

These results might shed more light on the transfer of putative genes responsible for fluo-

rescence of coelomic fluid, being a fingerprint of aAA specimens [39]. Fluorescence is present

in most aAF hybrids and in further backcrosses with fFF specimens (devoid of fluorescence), it

seems to be acquired by rare fFA and fFF earthworms [4, 8], a phenomenon worthy of addi-

tional investigation.

Microsatellite markers and earthworm reproduction

Application of microsatellite markers to laboratory-paired virgin aAA+fFF, aAF+aAA and

aAF+fFF earthworms and their progeny have fully confirmed previously postulated genotypic

combinations of their offspring [7–10]. Moreover, we demonstrate that self-fertilization is not

the only pathway for the production of a new generation of pure aAA and fFF specimens,

since cross-fertilization of parental specimens significantly contributes to this process. We

show that cross-fertilization resulted in interspecific gene flow from pure-species grandparents

(P generation) through interspecific fertile aAF hybrids (F1 generation) to ‘pure’ aAA or FF

specimens (F2 generation), inheriting the grandparents’ markers. This genotyping strategy

might provide a means for linking some of microsatellite markers with physiologically impor-

tant genes and, i. e. help to explain previously described inheritance patterns of body pigmen-

tation or production of some fluorescent markers [4, 7, 8]. On the other hand, Novo et al. [18]

revealed that microsatellite markers are a valuable tool for studies on paternity of the earth-

worm Hormogaster elisae after copulation with three successive partners. Microsatellite mark-

ers applied to field-sampled earthworms from various localities might reveal signs of past

hybridization and thus shed more light on the evolution of these species [6, 16].

In conclusion, the novel polymorphic microsatellite markers for E. fetida and E. andrei are

potentially useful for the analysis of genetic diversity, population structure and dispersal

including past and present hybridization events in natural populations and are valuable in lab-

oratory studies on the controlled reproduction and gene flow between these two hermaphro-

ditic species. E. fetida and E. andrei may be considered as potential ring species [40] attractive

for studies on speciation within the Eisenia complex [41, 42] due to their capacity for hybrid-

ization, which is increasingly being appreciated as a potent driving force of evolution [e.g. 43].
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