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Abstract: Incorporating nanofillers into elastomers leads to composites with an enormous potential
regarding their properties. Unfortunately, nanofillers tend to form agglomerates inhibiting adequate
filler dispersion. Therefore, different carbon nanotube (CNT) pretreatment methods were analyzed
in this study to enhance the filler dispersion in polydimethylsiloxane (PDMS)/CNT-composites.
By pre-dispersing CNTs in solvents an increase in electrical conductivity could be observed within
the sequence of tetrahydrofuran (THF) > acetone > chloroform. Optimization of the pre-dispersion
step results in an AC conductivity of 3.2 × 10−4 S/cm at 1 Hz and 0.5 wt.% of CNTs and the
electrical percolation threshold is decreased to 0.1 wt.% of CNTs. Optimum parameters imply
the use of an ultrasonic finger for 60 min in THF. However, solvent residues cause a softening
effect deteriorating the mechanical performance of these composites. Concerning the pretreatment
of CNTs by physical functionalization, the use of surfactants (sodium dodecylbenzenesulfonate
(SDBS) and polyoxyethylene lauryl ether (“Brij35”)) leads to no improvement, neither in electrical
conductivity nor in mechanical properties. Chemical functionalization enhances the compatibility
of PDMS and CNT but damages the carbon nanotubes due to the oxidation process so that the
improvement in conductivity and reinforcement is superimposed by the CNT damage even for mild
oxidation conditions.

Keywords: dispersion; filler–filler interactions; functionalization; polydimethylsiloxane; carbon nan-
otubes

1. Introduction

Elastomer-composites consist of a crosslinked rubber matrix and several additives
to reach the performance needs and to fulfill processing, technical, and economical re-
quirements. Filler particles in the nanoscale are incorporated to enhance the properties of
the composite like mechanical and dynamic-mechanical properties, electrical conductiv-
ity, or chemical resistance, for instance. Carbon nanotubes (CNTs) represent such a filler
type in the nanoscale which makes their application in elastomer compounds extremely
beneficial. CNTs consist of rolled up graphene sheets leading to a high specific surface
area and a high aspect ratio [1] implying improvements regarding the reinforcement of
elastomers. This has been proven successfully for several times [2–7]. In addition, CNTs
possess a high electrical conductivity in their pristine form due to their sp2-hybridized
structure [1,8]. By using multiwall carbon nanotubes (MWCNTs) in a polymeric matrix,
a conductivity level of up to 4000 S/cm can be attained [3]. Though, nanofillers exhibit
high particle–particle interactions due to van der Waals forces and therefore tend to form
agglomerates [9,10]. It is particularly challenging when incorporating CNTs into a poly-
mer matrix as the agglomeration behavior hinders the formation of a homogeneous filler
dispersion in the polymer matrix. To take benefit of the enormous potential of carbon
nanotubes it is inevitable to break up the agglomerates to disperse the carbon nanotubes
adequately and to offer a high contact surface area for optimal polymer–filler interactions.
Furthermore, adequate filler distribution and dispersion enable to reduce the filler amount
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which is favorable to decrease the density of composites and to lower the costs, especially
regarding potentially high reinforcing nano-fillers like CNTs.

To realize high filler dispersion, it is mandatory to optimize the processing step,
as applying well-balanced shear forces enables to break up agglomerates during the com-
pounding step already [11]. An additional agglomerate breakage can be achieved by separating
the carbon nanotubes not only during the processing step but prior to this. Therefore, the
particle–particle interactions have to be overcome which can be realized by a pre-dispersion
step where the CNTs are dispersed in a solvent before mixing, for instance. In addition, en-
hancing polymer–filler interactions to overcome filler–filler interactions and to improve the
bonding between the elastomer and the filler particles in consequence is another approach
in increasing the filler dispersion. This can be realized for example by functionalization
of the filler surface in order to change their surface polarity and to enhance compatibility.
There are several attempts on increasing CNT dispersion in elastomeric matrices concerning
compounding techniques, pre-dispersion, and functionalization reported in the literature
up to now, see for example [10–19]. Concerning the incorporation of CNTs into silicone rub-
ber, increased reinforcement and electrical and thermal conductivity are reported [20–22],
especially dealing with hybrid materials [23]. Pre-dispersion and functionalization meth-
ods are described as well [20,24]. Regarding polydimethylsiloxane (PDMS)-composites
filled with CNTs in particular, only minor studies have been made. These composites are of
special interest concerning their electrical conductivity, as electrically conductive elastomers
are used for shielding purposes, as strain sensors or electrodes [25–29]. The combination of
an insulating silicone matrix and CNTs as an electrically conductive filler leads to overall
conductivity of the material with simultaneous prevention of electrical arcs between differ-
ent components [21]. Dealing with PDMS/CNT-composites, high reinforcement values
and decreased electrical resistances are observed as well [20,28,30].

To overcome difficulties in mixing of low viscous PDMS with CNT a planetary mixing
strategy with optimized shear forces is used [11].

This study underlies the preparation of extremely soft and electrically conductive
elastomers to potentially be used as electrode material in medical applications [11]. The ap-
proach is to improve the dispersion of CNTs in PDMS by applying an additional pretreat-
ment step to overcome filler–filler interactions and to separate the carbon nanotubes before
the mixing process, already. This is realized by applying an appropriate pre-dispersion step
using different solvents and by modifying the CNT surface via functionalization. At this,
the pre-dispersion leads to a reduction of filler–filler interactions whereas the functionaliza-
tion enhances polymer–filler interactions due to polarity equalization and the application
of functional groups and therefore reduces filler–filler interactions in consequence.

2. Materials and Methods
2.1. Materials

A two-component, addition cured polydimethylsiloxane (Sylgard 184, Dow Corning
Inc., Wiesbaden, Germany) was used as silicone rubber, where a ratio of 10:1 of base to cur-
ing agent is recommended. The electrically conductive filler particles were multiwall CNTs
(Nanocyl7000, NanocylTM, Sambreville, Belgium) with a specific surface of 270 m2/g [6].

For realizing the pre-dispersion step, tetrahydrofuran (THF), acetone, and chloro-
form (CHCl3) were chosen as solvents. Oleic acid, sodium dodecylbenzenesulfonate
(SDBS), and polyoxyethylene lauryl ether (“Brij35”) were used for physical functional-
ization. Chemical functionalization was realized based on different concepts which are
described in Table 1 in detail.

2.2. Pretreatment and Compounding

Ultrasonic treatment was performed using an ultrasonic bath RK 255 H (Co. Ban-
delin Sonorex, Berlin, Germany) and an ultrasonic finger UP200S (Co. Hielscher, Teltow,
Germany) with a mode of 0.5, an amplitude of 80%, and a power density of 300 W/cm2.
The ultrasonic lengths were varied throughout the experiments in between 30 and 120 min.
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Table 1. Applied oxidation, reduction, and functionalization steps in detail.

Name Chemicals Temperature (◦C) Duration (min) Reference

Ox 1 220 mmol concentrated H2SO4, 3 mmol NaNO3,
9.5 mmol KMnO4 (97%) 80 20 Pazat [31]

Ox 2 0.1 M KMnO4−solution 75 180 Malikov et al. [32]

Ox 3 0.5 M H2SO4−solution, 0.47 mmol KMnO4 (97%) 130 240 Wepasnick et al. [33]

Ox 4 9 M H2SO4−solution, 1.3 mmol KMnO4 (97%) 25 360 Araújo et al. [34]

Red no. 0.28 mmol DIBAL-H, toluene 25 240 Vast et al. [35]

fCNT no. 0.33 mmol Et3N, 0.01 M solution of
7-octenyl-trichlorosilane in toluene (N2-Inertgas) 25 1440 Vast et al. [35]

For the pre-dispersion step CNTs were sonicated in 500 mL of solvent, concentrated
in a rotary evaporator, and added to the PDMS base afterwards. Physical functionalization
was realized performing the sonication by adding oleic acid or surfactants (SDBS, “Brij35”)
to 250 mL THF or ethanol. To enhance the evaporation process, aqueous solvent mix-
tures of THF/H2O at a ratio of 5:1 were used. Chemical functionalization was performed
using the reaction conditions listed in Table 1 and the cited literature therein. The oxida-
tion and reduction processes were carried out in a three-necked flask whereas the final
functionalization proceeded in a polypropylene flask as it is inert against trichlorosilane.

For the preparation of the compounds a twin tool planetary mixer (LPV 1A40, PC
Laborsystem, Magden, Switzerland) was used as the viscosity of PDMS contradicts the use
of conventional internal mixers. An integrated bell jar offers the possibility to evaporate
the mixture (−1000 mbar) while simultaneously stirring. The mixing procedure was based
on [11] consisting of a 30 min degassing step and the compounding step for 10 min at
300 rpm. Solvent residues were evaporated for three hours using a heated silicon sleeve
(45 ◦C) after the compounding step. The subsequent homogenizing of the curing agent
(second silicon-component) was performed at a rotor speed of 150 rpm for 90 s. Finally, the
compound was evaporated for another 60 min.

The vulcanization was performed at 150 ◦C in a vacuum heating press (KV 234.00, J.
Wickert & Söhne, Landau, Germany) using a pressure of 280 bar for 14 min and monitored
by a rubber process analyzer (Monsanto RPA 2000, Columbia City, USA) at 150 ◦C.

2.3. Characterization

Dielectric spectroscopy (broadband analyzer BDS 40, Novocontrol GmbH, Montabaur,
Germany) was performed in a frequency range of 0.1 Hz to 10 MHz at room temperature
on crosslinked cylinder samples (Ø = 20 mm, d = 2 mm). To ensure contact, the samples
were coated with gold on both sides (Polaron SC7640, Thermo VG Scientific, Germany).

Tensile tests were carried out on S2 specimen using a universal testing device (Zwick
1445, Co. Zwick Roell GmbH & Co. KG, Ulm, Germany) with 0.5 N pre-load and 200 mm/min
tensile speed. The illustrated values correspond to an average of 5–7 measurements each,
using median curves for further analyses.

Shore A hardness was estimated on a Zwick digitest at room temperature on samples
with 6 mm of thickness. The values correspond to mean values of five measurements.

The transmission electron microscopic images (TEM) were taken using a LIBRA
120 microscope (Co. Carl Zeiss AG, Oberkochen, Germany) with an acceleration voltage of
120 kV. Thin sections of the material were cut using a cryo ultramicrotome at a temperature
of −140 ◦C (diamond knife, diatome 35◦) and placed on a 600 mesh copper grid.

Thermal gravimetric analyses (TGA) on functionalized samples were performed on
a TA-Instruments TGA 2950CE-Hi-Res (New Castle, DE, USA) in a temperature range of
25–950 ◦C using nitrogen as purging gas to prevent further oxidation. Samples were heated
for 24 h at 150 ◦C to evaporate potential solvent residues.
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In order to investigate functional groups and surface defects of the CNTs, Raman-
spectra (Bruker Senterra Raman Microscope, Billerica, MA, USA) were recorded using the fol-
lowing parameters: Acq. 10 s× 5 loops, obj. 50×, λ = 532 nm, P = 2 mW, Ap: 50 × 1000 µm,
Res: 3–5 cm−1, Range: 50–1555 cm−1, T = 21.8 ◦C, H = 42%.

X-ray photoelectron spectroscopy measurements (XPS) were carried out on a spec-
trometer of Leybold-Heraeus GmbH (Köln, Germany). Samples were prepared on an
indium-specimen holder and evacuated for at least one hour. Analyses were performed
using Al-Kα-radiation (hv = 1486.6 eV, HV = 7 kV, I-Anode = 30 mA) under ultra-high
vacuum (10–8 mbar) at room temperature and light exclusion using a hemispheric analyzer
(Ø = 100 mm, PMV = 2.7 kV, ∆E = constant).

3. Results
3.1. Pre-Dispersion

As an appropriate pre-dispersion step enables to break up CNT agglomerates due
to the decrease of particle–particle interactions, different pre-dispersion approaches were
investigated in this study. After the pre-dispersion step, the subsequent compounding
was performed at optimum conditions according to [11] to combine the enhancement in
filler dispersion by pre-dispersion and by the agglomerate breakage arising from shear
forces. To realize the pre-dispersion step, ultrasonication was applied using different
techniques, conditions, and solvents. Figure 1 displays the electrical conductivity against
frequency depending on the ultrasonic terms in PDMS/CNT compounds with 0.5 wt.%
of CNTs. The composite filled with 0.5 wt.% CNT without pretreatment is insulating
itself. By implementing a pre-dispersion step, an enormous increase in conductivity can be
observed for all samples ending up in percolated systems. As the CNT amount remains
unchanged, this indicates decreased filler–filler interactions and improved agglomerate
break-up due to the pre-dispersion step in consequence. Concurrent to this, decreased
filler–filler interactions increase the contact area between the polymer and the filler which
increases CNT-PDMS bonding options and therefore polymer–filler interactions.

Polymers 2021, 13, x  4 of 20 
 

 

The transmission electron microscopic images (TEM) were taken using a LIBRA 120 
microscope (Co. Carl Zeiss AG, Oberkochen, Germany) with an acceleration voltage of 
120 kV. Thin sections of the material were cut using a cryo ultramicrotome at a temper-
ature of −140 °C (diamond knife, diatome 35°) and placed on a 600 mesh copper grid. 

Thermal gravimetric analyses (TGA) on functionalized samples were performed on 
a TA-Instruments TGA 2950CE-Hi-Res (New Castle, DE, USA) in a temperature range of 
25–950 °C using nitrogen as purging gas to prevent further oxidation. Samples were 
heated for 24 h at 150 °C to evaporate potential solvent residues. 

In order to investigate functional groups and surface defects of the CNTs, Ra-
man-spectra (Bruker Senterra Raman Microscope, Billerica, MA, USA) were recorded 
using the following parameters: Acq. 10 s × 5 loops, obj. 50×, λ = 532 nm, P = 2 mW, Ap: 50 
× 1000 µm, Res: 3–5 cm−1, Range: 50–1555 cm−1, T = 21.8 °C, H = 42%. 

X-ray photoelectron spectroscopy measurements (XPS) were carried out on a spec-
trometer of Leybold-Heraeus GmbH (Köln, Germany). Samples were prepared on an 
indium-specimen holder and evacuated for at least one hour. Analyses were performed 
using Al-Kα-radiation (hv = 1486.6 eV, HV = 7 kV, I-Anode = 30 mA) under ultra-high 
vacuum (10–8 mbar) at room temperature and light exclusion using a hemispheric ana-
lyzer (Ø = 100 mm, PMV = 2.7 kV, ΔE = constant). 

3. Results 
3.1. Pre-Dispersion 

As an appropriate pre-dispersion step enables to break up CNT agglomerates due to 
the decrease of particle–particle interactions, different pre-dispersion approaches were 
investigated in this study. After the pre-dispersion step, the subsequent compounding 
was performed at optimum conditions according to [11] to combine the enhancement in 
filler dispersion by pre-dispersion and by the agglomerate breakage arising from shear 
forces. To realize the pre-dispersion step, ultrasonication was applied using different 
techniques, conditions, and solvents. Figure 1 displays the electrical conductivity against 
frequency depending on the ultrasonic terms in PDMS/CNT compounds with 0.5 wt.% of 
CNTs. The composite filled with 0.5 wt.% CNT without pretreatment is insulating itself. 
By implementing a pre-dispersion step, an enormous increase in conductivity can be 
observed for all samples ending up in percolated systems. As the CNT amount remains 
unchanged, this indicates decreased filler–filler interactions and improved agglomerate 
break-up due to the pre-dispersion step in consequence. Concurrent to this, decreased 
filler–filler interactions increase the contact area between the polymer and the filler 
which increases CNT-PDMS bonding options and therefore polymer–filler interactions. 

10-1 100 101 102 103 104 105 106
10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

σ'
 (S

/c
m

)

f (Hz)

 PDMS
 THF,       30 min
 CHCl3,    30 min
 THF,       60 min
 THF,       60 min US-bath
 Acetone, 60 min
 THF,      120 min
 CHCl3,   120 min

0.5 wt.% CNT

 

10-2 10-1 100 101 102 103 104 105 106
10-6

10-5

10-4

10-3

σ'
 (S

/c
m

)

f (Hz)

US−finger

US−bath

THF > Acetone > CHCl3

 
(a) (b) 

Figure 1. Dielectric results in dependency of ultrasonic terms (a) all results and (b) pre-dispersion results in detail. Figure 1. Dielectric results in dependency of ultrasonic terms (a) all results and (b) pre-dispersion results in detail.

Dealing with an ultrasonic time of 30 min in THF leads to an increase of conductivity
of eight decades at 1 Hz. By further increasing the duration up to 60 min an additional
increase of conductivity up to 3.2× 10−4 S/cm can be observed with no substantial increase
at longer sonication terms.

Comparing the ultrasonic techniques, the use of an ultrasonic finger dominates the
ultrasonic bath. Using the ultrasonic finger instead of the bath, when dispersing CNTs for
60 min in THF, leads to an increase of conductivity by three times. This may be attributed
to the re-agglomeration effects when using the ultrasonic bath as the ultrasonic finger
transmits its energy in a more restricted range. Regarding the kind of solvent, the highest
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conductivity values are realized using THF which implies improved agglomerate break-up
and dispersion. Overall, THF performs better than acetone than chloroform ending up in
the tendency of THF > acetone > chloroform which is in coherence with the eluting order of
these solvents. As the order of polarity corresponds to the order of dielectric conductivity
of the solvents, it can be assumed that solvent residues contribute to the conductivity
as well.

Therefore, additional mechanical investigations were performed. Stress–strain experi-
ments (Figure 2a) indicate a softening of all samples with pre-dispersed CNTs apparent
by higher elongation at break values which confirms the assumption of solvent residues.
A decrease in elastic modulus can be observed, which already occurs at low elongation
values. This illustrates the absence of reinforcement, which is normally expected when
incorporating nanofiller particles in an elastomeric matrix. The softening effect is likely
caused by the adhesion of the solvent on the surface of the carbon nanotubes which leads
to solvent deposition in the compound in consequence. Therefore, it will be necessary to
control the content of solvent or avoid any solvents in the compound at least regarding
further investigations.
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THF, (a) stress-strain experiments and (b) Shore A hardness.

Analyzing the stress–strain curves regarding the ultrasonic duration, maximum ten-
sile strength can be observed at 60 min. Here, CNTs are dispersed best which partially
compensates the softening effect. This is evident by an equivalent reinforcement compared
to the initial level of the sample with untreated CNTs due to the enhanced dispersion and
subsequent filler–polymer bonding.

Shore A hardness (Figure 2b) confirms the softening effect due to solvent residues as
well, indicating decreased hardness. Best ultrasonic conditions are found at a sonication
time of 60 min again.

Transmission electron microscopic (TEM) images are shown in Figure 3 in order to
have a direct look on the filler agglomerates. Figure 3a,b illustrate CNTs dispersed in THF
(60 min, US-finger) and applied on a copper grid directly. Effective agglomerate break-up
can be observed here, where separated carbon nanotubes exist. These CNTs hold a length
of up to 8 µm.

Images (Figure 3c,d) display the filler distribution in the PDMS compound with CNTs
pre-dispersed at the same conditions. To ensure improved observation conditions, 1 wt.%
of CNT were incorporated, which ensures to be above the percolation threshold [11].
The images demonstrate good filler dispersion in the PDMS matrix. Separated carbon
nanotubes are still present and only minor clusters of small size are apparent.
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Regarding the effectiveness of the pre-dispersion step, the percolation threshold was
determined which is defined as the minimum filler content where a filler network is built
and the electrical conductivity rises drastically. The formation of these conductive paths
and therefore the percolation threshold depend on many factors such as the geometry, the
intrinsic conductivity, and the state of dispersion of the corresponding nanofillers [36,37].
Dielectric measurements depending on the CNT content show an increase in conductivity
with increasing CNT amount (Figure 4a). At a filler level of 0.1 wt.% a drastic increase in
conductivity arises and at contents around 0.5 wt.% a plateau of the dielectric conductivity
of 3.6 × 10−4 S/cm is reached where no further increase in conductivity occurs at higher
CNT amounts. This plateau is reached at an extremely low filler amount, which again
indicates ideal filler dispersion due to this pretreatment step, as the filler amount where
the plateau in electrical conductivity exists is based on the distances between the filler
particles. Therefore, the formation of conductive pathways is developed at a comparatively
low concentration and is in good agreement with [38]. The electrical percolation threshold
(Figure 4b) was calculated in accordance with [11] and resulted in 0.1 wt.% of CNTs at 1 Hz
(corresponding to filler–polymer volume fraction of Φ* = 0.001). As the initial electrical per-
colation threshold without any pretreatment amounts to 0.9 wt.% of CNTs (Φ* = 0.009) [11],
this is a distinct decrease in CNT concentration and stresses the aforementioned claims.

3.2. Functionalization

An additional concept of this study is to enhance polymer–filler interactions by in-
creasing the compatibility of CNTs and PDMS as enhanced polymer–filler interactions
superpose filler–filler interactions and therefore support agglomerate break-up. This can
be realized by adding surface-active substances that are physically bonded on the filler
surface and compensate polarity differences between filler and polymer. This procedure
preserves the structure of the filler particles as the substances are bonded to the filler surface
non-covalently which ensures to keep the properties of the filler. Oleic acid serves these
criteria, which was added based on predispersion in THF. Figure 5 displays the dielectric
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conductivity of PDMS/CNT-composites with 0.5 wt.% CNT pretreated with sonication
for 120 min with different concentrations of oleic acid. Adding oleic acid leads to a slight
increase in conductivity, where the composites with 0.1 wt.% oleic acid and 0.5 wt.% CNTs
reaches a conductivity of 5 × 10−4 S/cm at 1 Hz. Implementing higher concentrations
of oleic acid decreases the conductivity, so that CNT dispersion is at an optimum using
0.1 wt.% of oleic acid.
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The decrease in conductivity at high concentrations of oleic acid can be attributed to
the formation of micelles of oleic acid. When adding high amounts of oleic acid, there is a
spatial limitation of absorbance sites for oleic acid on the CNT surface [39]. Consequently,
oleic acid molecules tend to enclose filler particles in their micelles. This ends up in an exemp-
tion of these filler particles regarding the formation of electrical paths and a subsequent
decrease in conductivity.

Mechanical experiments regarding the composites treated with oleic acid confirm
best CNT dispersion when adding 0.1 wt.% oleic acid (Figure 6). In total, this method
of pretreatment leads to a decrease in tensile strength and elongation at break compared
to composites with merely pre-dispersed CNTs (Figure 6a). As the elongation at break
decreases, softening due to solvent residues is not obvious. This implies that oleic acid
covers the surface of the carbon nanotubes effectively which inhibits the adhesion of the
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solvent. In consequence, THF can be preferably removed in the vacuum processing step.
Though, mechanical reinforcement cannot be observed, which is also approved by Shore A
hardness (Figure 6b).
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Further investigations on physical functionalization were performed using surfactants.
Here, sodium dodecylbenzenesulfonate (SDBS) and polyoxyethylenelaurylether (“Brij35”)
where chosen as they proved to stabilize CNT dispersions, where SDBS serves as an anionic
surfactant and “Brij35” as a nonionic one [40]. Thereby, CNTs were pre-dispersed in a
combination of the surfactant with ethanol or with a solution of THF/H2O (5:1), in order
to facilitate the extraction of the solvent.

Dielectric results of the surfactant series demonstrate that there is no beneficial effect
in this kind of pretreatment as all samples are isolated (Figure 7). Compared to this, predis-
persion of the same amount of CNTs in THF for 60 min holds the maximum conductivity of
3.6 × 10−4 S/cm at 1 Hz. Hence, the use of surfactants leads to less stable dispersions with
a high sedimentation and precipitation rate instead, where reagglomeration comes into
effect immediately. This interferes with the formation of conductive paths. Furthermore,
the presence of surfactant and solvent residues is allocated (see Figures 7b and 8) which
increases the distance between the carbon nanotubes and hinders the formation of electrical
paths as well. In addition, surfactant residues reduce the agglomerate break-up due to
shear forces during the mixing process, even though the concentration was limited to
0.1 wt.% and great effort was made regarding the removal of solvents and surfactants.
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Stress–strain analyses likewise indicate a decrease in reinforcement implying deterio-
ration in dispersion. Elongation at break values rise while the elastic modulus decreases at
low strain. Surfactant and solvent residues account for the softening behavior, which is
underlined by TEM images where surfactant residues can be observed in between CNT
agglomerates (Figure 8). Compared to composites with CNT-predispersion solely in THF,
pretreatment with SDBS in THF/H2O leads to an equivalent polymer–filler bonding ap-
parent by the comparatively high tensile strength. Using “Brij35” in THF/H2O instead of
SDBS, results in a material stiffness of the same level but decreased tensile strength and
elongation at break implying impaired polymer–filler interactions.

As physical functionalization using surfactants did not enhance the electrical and me-
chanical performance, chemical surface modifications of CNTs were investigated, though
this strongly affects the CNT structure and morphology. The chemical surface modifi-
cation enables to equalize polarity differences between filler and polymer by adjusting
the polarity of the filler surface and enhances polymer–filler interactions in consequence.
Though, dealing with chemical functionalization implies the formation of covalent bonds
between the carbon nanotube and the functionalization reagent which modifies the CNT
structure. This obviously results in different CNT properties which turned out to diminish
the electrical conductivity of CNTs due to tube damage and surface defects [41]. Therefore,
it is essential to balance the benefit by increasing polymer–filler interactions and decreas-
ing the conductivity. To determine best functionalization conditions, different oxidation
methods were performed in this study (Table 1) as the oxidation is the most destroying but
indispensable step for the following functionalization. An intermediate reduction process
was applied here, which facilitates the formation of hydroxyl groups on the surface of CNTs.
This is essential, as 7-octenyl-trichlorosilane is used for the following functionalization
which owes a higher reactivity in the presence of hydroxyl groups (according to [35]).
Table 1 displays the applied oxidation (Ox), reduction (Red), and functionalization (fCNT)
methods in detail. The listed numbers concerning the reduction and functionalization step
refer to the associated oxidation method.

In order to reach best performance, the oxidation conditions were further modified
based on the oxidation method, where best results concerning the electrical behavior are
achieved (see Figure 9). As expected, this turned out to be at particular mild oxidation
conditions (Ox 2). Details of the modification of “Ox 2” are shown in Table 2. Herein,
temperature and duration of the oxidation process were varied.
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Table 2. Further modification of oxidation method 2 (Ox 2).

Name Temperature (◦C) Duration (min)

Ox 2_1 75 30

Ox 2_2 25 180

Ox 2_3 25 30

Ox 2_4 75 5

Ox 2_5 25 5

It is known from literature, that the oxidation of graphene nanoplatelets to O/C-ratios
in the range of 0.11 to 0.49 (corr. to C/O ratios of 1.01 to 2.0) has high influence e. g. on
barrier properties and self-assembly behavior and only higher oxidation degrees yield self-
standing structures [42]. This tendency is evident due to the change in polarity. Considering
this, we can expect that on the one hand the more highly oxidized CNTs should be more
difficult to be dispersed. On the other hand, concerning an appropriate balance between
oxidation/functionalization-degree and the resulting polymer (PDMS)/CNT-interaction,
we could expect an improvement in physical properties and electrical conductivity of the
composites. Comparing the values of the XPS-measurements performed in this study the
mildly oxidized types Ox 2_3 and Ox-2_5 in Table 2 are the most promising types.

According to the results of [41] a decrease in the electrical conductivity of at least one
decade is observed which can be assigned to surface defects and the damage of the CNTs
(Figure 9). Comparing the different oxidation conditions, “Ox 2” shows only marginal
CNT damage ending up in the highest remaining conductivity of 1.6 × 10−1 S/cm at 1 Hz.
Regarding the functionalized CNTs based on the mild oxidation method 2, the conductivity is
further decreased resulting in a conductivity level less than all oxidized samples. This indi-
cates an additional change of the CNT structure due to the subsequent processing step of
the functionalization process.

As the functionalization steps definitely change the CNT structure, further filler char-
acterization of the modified CNTs was performed to get an overview of their properties and
potential. Thermal gravimetric analyses (Figure 10) represent the change in mass depending
on the temperature with respect to functional groups on the surface of the carbon nanotubes.
To prevent further oxidation, N2 remained the carrier gas for the whole experiment.
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The curve characteristics and a relatively high remaining mass of 59% of the CNTs
oxidized using method 2 confirm the lowest structural change by this modification process,
whereas a higher number of functional groups on the surface can be observed for oxidation
method 1, 3, and 4 (Figure 10a). The latter ones also represent a high loss of mass at relatively
low temperatures which can be assigned to adsorbed molecules like oxygen. Comparing
the oxidation conditions that varied within the series of oxidation method 2, the initial
parameters using a reaction temperature of 75 ◦C for 180 min preserve the surface structure
of the carbon nanotubes best. The modification toward milder conditions results in an
increased incineration throughout the thermal gravimetric experiment indicating inade-
quate reaction conditions during the oxidation process and an increase in functional groups
on the CNT surface instead. Further processed samples like reduced and functionalized
CNTs (Figure 10b,c) predominately show the same progression with regard to their base
oxidation method. Overall, the results confirm that applying oxidation method 2 for further
processing leads to the slightest structural change and is therefore preferred.

Raman spectroscopy was performed in order to investigate the structural defects
on the CNT surface due to the modification processes as it is extremely sensitive toward
changes in morphology. Raman-bands of the investigated samples were assigned to the
graphitic structure as CNTs consist of rolled up graphene sheets. Therefore, the G-band
at around 1590 cm−1 (planar vibration of sp2-carbon atoms) and the D-band at around
1350 cm−1 (sp3, disorder of graphene structure) are appropriate bands to investigate
graphitic defect structures. The intensity ratio ID/IG states the extent of defects, where
ID/IG increases with rising defects. An additional evidence on structural defects can be
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found regarding the G′-band at around 2650 cm−1, which represents the second-order
process of the sp2-vibration.

Figure 11 represents the Raman-intensities against the wavelength. According to
further processing, the ratio ID/IG and therewith surface defects increase in the order of
pristine CNTs < oxidation < reduction < functionalization (Figure 11c and Table 3). This is
due to the conversion of sp2-hybridized carbon atoms (C=C) into sp3-hybridized ones.
Comparing the different oxidation methods (Figure 11a), the lowest defect quantity is
observed for the oxidation method “Ox 1,” which is even lower than those of the pristine
carbon nanotubes. As the G′-band in this spectrum has experienced a severe decrease,
this effect is dominated by the purification due to the acid based oxidation method and
does not represent the defect level. Consequently, oxidation method 2 and 3 reveal the
lowest defect quantity as the ID/IG-ratio is low and the G′-band is comparatively unaffected
in addition.
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Regarding the differences by varying the oxidation conditions of method 2 (Figure 11b),
improper conditions are confirmed again. Even though the intensity ratio ID/IG and cal-
culation of aromatic cluster size implies the oxidation methods “Ox 2_1” up to “Ox 2_4”
to be appropriate (apparent by low ID/IG-values), an additional Raman-band at around
500 cm−1 arises in the spectra of these samples. As this band can be assigned to amorphous
sp3-carbon atoms this shows that merely the processing belonging to “Ox 2_3” performs
satisfactorily. Overall, many structural defects are observed applying method “Ox 2_5.”
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Table 3. Ratio of Raman-intensities ID/IG and aromatic cluster size.

Sample ID/IG Aromatic Cluster Size

CNT 1.20 17.15

Ox 1 1.03 19.74

Ox 2 1.29 16.68

Ox 2_1 1.22 17.04

Ox 2_2 1.15 17.69

Ox 2_3 1.21 17.10

Ox 2_4 1.28 16.75

Ox 2_5 1.63 14.13

Red 2 1.32 16.33

fCNT 2 1.36 16.18

Ox 3 1.31 16.35

Ox 4 1.33 16.25

To further analyze the surface chemistry of pretreated CNTs regarding the type of
functional groups, X-ray photoelectron spectroscopy measurements (XPS) were performed.
Hereby, the CNTs are irradiated with X-rays under ultra-high vacuum conditions and the
emitted characteristic photoelectrons are detected regarding their quantity and kinetic
energy. The later one enables to obtain binding energies and consequently gives evidence
on the types of functional groups. As the penetration depth amounts to maximum 20 nm,
this ensures to merely analyze surface elements.

Selected oxidized CNTs (oxidized using method 2, 2_3 and 2_5) were analyzed and
compared to pristine carbon nanotubes using XPS (Figure 12). As the emitted signals
emerge in different spectroscopic areas, a differentiation between carbon, covalent-bonded
oxygen, and adsorbed ions due to the oxidation treatment is practicable. The carbon signal
(C1s) can be interpreted following the investigations of Sun et al. [42], which are based
on graphene-oxide. According to this, the signal at 284.6 eV refers to sp2-hybridized
carbon and is used for the calibration, the signal at 286.2 eV is referred to C–O–bondings of
hydroxyl-, epoxy-, and phenol groups, the signal at 287.3 eV is correlated to C=O–bondings
of keto- and aldehyde-groups, and the peak at 288.9 eV corresponds to O–C=O-bondings of
carboxy- and ester-groups. In addition, the signal at binding energies of 291.1 eV is referred
to π-π*-signals of sp2−atoms which decreases at mild oxidation conditions (Ox 2_3 and
2_5) due to the degradation of sp2−hybridized carbon atoms. This supports the thermal
gravimetric results indicating that the oxidation reaction at mild conditions is improper
resulting in an increase of oxygen-functionalized carbon nanotubes [43]. Regarding the
oxygen signals (O1s) an increase in intensity and therefore in oxygen concentration on the
surface of the carbon nanotubes can be observed by the oxidation process and further on
due to mild and improper oxidation. The signal correlation was performed according to
Dongil et al. [44] where the signal at 531.8 eV consists of three main peaks: O=C-bondings
of keto and aldehyde groups at 531.3 eV, O–C-bondings of epoxy- and phenolgroups at
532.7 eV, and carboxylic acid- and ester-functionalities at 533.9 eV. The minor signal at 535
eV of pristine CNTs can be referred to adsorbed water.

Table 4 contains further evaluations of XPS measurements concerning the proportional
amounts of oxygen and carbon of the CNTs. As reported before, the oxidation of CNTs
increases the amount of oxygen on the CNT surface due to the formation of functional
groups resulting in a decrease of the C/O–ratio. This trend is extremely significant for
the mild oxidation conditions due to an additional formation of functional groups. In ac-
cordance with Wepasnick et al. [33] there is no distinct variation in the distribution of the
oxygenic functional groups, as all samples analyzed by XPS were exposed to the same
oxidizing agent merely varying the oxidation conditions.
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Figure 12. XPS analyses of carbon (C1s) and oxygen (O1s) areas of CNTs, (a) + (b) pristine CNTs, (c) + (d) oxidized ac-
cording to “Ox 2”, (e) + (f) oxidized according to “Ox 2_3” and (g) + (h) oxidized according to “Ox 2_5”. 

Table 4 contains further evaluations of XPS measurements concerning the propor-
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CNT 99.8 1.6 62.4 
Ox 2 93.5 6.4 14.6 

Ox 2_3 69.4 30.5 2.3 
Ox 2_5 54.1 45.8 1.2 

Regarding the incorporation of the chemically modified CNTs into the PDMS ma-
trix, 0.3 wt.% of functionalized CNTs were pre-dispersed for 60 min by ultrasonication in 
THF, as these pre-dispersion conditions turned out to be further promising. Analyzing 
the electrical conductivity, 0.3 wt.% of pre-dispersed CNTs without any functionalization 

Figure 12. XPS analyses of carbon (C1s) and oxygen (O1s) areas of CNTs, (a) + (b) pristine CNTs, (c) + (d) oxidized according
to “Ox 2”, (e) + (f) oxidized according to “Ox 2_3” and (g) + (h) oxidized according to “Ox 2_5”.
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Table 4. XPS results referred to the amounts of carbon and oxygen.

Sample C1s (%) O1s (%) C/O-Ratio

CNT 99.8 1.6 62.4

Ox 2 93.5 6.4 14.6

Ox 2_3 69.4 30.5 2.3

Ox 2_5 54.1 45.8 1.2

Regarding the incorporation of the chemically modified CNTs into the PDMS matrix,
0.3 wt.% of functionalized CNTs were pre-dispersed for 60 min by ultrasonication in THF,
as these pre-dispersion conditions turned out to be further promising. Analyzing the
electrical conductivity, 0.3 wt.% of pre-dispersed CNTs without any functionalization
already result in a conductive material with a conductivity of 9.4 × 10−5 S/cm whereas
all samples with functionalized CNTs are insulating and indicate non-percolated systems
(Figure 13). Even those compounds where the functionalization was based on oxidation
method 2, which preserves the CNT structure best and resulted in the highest remaining
electrical conductivity (see Figure 9) are insulating. Increasing the amount of functionalized
CNTs up to 1 wt.% does not increase the intrinsic conductivity substantial. Here, just a
minimal conductivity of 7.9× 10−13 S/cm at 1 Hz is obtained for samples filled with 1 wt.%
fCNT 2.
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Figure 13. Electrical conductivity of PDMS compounds with functionalized CNTs.

According to the characterization of the modified CNTs, the chemical modification
processes change the aromatic CNT structure where the sp2-hybridized carbon atoms are
converted into sp3-ones. As π-electrons are inevitable for the conduction mechanism, the
functional groups on the CNT surface increase the electrical resistance due to the formation
of sp3-hybrids [8]. Consequently, the sp3-defects decrease not only the electrical conduc-
tivity level of the modified carbon nanotubes (Figure 9) but also lead to non-conducting
CNT/PDMS composites. Additional CNT fracture reduces the tube length which hinders
the formation of an electrical filler network and further decreases the conductivity.

The approach of the functionalization step was to increase the compatibility between
filler and polymer and therefore the polymer–filler interactions to simultaneously decrease
the filler–filler interactions and to increase the filler dispersion by this. As the conductivity
level is extremely reduced in functionalized CNT/PDMS composites, a potential benefit
in dispersion cannot be observed here and the effect is superimposed by the decrease in
conductivity due to CNT defects. Hence, mechanical analyses were performed to examine
a potential increase in polymer–filler interactions due to the functionalization process
(Figure 14).
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Figure 14. Mechanical properties depending on the functionalization method (a) stress–strain behavior and (b) Shore A 
hardness. 
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strain curves and hardness measurements, oxidation methods 2 and 3 taken as basic 
strategy for the functionalization result in a comparatively little decrease in the mechan-
ical performance. This is in good accordance with the results obtained by Raman spec-
troscopy. Though, no enhancement in reinforcement or hardness can be observed due to 
functionalization. This is contrary to the expectations since the modification of the CNTs 
was performed to improve the compatibility between filler and polymer by reversing the 
polarity of the CNT surface due to the application of alkyl chains [35]. In addition to the 
change in polarity, the terminal double bond of the alkyl chains enables to form covalent 
bonds to the polymer during the addition cured vulcanization process which further 
enhances the bonding of the CNTs to the PDMS. Therefore, CNT damage is likely to oc-
cur which was assumed regarding the electrical conductivity results already. To consider 
this in detail, TEM images were recorded to have a microscopic insight in the nanoscale. 
Hereby, a reduction in tube lengths can be seen in CNT/PDMS-composites where the 
CNTs were oxidized using method “Ox 2” (Figure 15) compared to composites where 
simply pre-dispersion in THF was performed (Figure 3d). The aspect ratio decreases due 
to the oxidation process which proves the assumption of CNT damage. Besides this, good 
dispersion with only minor CNT-clusters can be observed here verifying agglomerate 
break-up. Therefore, reduced filler–filler interactions and enhanced polymer–filler in-
teractions are indicated which are superimposed by CNT damage. Finally, the function-
alization result in a decrease in electrical and mechanical performance of the composite 
as the CNT damage is the predominant effect. 

Figure 14. Mechanical properties depending on the functionalization method (a) stress–strain behavior and (b) Shore
A hardness.

Compared to CNT/PDMS-composites where merely the pre-dispersion step was
performed, a decrease in tensile strength and elongation at break can be seen for all func-
tionalized samples, especially those based on oxidation method 1. Regarding stress–strain
curves and hardness measurements, oxidation methods 2 and 3 taken as basic strategy for
the functionalization result in a comparatively little decrease in the mechanical performance.
This is in good accordance with the results obtained by Raman spectroscopy. Though, no
enhancement in reinforcement or hardness can be observed due to functionalization. This is
contrary to the expectations since the modification of the CNTs was performed to improve
the compatibility between filler and polymer by reversing the polarity of the CNT surface
due to the application of alkyl chains [35]. In addition to the change in polarity, the terminal
double bond of the alkyl chains enables to form covalent bonds to the polymer during the
addition cured vulcanization process which further enhances the bonding of the CNTs to
the PDMS. Therefore, CNT damage is likely to occur which was assumed regarding the
electrical conductivity results already. To consider this in detail, TEM images were recorded
to have a microscopic insight in the nanoscale. Hereby, a reduction in tube lengths can
be seen in CNT/PDMS-composites where the CNTs were oxidized using method “Ox 2”
(Figure 15) compared to composites where simply pre-dispersion in THF was performed
(Figure 3d). The aspect ratio decreases due to the oxidation process which proves the
assumption of CNT damage. Besides this, good dispersion with only minor CNT-clusters
can be observed here verifying agglomerate break-up. Therefore, reduced filler–filler inter-
actions and enhanced polymer–filler interactions are indicated which are superimposed by
CNT damage. Finally, the functionalization result in a decrease in electrical and mechanical
performance of the composite as the CNT damage is the predominant effect.
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4. Discussion and Conclusions

A break-up of CNT-agglomerates by CNT pretreatment can be realized using a pre-
dispersion step before the mixing process. Hereby, the carbon nanotubes are separated
by the solvent and the filler–filler interactions are decreased. This ends up in improved
filler dispersion and a distinct increase in electrical conductivity. Due to the high filler
dispersion, a conductive filler network is built up at low CNT amounts and the percolation
threshold is decreased to 0.1 wt.% of CNTs. Best results are obtained using an ultrasonic
finger for 60 min in THF, where an electrical conductivity of 3.2 × 10−4 S/cm at 1 Hz is
reached at 0.5 wt.% of CNTs. Regarding the solvent performance, the tendency THF >
acetone > chloroform corresponding to their eluting order is observed regarding dielectric
results. This implies an additional contribution to the electrical conductivity due to solvent
residues which is confirmed by mechanical analyses. A softening effect is determined
here, apparent by a distinct deterioration of the elongation at break and Shore A hardness.
In addition, enhanced dispersion is observed which partly compensates the softening effect
due to solvent residues.

Adding oleic acid results in a further increase in electrical conductivity of minor
extend. As the oleic acid covers the surface of the carbon nanotubes, solvent adhesion
is inhibited, and no softening effect can be observed. Though, there is no mechanical
reinforcement. Besides this, the use of the surfactants SDBS and “Brij 35” for physical func-
tionalization leads to no improvement, neither in electrical conductivity nor in mechanical
properties. Surfactant residues cause CNT re-agglomeration here, impairing the dispersion
and subsequently resulting in electrical isolating composites.

Chemical functionalization of the carbon nanotubes modifies the CNT surface and
enhances the compatibility of PDMS and CNTs. This leads to an increase in CNT dispersion
due to enhanced polymer–filler interactions and reduced filler–filler interactions. Though,
the oxidation process damages the carbon nanotubes resulting in CNT fracture. Finally, the
potential improvement in electrical conductivity and reinforcement due to the improved
dispersion is superimposed by the CNT damage. Especially the oxidation process holds
a high impact on the conductivity, resulting in a decrease for at least one decade even at
mild oxidation conditions. During the oxidation process, sp2-hybridized carbon atoms
are converted into sp3 ones which decrease the electrical conductivity as π-electrons are
inevitable for the conductivity. Overall, using mild oxidation conditions preserves struc-
tural integrity best, whereas moderating the oxidation conditions even milder leads to
inadequate reaction conditions resulting in propagated functional groups and impeded
formation of electrical pathways. Any subsequent functionalization steps cause additional
changes in the CNT structure and further impair the electrical conductivity.
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