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Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define
hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with
anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious
adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic
receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives
the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic
inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled
ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in
immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The
readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune
function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the
maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the
P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently,
these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local
hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
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Introduction

Hyperinflammation and acute respiratory distress syndrome
(ARDS) caused by coronavirus disease 2019 (COVID-19)
have become the world’s number 1 challenge. The exponen-
tial pattern in the number of severe cases in the second and
third waves of the SARS-CoV-2 pandemic has shown to reach
nations’ maximum ICU capacities in weeks rather than
months after outbreak of the disease irrespective of rigorous
population-based preventivemeasures. In a recently published
systematic review, the case fatality rates in patients in the ICU
across 7 countries vary between 14.9 and 66.7%, while the
case fatality rates among those who required mechanical ven-
tilation vary between 16.7 and 97.0% [1]. In addition, the case
fatality rate in a cohort of 1035 critically ill COVID-19 pa-
tients requiring extracorporeal membrane oxygenation
(ECMO, artificial lungs) is alarmingly high (37.4%) [2].
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The clinical manifestations of severe COVID-19 consist of
pneumonia with dyspnoea and hyperinflammation.
Hyperinflammation is thought to be the basis of the develop-
ment of severe and critical COVID-19 [3–5]. Currently, a
clear-cut definition of hyperinflammation is lacking. Some
authors describe the condition of hyperinflammation as a form
of very severe inflammation with cytokine storm [6]. The
criteria of hyperinflammation are not consistent and

include clinical data and/or different combinations of the
parameters of the activation of the pro-inflammatory re-
sponse of the immune system (i.e. fever, rapid respiratory
deterioration, cytokine, ferritin and/or CRP concentra-
tions, changes in blood levels of several types of immune
cells, etc., examples are presented in Table 1) [3, 4,
6–8, 9, 10–14]. In addition, the current definitions of
hyperinflammatory syndrome do not provide an

Table 1 Examples of the criteria of hyperinflammation. These criteria are not consistent and include different combinations of symptoms and
laboratory parameters of the activation of the pro-inflammatory response of the immune system

Author Year of
publication

Criteria of hyperinflammation Reference
number

Clinical Laboratory or pathogenesis

Webb BJ et al. 2020 Fever (temperature of more
than 38.0°C)

Macrophage activation (ferritin concentration of 700 μg/l or more)
Haematological dysfunction (neutrophil to lymphocyte ratio of 10 or more or

both haemoglobin concentration of 9.2 g/dl or less and platelet count of 110
× 109cells/L or less)

Haematological dysfunction (neutrophil to lymphocyte ratio of 10 or more or
both haemoglobin concentration of 9.2 g/dl or less and platelet count of 110
× 109cells/L or less)

Coagulopathy (D-dimer concentration of 1.5 μg/ml or more)
Hepatic injury (lactate dehydrogenase concentration of 400 U/L or more, or an

aspartate aminotransferase concentration of 100 U/L or more)
Cytokinaemia (defined as an IL-6 concentration of 15 pg/ml or more, or a

triglyceride concentration of 150 mg/dl or more, or a CRP concentration of
15 mg/dl or more)

[7]

Fajgenbaum
DC and June
CH

2020 Very severe inflammation with cytokine storm [6]

Manson JJ
et al.

2020 C-reactive protein (CRP) concentration greater than 150 mg/L
Doubling of CRP concentration within 24 h from a concentration of greater

than 50 mg/L
Ferritin concentration of greater than 1500 μg/L

[3]

Gustine JN and
Jones D

2021 Cytokine storm, dysregulated macrophage activation, impaired natural killer
cell response, lymphopenia, elevated absolute neutrophil count and
neutrophil/lymphocyte ratio and increased levels of neutrophil extracellular
traps (NETs)

[4]

Anka AU et al. 2021 Excessive secretion of pro-inflammatory cytokines and the recruitment of
pro-inflammatory cells such as granulocytes and macrophages caused by
tissue injury result in a snowballing of cytokine secretion leading to a
systemic inflammatory response such as macrophage activation syndrome
(MAS), secondary haemophagocytic lymphohistiocytosis (sHLH—cyto-
kine storm)

[11]

Cardone MC
et al.

2020 Increased plasma levels of pro- and anti-inflammatory cytokines (IL-1β, IL-6,
IL-7, IL-8, IL-9, IL-10, IFN-γ, TNF), chemokines (MCP1, MIP1A,
MIP1B) and growth factors (G-CSF, GM-CSF)

[8]

Mehta P et al. 2020 Trends in laboratory results such as increasing ferritin, decreasing platelet
counts or high erythrocyte sedimentation rate

12

Freeman TL
et al. (2020)

2020 Vigorous stimulation of the innate immune response activating the Nod-like
receptor family, pyrin domain-containing 3 (NLRP3) inflammasome path-
way. This causes the release of the pro-inflammatory cytokines IL-6 and
IL-1β

[13]

De Luca G
et al.

2020 Elevation of CRP to ≥100 mg/L or ferritin to ≥900 μg/L in the presence of any
increase in lactate dehydrogenase (LDH)

[ 14]

Bozzi G et al. 2021 Ferritin plasma levels of ≥1000 ng/mL and/or CRP of >10 mg/dl [9]

Landewé RBM
et al.

2021 Rapid respiratory
deterioration on or during
admission

Plus fulfilment of at least two out of three biomarker criteria: CRP of
>100mg/L, serum ferritin of >900 μg/L, D-dimer of >1500 μg/L

[10]
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explanation for the frequently observed co-infections or
secondary infections in COVID-19 [15, 16].

The results of non-randomised cohort studies with con-
trols and of retrospective observational studies suggest
that IL-1 receptor blockade (anakinra) [9, 17], monoclonal
antibodies against IL-6 receptors [18–21] and the combi-
nation of both drugs [22, 23] may improve survival rate in
at least a subgroup of patients with COVID-19. However,
in prospective randomised controlled trials with the ex-
ception of one trial with tocilizumab and sarilumab in
critically patients [24], anti-inflammatory therapy with
anakinra [25] or tocilizumab [26–32] did not improve
the outcome in moderate, severe and critically ill
COVID-19. On December 10, 2020, an editorial
commented that it is disappointing that nearly 10 months
into the COVID-19 pandemic, a breakthrough treatment
has not been identified [33]. Researchers of the US
National Institute of Allergy and Infectious Diseases stat-
ed that although Remdesivir is effective to reduce time to
recovery in hospitalised COVID-19 patients [34] and
dexamethasone reduces mortality in critically ill
COVID-19 patients [35], there is no treatment for early
or mild infection [36]. Moreover, dexamethasone raises
concerns because it increased the 28-day mortality in pa-
tients who did not receive respiratory support [35] and it
dampens the “alarm phase” of the inflammation process
including the capacity of detecting pathogens in mammals
by the immune system [37]. In addition, administration of
methylprednisolone (1 mg/kg/day intravenously) in
COVID-19 reduced the blood levels of NK cells, CD4+

and CD8+T-cells and increases the duration of throat viral
RNA detectability indicating immune cell dysfunction
[38]. Furthermore, targeted anti-viral medication has
failed to treat COVID-19 effectively [39]. According to
the World Health Organisation, after a record-breaking
development, vaccine deployment is slow and has many
challenges to overcome [40]. Vaccine hesitancy is rela-
tively high [41] even among health care workers [42,
43]. It could take more than a year to vaccinate enough
people required to make an impact on SARS-CoV-2
spreading, while therapeutic measures that can immediate-
ly attenuate the course of SARS-CoV-2-related lung dam-
age are promptly needed on a global scale. To make the
matters worse, many scientists expect that SARS-CoV-2
may become endemic and is here to stay [44].

In this report, we developed a novel definition of
hyperinflammation based on purinergic signalling.
Subsequently, we describe our discovery of an old drug
capable of attenuating hyperinflammation and illustrate
this with six critically ill patients suffering from
COVID-19. Finally, we present the future development
of a new and more accessible administration route for this
drug as shown in Fig. 1.

Purinergic signalling

In 1929 adenylic acid (identical to adenosine) was identified
[45], and in the same year, the adenosine triphosphate (ATP)
molecule was discovered and isolated [46]. Ten years later
(1939), researchers contributed to the understanding of intra-
cellular ATP as an intracellular energy transport molecule
[47–50]. In 1948 and in 1959, it was reported that extracellular
ATP has a different function than ATP within the cytoplasm
[51, 52]. The authors showed that extracellular ATP mole-
cules have an intercellular signalling function. The intercellu-
lar signalling by nucleotides (ATP, ADP, UTP and UDP) and
nucleoside (adenosine) is referred to as purinergic signalling.
The purinergic co-transmission in neurons was discovered by
Geoffrey Burnstock in 1972 [53]. It took over 20 years for the
importance of purinergic signalling to be accepted [54, 55].
Finally, researchers of the University of Ferrara first reported
that the P2Z receptor (the former name of the P2X7R) plays an
intriguing role in immunity, inflammation and cell death [56].

The intracellular levels of ATP are high at millimolar con-
centrations (2–8 mM) [57], and the ATP concentrations in
synaptic vesicles are even higher in the range of 5 to
100 mM [58]. In contrast, under normal resting conditions,
the extracellular levels of ATP are quite low at nanomolar
concentrations (<3 nM) [57, 59]. Under specific conditions,
ATP release can rise by more than 1000-fold [53, 57, 60, 61]
and leads to a significant increase in the extracellular levels of
ATP. The resulting significant increase in extracellular nucle-
otides and adenosine concentrations activates their purinergic
receptors inducing certain cellular functions. Examples of
such conditions are membrane depolarisation (i.e. sympathetic
neuron endings) [53], mechanical stress (i.e. high mechanical
power ventilation) [59–63], hypoxia [64], hyperosmosis, hy-
potonic and isotonic stress of endothelial cells [65–68], in-
flammation [69, 70], surfactant release by alveolar epithelial
type II cells [59–61], mucine release by airway smoothmuscle
cells [71], insulin release by pancreatic islet beta-cells [72,
73], etc. There is an exception to this concept: Although a
spontaneous ATP-induced inward Ca2+ current through the
P2X7R could not be detected below extracellular ATP levels
of 200 μmol/ml [74], low tonic basal activation of P2X7R at
nanomolar extracellular ATP concentrations promotes serum
independent cellular proliferation [75], promotes closure of
the wound area in scratch wound assay [76], protects from
apoptosis [77], initiates anaerobic glycolysis independent of
the oxygen contents [78], etc. (Table 2, rows 80–85).
However, low tonic basal activation of the P2X7Rs by extra-
cellular ATP does not cause a pro-inflammatory response of
the immune system. Therefore, this topic is beyond the scope
of this paper and will not be discussed here.

Clearance of the ATP molecule in order to avoid accumu-
lation in the extracellular space is performed by enzymes at-
tached to the outside of the cell membranes (ecto-enzymes)
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and by soluble enzymes excreted to the extracellular space
(Fig. 2) [57, 272–275]. A proportion of the enzymatic-
breakdown product of ATP adenosine enters the cells via the
equilibrative nucleoside transporters (ENT1 and ENT2) and
concentrative nucleoside transporters (CNT1 and CNT2) (Fig.
2) [57, 60, 61]. The release and subsequently clearance of the
extracellular nucleotides and adenosine cause fluctuation in
the extracellular levels of ATP, other nucleotides and adeno-
sine. These fluctuations in extracellular concentrations are in-
dispensable for the receptor resensit isat ion after
desensitisation following receptor activation as discussed
below.

Purinergic signalling in inflammation and
hyperinflammation

The purinergic control of cellular processes including the pro-
inflammatory and anti-inflammatory responses of the immune
system is depending on the activation and the desensitisation

phenomenon of the nucleotides and adenosine receptors of the
immune cells [74, 276–282]. Except for the P2X7R, all other
purinergic receptors, i.e. P2XRs, P2YRs and P1 receptors
(adenosine receptors—AdoRs), are subject to desensitisation
[279–283]. In addition, a certain extent of desensitisation oc-
curs after every activation, and this desensitisation requires
time to return to the state of complete resensitisation [279,
280]. The higher and the longer the stimulus of the activation,
the higher the extent of desensitisation and the longer the
recovery time to the state of complete resensitisation [278].
One of the P2 receptors, the P2X7 receptor, is not prone to
desensitisation, and apart from the low tonic basal activation
of this receptor at low nanomolar concentrations as mentioned
above, the extracellular concentration of ATP required to ac-
tivate this receptor is much higher. Activation of the P2X7R
starts at 100 μM with an EC50 of >1 mM [74, 279, 284].

Summary of the effects of extracellular nucleotides and
nucleoside on the innate and adaptive immune system through
different purinergic receptors is presented in Table 2, rows 1–
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        by the capillaries

STAGE 1b
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of IL-10 and TGF-β in 

the lymph nodes by 
the inhibition of P2X7Rs

(or with any other P2X7R antagonist) 
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LYMPH NODES

In the lymph nodes P2X7R inhibition 
ABOLISHES

In macrophages: 
 Large pore formation, 
 cell death and massive ATP release. 
 Neutrophil Extracellular Traps and LL-37-
 induced release of IL-1β and IL-18.

In neutrophils:
 Membrane large pore formation, 
 cell death and massive ATP release.
 Superoxide generation.
 Neutrophil NETosis.  

In monocytes:

In mast cells:
 Degranulation process.

In matured peripheral T-cells:
 Apoptosis, cell death and massive ATP release.
 CD62L shedding (homing receptor for T-cells).

In dendritic cells:
 Increased CD80, CD86, 
 STAT‐1 and P2X7R expression. 
 IFN‐β release and T‐cells expansion.
 Reduction of Tregs numbers.

In naive T-cells:
 Up-regulated P2X7R gene expression.
 IL-2 production.

In B-cells:
 Shedding of IgE receptor (CD23) and CXCL16.
 Induction of cytokine release by monocytes.

In CD4+CD25+FoxP3+ regulatory T‐cells (Tregs):
 NAD+‐induced Tregs depletion 
 through the ART2‐P2X7R pathway.

In  Tregs:
Less production of IL-10 and TGF-β.

STAGE 2
Migration of Tregs 
throughout the body Lidocaine passing 

through the lymph nodes

RESULTS
1. Restoration of Tregs levels and function
2. Calmed down cytokine storm 

of P2X7R antagonist lidocaine

Fig. 1 A graphical summary of the future development of the
administration of lipophilic lidocaine base in the sublingual region or
elsewhere in the oral cavity. We postulate that selective inhibition of
the P2X7Rs of the immune cells of the lymphatic system by lidocaine
suppresses hyperinflammation in two stages. Stage 1: The selective
inhibition of the P2X7Rs of the immune cells residing in the lymph

nodes (stage 1a) induces clonal expansion of Tregs with improved
function in these lymph nodes (stage 1b); Stage 2: Subsequently, these
Tregs migrate throughout the body exerting anti-inflammatory activities
reducing systemic and (distant) local hyperinflammation. See text under
the heading “Future development” for explanation
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Table 2 Summary of the effects of extracellular nucleotides and
nucleoside on the innate and adaptive immune system through different
purinergic receptors. AdoR adenosine receptor; TNF-α tumour necrosis
factor alpha; FcγR receptors belonging to the immunoglobulin
superfamily; IFN-γ interferon gamma; IFN-β interferon beta; MAC-1
macrophage-1 antigen comprised CD11b (integrin αM) and CD18
(integrin β2); CpG-A oligodeoxynucleotides; PARP Poly ADP ribose
polymerase; FMLP N-Formylmethionyl-leucyl-phenylalanine, a
chemotactic factor; COX-2 cytochrome C oxidase polypeptide II; PGE2
prostaglandin E2; MIP-1α macrophage inflammatory protein 1 alpha
(MIP-1α = CCL3 chemokine ligand 3 ), MIP-1β (CCL4), MIP-2α
( CXCL2 c h emok i n e CXC mo t i f l i g a n d 2 ) a n d M IP -
3α(CCL20);RANTES (Regulated on Activation, Normal T cell
Expressed and Secreted, CCL5); LTB4 Leukotriene B4; LTA4
Leukotriene A4; VCAM-1 vascular cell adhesion molecule 1
(CD106);ICAM-1 intercellular adhesion molecule 1 (CD54);HMGB-1

high-mobility group box 1 (belongs to danger-associated molecular pat-
terns); MCP-1 monocyte chemoattractant protein 1 (CCL2);FoxP3
Forkhead box P3; CTL cytotoxic T lymphocyte; Th T helper cell;
CTLA-4 cytotoxic T-lymphocyte-associated protein 4 (CD152); CD39
nucleoside triphosphate diphosphohydrolase 1 (NTPD1);CD735'-
nucleotidase (5'-NT); VEGF vascular endothelial growth factor;
IDOIndoleamine-pyrrole 2,3-dioxygenase; α-SMA alpha smooth muscle
actin; CTGF connective tissue growth factor (CCN2);bFGF basic fibro-
blast growth factor; TCRT-cell receptor; NFAT nuclear factor of activated
T cells; NLRP3Nod-like receptor family pyrin domain containing 3 gene;
ART2-P2X7 pathway extracellular NAD+-induced ATP-independent
p2X7R activation involving ADP-ribosyltransferase 2; MMP-9 matrix
metalloproteinase-9;TIMP-1 tissue inhibitor of metalloproteinase 1; LC-
MS/MS liquid chromatography and tandem mass spectrometry; STAT-1
signal transducer and activator of transcription 1. Updated table, source:
Hasan D, et al. (2017) [60] with permission

Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors

Row
number

Receptor Ligand [52] Immune cell expression or experimental
model

Results of receptor signalling Reference
number

1 AdoRA1 Adenosine Neutrophils Promotes chemotaxis [79, 80]

2 Neutrophils Increases adherence to endothelial cells [81]

3 Neutrophils Inhibits TNF-α release [82]

4 Neutrophils At low concentrations adenosine enhances
FcγR phagocytosis and actin dynamics

[83–85]

5 Neutrophils Restores LPS-inhibited chemotaxis [86]

6 Resting DCs (rDCs) Inhibits vesicular MHC class I
cross-presentation

[87]

7 Plasmacytoid DCs (pDCs) Potent chemoattractants, reduces IL-6,
IL-12 and IFN-γ release

[88]

8 AdoRA1
and
AdoR-
A2A

CD39highB-cells (Bregs) Promotes expansion and function of
CD39high B-cells

[89, 90]

9 AdorA2A Adenosine Monocytes Inhibits IL-12 and TNF-α release [91, 92]

10 Neutrophils Promotes chemotaxis [80]

11 Neutrophils Inhibits oxygen radical generation [79]

12 Neutrophils Inhibits upregulation of beta2 integrins or
MAC-1 (CD11/CD18) and shedding of
L-selectin by FMLP

[93, 94]

13 Neutrophils Promotes Cox-2 and PGE2 release [95]

14 Neutrophils Decreases adherence to endothelial cells [81]

15 Neutrophils Decreases adherence to fibrinogen coated
surfaces

[96]

16 Neutrophils Inhibits TNF-α release and chemokines
MIP-1α (CCL3), MIP-1β (CCL4),
MIP-2α(CXCL2) andMIP-3α (CCL20)

[82, 97]

17 Neutrophils At high concentrations adenosine inhibits
FcγR functions and actin dynamics

[83–85]

18 Neutrophils Inhibits leukotriene (LTB4, LTA4)
synthesis

[98–102]

19 Neutrophils Inhibits degranulation and superoxide
release or oxidative burst

[96, 103–106]

20 Neutrophils Delays neutrophil apoptosis [107]

21 Neutrophils Inhibits autophagy suppressed apoptosis of
neutrophils by blocking caspase-8,
caspase-3 and PARP signalling

[108]

22 Mast cells Increases IL-1β, IL-3 and IL-8 release [109]

23 Macrophages Inhibits LPS-induced TNF-α release [110]

24 Endothelial cells [111]
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Table 2 (continued)

Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors

Row
number

Receptor Ligand [52] Immune cell expression or experimental
model

Results of receptor signalling Reference
number

Reduces thrombin-induced permeability.
Inhibits thrombin-mediated expression
of VCAM-1, ICAM-1 an E-selectin.
Inhibits thrombin induced increase of
IL-6, HMGB-1; chemokines, MCP-1
(CCL-2), CXCL-1 and CXCL-3

25 Naïve T-cells Promotes the differentiation towards
CD4+FoxP3+Lag3+ Tregs, inhibits Th1
and Th17 differentiation, inhibits IL-6
secretion and increases TGF-β secretion

[112]

26 Th1, Th2 and Th17cells Reduces release of IL-2, IL-4, TNF-α and
IFN-γ

[113–115]

27 CD8+CTLs, Th1, Th2 Reduces release of IL-2, TNF-α, IFN-γ.
Inhibits CD8+CTL and Th1 expansion
to alloantigens

[116]

28 CD4+ T-cells Inhibits TCR-mediated IFN-γ release [117]

29 CD4+CD25+FoxP3+ Tregs Increases number of Tregs and increases
the expression of CTLA-4 receptor

[118]

30 CD4+CD25+FoxP3+ Tregs Upregulates ecto-enzymes CD39 and
CD73 expression accelerating adenosine
generation from extracellular ATP

[118]

31 AdoRA2A-knockout mice Bleomycin-induced fibrosis is more severe
and elevated TGF-β is higher than in
wild-type mice

[119]

32 Human leukaemia monocytic cell line
THP-1 cells

TNF-α upregulates the expression of
AdoRA2A followed by the increase of
the expression of CD163 and TGF-β1

[120]

33 Human CD4+ CD25+ CD127low/− Tregs
and CD8+ T-cells

Tregs from gastric cancer patients
hydrolyse ATP into adenosine.
Adenosine synthesised by Tregs
promotes apoptosis and suppresses
proliferation of CD8+ T-cells. Tregs
reduces CD8+ T-cell activity by pro-
moting cAMP synthesis. Tregs Inhibit
the immune function of CD8+ T-cells
through A2aR pathway

[121]

34 AdoRA2A
and
AdorA2-
B

Adenosine Macrophages Differentiation of monocytes towards M2
macrophages with VEGF and IL-10 re-
lease

[122–126]

35 Macrophages Inhibits LPS-induced IL-6, MIP-2 and
TNF-α release

[127, 128]

36 AdoRA2B Adenosine Neutrophils Inhibits neutrophil recruitment and
transmigration, release of TNF-α, IL-6,
MIF-1α and IL-8

[129, 130]

37 Neutrophils Inhibits superoxide generation [131]

38 Neutrophils Inhibits TNF-α release [82]

39 Mast cells Stimulates degranulation (mice), IL-13,
IL-4 (Th2 cytokines)

[109]

40 Macrophages Stimulates IL-10 release [132]

41 DCs Differentiation and maturation towards
regulatory DCs: High level expression
of angiogenic (VEGF), wound healing
(IL-6), chemokine (IL-8), immune
suppressing (IL-10) and tolerogenic
(IDO) factors

[133]

42 DCs Promotes Th17 differentiation via
stimulation of IL-6 release

[134]
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Table 2 (continued)

Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors

Row
number

Receptor Ligand [52] Immune cell expression or experimental
model

Results of receptor signalling Reference
number

43 Bone marrow cells Promotes differentiation towards
CD11c+Gr-1+ DCs that promotes Th17
response

[135]

44 Myeloid cells in systemic
bleomycin-induced pulmonary fibrosis

Myeloid cells AdorA2B knock out mice
show a reduction in CD206 and
arginase-1 (markers for M2 macro-
phages). 10-fold reduction in IL-6 and
5-fold reduction in hyaluronan (both
linked to pulmonary fibrosis)

[136]

45 Mast cells Upregulates the IL-4 and IL-13 release [109]

46 B-cells Induces Ig-E release through IL-4 and
IL-13 release by the adenosine-activated
mast cells

[109]

47 Endothelial cells Reduces endothelial permeability,
ICAM-1, P-selectin and E-selectin (ad-
hesion molecules)

[137]

48 Endothelial cells Stimulates basic fibroblast growth factor
(bFGF) and insulin-like factor-1 release

[138]

49 Bronchial epithelial cells Increases IL-19 release [139]

50 Human leukaemia monocytic cell line
THP-1 cells

Increases TNF-α release through mast
cell-released IL-19

[139]

51 Renal fibroblasts Increases the expression of α-SMA, IL-6,
TGF-β, CTGF and fibronectin
(pro-fibrotic mediators)

[140]

52 AdoR2B knock-out mice Negligible effect on bleomycin-induced
acute lung injury. Enhanced loss of bar-
rier function

[141]

53 AdorR2B knock-out mice exposed to sys-
temic bleomycin

Substantial reduction of fibrosis and IL-6
production

[141]

54 Specific pathogen-free male
Sprague-Dawley rats

Inhibition of AdoRA2B: Attenuates
necrotizing enterocolitis in newborn rats
and protects against body weight loss,
decreases myeloperoxidase activity,
decreases TNF-α, IFN-γ and IL-6 in-
testinal levels and increases IL-10 intes-
tinal levels

[142]

55 RAW 264.7 murine macrophage cells with
and without transfection with AdoRA2B
siRNA cultured with B. abortus 544
biovar 1 strain (ATCC 23448)

Blocking of Adora2b using siRNA induces
productions of IL-6, MCP-1 and TNF-α
in cells without infection. Adora2b
siRNA macrophages have reduced up-
take of B. abortus. Inhibition of
AdoRA2B results in higher total weight
of the spleens and less Brucella coloni-
sation in this organ, decreases IL-10, el-
evates the levels of IFN-γ and IL-12 at
three days p.i. and elevates the levels of
IL-6, TNF-α and IL-12 at 14 days p.i.

[143]

56 AdoRA2B
and
AdoR-
A3

Adenosine Mast cells Stimulates IL-8(chemokine) and VEGF
(angiogenic) release

[144]

57 Peritoneal macrophages from wild type,
AdoRA2A knockout and AdoRA3
knockout FVB or C57BL/6 male mice

Simultaneous adenosine AdoRA2B and
AdoR3 signalling is required to promote
chemotactic migration of macrophages
towards the apoptotic cells

[145]

58 AdoRA3 Adenosine Neutrophils Synergistic AdorA3 and P2Y2R neutrophil
chemotaxis through autocrine ATP
release by pannexin-1, extracellular

[146–152]
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Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors

Row
number

Receptor Ligand [52] Immune cell expression or experimental
model

Results of receptor signalling Reference
number

conversion of ATP to adenosine by the
ecto-enzymes (CD39 and CD73), stra-
tegic translocation of the FPR, AdorA3,
P2Y2, pannexin-1 receptors and CD39,
Cd73 to the leading edge of the neutro-
phils. This results in the amplification of
the chemoattractant gradient sensing and
the self-generated gradients

59 Microglial cells and colonic epithelial cells Suppresses LPS-induced TNF-α produc-
tion

[153, 154]

60 Anti-CD3-activated CD8+ CTLs Reduces the expression of mRNAs coding
for granzyme B, perforin, Fas ligand and
TNF-related apoptosis-inducing ligand
(TRAIL). Diminishes
Nalpha-CBZ-L-lysine thiobenzylester
esterase activity (enzyme with cytotoxic
activity). Reduces IL-2 sand IFN-γ re-
lease.

[155]

61 Microglia BV-2 cell line Reduces elevated hydrostatic
pressure-induced inducible nitric oxide
synthase (iNOS) expression, microglia
migration and phagocytosis in BV-2
cells

[156]

62 AdoRA3 knock-out mice exposed to
intratracheal bleomycin

Increase in eosinophil numbers and
selective upregulation of
eosinophil-related chemokines and cy-
tokines. But decreased eosinophil per-
oxidase activity in the BALF

[157]

63 Human colonic mucosa biopsies Significantly decreases TNF-α and IL-1β
production and attenuates the
NF-κBp65 activation

[158]

64 P2X1R ATP Neutrophils and platelets Promotes thrombosis and fibrinogenesis:
Keeps circulating neutrophils in
quiescent state, recruit neutrophil to the
injury site, activate adhered neutrophils
and platelets

[159]

65 Bovine polymorphonuclear leukocytes
(PMNs)

Oleic acid (OA) and linoleic acid (LA) in-
duce Neutrophil Extracellular Traps
(NETs) formation and ATP release via
PANX1 and activation of P2X1

[160]

66 P2X1R,
P2X4R
and
P2X7

ATP Naïve T-cells TCR stimulation results in the translocation
of pannexin-1 hemichannels, P2X1Rs
and P2X4Rs to the immune synapse.
While the P2X7Rs remain uniformly
distributed. This process is required to
induce calcium entry, NFAT and release
of IL-2

[161]

67 P2X3R ATP Mast cells Increases the expression of IL-4, IL-6,
IFN-γ, TNF-α, RANTES and M IP-2.
Increases the release of IL-6 and IL-13

Article
retracted
due to
figure
irregulari-
ties [162]

68 P2X4R ATP γδ T-cells Activates and upregulates TNF-α and
IFN-γ release

[163]

69 Microglial cells Promotes survival after LPS-activation [164]

70 CD4+T-cells from Human peripheral blood
mononuclear cells (PMBCs)

Chemokine stromal-derived factor-1α
(SDF-1α) triggered mitochondrial ATP

[165]
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Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors

Row
number

Receptor Ligand [52] Immune cell expression or experimental
model

Results of receptor signalling Reference
number

production, rapid bursts of ATP release
and increased migration of primary hu-
man CD4+ T cells. This process
depended on pannexin-1 ATP release
channels and autocrine stimulation of
P2X4Rs. SDF-1α stimulation caused
localised accumulation of mitochondria
with P2X4Rs near the front of cells,
resulting in a feed-forward signalling
mechanism that promotes cellular Ca2+
influx and sustains mitochondrial ATP
synthesis at levels needed for pseudopod
protrusion, T cell polarisation and cell
migration

71 Chinese hamster ovary (CHO) cells
transfected with human Kv1.3 cDNA and
rat P2X4 construct

The voltage-gated potassium channel
Kv1.3 is required for microglia activa-
tion . Inhibition of Kv1.3 channels
completely nullified the ability of Kv1.3
to normalise membrane potential
changes, resulting in excessive
depolarisation and reduced calcium
transients through P2X4 receptors

[166]

72 P2X4R and
P2Y11R

ATP CD4+T-cells from Human peripheral blood
mononuclear cells (PMBCs), Jurkat T
cells (clone E6-1) and U-937 cells

P2Y11Rs retract from the immune synapse
(IS) towards the back of cells where their
stimulation by extracellular ATP in-
duces cAMP/PKA signalling that redi-
rects mitochondrial trafficking to the IS.
P2Y11Rs thus reinforce IS signalling by
promoting the aggregation of mitochon-
dria with panx1 ATP release channels
and P2X4 receptors at the IS. This dual
purinergic signalling mechanism in-
volving P2X4Rs and P2Y11Rs focuses
mitochondrial metabolism to the IS
where localised ATP production sus-
tains synaptic activity in order to allow
successful completion of T cell activa-
tion responses

[167]

73 CD4+ T-cells from Human peripheral blood
mononuclear cells (PMBCs)

Autocrine P2X4R and simultaneous
P2Y11R activation regulate
mitochondrial metabolism, T-cell
polarisation, pseudopod formation and
redistribution of P2Y11Rs to the back of
polarised T-cells resulting in T-cell traf-
ficking. Exogenous activation of
P2Y11R blocks T-cell trafficking

[168]

74 P2X4R
and/or
P2X7R

ATP Neutrophils, monocytes, macrophages, DCs,
CD4+ T-cells, CD8+ T-cells, iNKTs,
adenoviral infected macrophages and
alveolar epithelial cells

Mediates NLRP3
inflammasome-dependent IL-1β and
IL-18 secretion (signal 2, non-classical
pathway), increases IL-6 production

[169–176]

75 P2X5R C57BL/6J mice: wild type, P2X5R
knockout, P2X7R knockout and
P2X5R/P2X7R knockout and their bone
marrow-derived macrophages (BMMs)

P2X5R-deficient BMMs exhibit defective
cytosolic killing of L. monocytogenes
P2X5R is required for L.
monocytogenes-induced inflammasome
activation and IL-1β production and that
defective L. monocytogenes killing in
P2X5R-deficient BMMs is substantially
rescued by exogenous IL-1β or IL-18.
The P2X5-dependent anti-L.

[177]
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Receptor Ligand [52] Immune cell expression or experimental
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Results of receptor signalling Reference
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monocytogenes immunity is indepen-
dent of the ATP-P2X7 inflammasome
activation pathway

76 P2X7R Unactivated state in
the absence of
ATP

Macrophages and P2X7R-transfected
HEK-293 cells

P2X7 is a scavenger receptor for apoptotic
cells in the absence of i ts ligand ATP

[178, 179]

77 ATP release
channel

Alveolar epithelial type I cells (AT I cells),
mice osteoclast cells, murine
neuroblastoma cells, astrocytic cell line,
mice astrocytes, B16 melanoma cells

Release ATP after mechanical deformation
(AT I cells), spontaneously (osteoblast
cells), after activation (neuroblastoma
cells, astrocytic cell line), after γ
irradiation (melanoma cells)

[180–185]

78 P2X7R-mediated
ATP release

Mouse 3T3fibroblasts P2X7R-mediated ATP secretion is
accompanied by depletion of cytosolic
ATP

[186]

79 Bone marrow–derived dendritic cells from
WT mice and Panx1−/− C57BL/6 mice

Upon stimulation of the P2X7 receptor by
ATP, Panx1 contributed to fast DC
motility by increasing the permeability
of the plasma membrane, which resulted
in supplementary ATP release

[187]

80 ATP, low tonic
basal activation

HET293 and HELA cells Elevates mitochondrial calcium and
potential, cellular ATP levels and
promotes serum-independent growth.
This process requires a full pore-forming
function

[75]

81 In-vitro scratch wound assay with HaCat
cells (human skin keratinocytes)

Medium hyaluronan fragment
(MMW-HA, between 100 and 300 kD)
increases tight junction ZO-1 protein
expression and induces a low activation
of P2X7 receptor resulting in improved
closure of the wound area. This is ac-
companied by pore formation as shown
by Yo-Pro-1 cellular uptake. The
P2X7R antagonist brilliant blue G
(BBG) completely inhibits this process

[76]

82 HEK293 and NIH3T3 cells Increases the Ca2+ content of the
endoplasmic reticulum, activates
NFATc1 and protects from apoptosis

[77]

83 PC3 cells LNCaP, Kelly, RPMI-8226,
DU145 and SK-MEL-5 cells

Drives the expression of nfP2X7, a key
mediator of cell survival

[188]

84 Osteoclast-like cells Promotes the increase in the extracellular
adenosine concentrations

[189]

85 HEK293 cells The initiation of anaerobic glycolysis
independent of the oxygen content:
Upregulates glucose transporter Glut1
(thus enhances intracellular glycogen
stores); Upregulates glycolytic enzymes
(PFK, G3PDH, PKM2), phosphorylated
Akt/PKB and hypoxia-inducible factor
1a (HIF-1a) expression

Impedes the Krebs cycle independent of
the oxygen concentrations: Promotes
pyruvate dehydrogenase kinase 1
(PDHK1) and inhibits of pyruvate de-
hydrogenase (PDH, conversion of pyru-
vate to acetyl-coA)

[78]

86 ATP >1 mM,
vigorous
activation

C57BL/6 mice P2X7 activation inhibits the suppressive
potential and stability of Tregs. In
contrast, P2X7R inhibition promotes the
conversion of the cell-autonomous

[190]
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Receptor Ligand [52] Immune cell expression or experimental
model

Results of receptor signalling Reference
number

conversion CD4+T cells into Tregs after
stimulation of their T-cell receptors
(TCRs)

87 C57BL/6wild type and P2X7 knockout mice P2X7 knock-out mice show an increase of
CD90/CD45RBlow FoxP3+ Tregs in co-
lon lamina propria, prevents Tregs death
in mesenteric lymph nodes and these
Tregs produce more IL-10. Colitis is
prevented or reduced and P2X7
knock-out mice. Treg cells lacking the
P2X7 receptor have higher levels of
integrin CD103

[191]

88 C57BL/6 mice P2X7R activation reduces the frequency of
Tregs and P2X7R inhibition increases
the expansion of Tregs

[192]

89 C57BL/6 wild type, P2X7 knockout mice
and foetal thymus organ culture

Selectively increases immature γδ+CD25+
cells which are much more competent to
release ATP than pre-TCR expressing
cells following TCR stimulation and
Ca2+ influx. Genetic ablation as well as
pharmacological antagonism of P2X7
results in impaired ERK
phosphorylation, reduction of early
growth response (Egr) transcripts
induction, diversion of
γδTCR-expressing thymocytes towards
the αβ lineage fate and increased repre-
sentation of the Id3-independent
NK1.1-expressing γδ T-cell subset in
the periphery

[193]

90 C57BL/6J mice implanted with melanoma
B16F10 cells

P2X7 activation in tumour infiltrating
CD8+ lymphocytes (TILs) promotes cell
cycle arrest and p38 MAPK mediated
cellular senescence in the tumour mi-
croenvironment

[194]

91 BAC1.2F5 macrophage cell line P2X7 receptor-dependent blebbing and the
activation of Rho-effector kinases,
caspases and IL-1μβ release

[195]

92 Dendritic cells cultured from mice bone
marrow precursor cells

Autocrine-mediated (pannexin-1 channels)
fast migration of dendritic cells through
the reorganisation of the actin cytoskel-
eton

[187]

93 RAW 264.7 murine macrophages mediates actin reorganisation and
membrane blebbing via p38 MAP
kinase and Rho

[196]

94 Monocytes Induces MMP-9 and TIMP-1 release, fi-
brosis markers

[197]

95 M1 macrophages Induces release of 74 pro-inflammatory
proteins detected by antibody protein
array and 33 inflammatory proteins de-
tected by LC-MS/MS

[198]

96 M2 macrophages Induces release of 21 anti-inflammatory
proteins detected by LC-MS/MS

[198]

97 Macrophages Enhances intracellular bacterial killing [199]

98 Macrophages and P2X7R-transfected
HEK-293 cells

Mediates rapid uptake of beads and
bacteria in the absence of serum after
ATP activation

99 Mast cells Induces degranulation [200]
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100 Naïve NKTs Facilitates NAD+-induced inhibitory signal
through the ART2-P2X7 pathway
resulting in non-functional NKTs

[201]

101 Activated NKTs Facilitates NAD+-induced stimulatory
signal through the ART2-P2X7 pathway
resulting in functional NKTs with in-
creased IFN-γ and IL-4 release

[201]

102 B cells Induces shedding of IgE receptor (CD23)
and CXCL16. Soluble CD23 sustains
growth of B-cell precursors, promotes B
and T cell differentiation and drives cy-
tokine release from monocytes.
CXCL16 is a chemoattractant for lym-
phocytes

[202, 203]

103 CD11c+CD103+ DCs Mediates infection-induced rapid recruit-
ment of CD11c+CD103+ DC subsets
into the epithelial layer of the gut

[204]

104 Naïve T-cells TCR stimulation triggers rapid release of
ATP and upregulates P2X7 gene
expression. Autocrine ATP stimulation
through the P2X7R is required to for the
TCR-mediated calcium influx, NFAT
activation and IL-2 production

[205]

105 T follicular B helper cells (Tfh cells) Reduces and thus controls the number of
Tfh cells in Peyer’s patches in the gut
with high-affinity IgA responses to pro-
mote host-microbiota mutualism

[206]

106 CD4+CD25+FoxP3+ regulatory T-cells
(Tregs)

Facilitates NAD+-induced Tregs depletion
through the ART2-P2X7 pathway

[207]

107 DCs Increases CD80, CD 86, STAT-1 and
P2X7R expression, IFN-β release and
T-cells expansion. Reduces Tregs num-
bers

[208]

108 AT I cells Induces VCAM-1 shedding and neutrophil
transmigration in acute lung injury

[209]

109 Human endometrial mesenchymal stem
cells, murine luteal cells

Causes cell cycle arrest in G0/G1 phase
and suppresses cell replication

[210, 211]

110 Brain-derived type-2 astrocyte cell,
mesangial cells

Stimulates TGF-β mRNA expression [212, 213]

111

112 Sprague-Dawley rats with and without spinal
cord injury

After spinal cord injury P2X7R of
microglia was upregulated by BzATP
and down-regulated by P2X7R antago-
nist A-438079. Upregulation of P2X7R
on microglia coincides with increase of
neuroinflammation after spinal cord in-
jury. P2X7R of microglia participates in
spinal cord-mediated neuroinflamma-
tion via regulating NLRP3
inflammasome-dependent inflammation

[214]

113 Abdominal cells of male Kunming mice of
clean grade

Transfection of the long non-coding
siRNA uc.48+ decreases the upregulated
mRNA and protein levels of the P2X7
receptor in diabetes mellitus type 2 mice
model

[215]

114 Human embryonic kidney cells (HEK293T) Promotes paxillin and NLRP3 migration
from the cytosol to the plasma
membrane and facilitates
P2X7R-paxillin interaction and

[216]
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PaxillinNLRP3 association, resulting in
the formation of the
P2X7R-Paxillin-NLRP3 complex.
Paxillin is essential for ATP-induced
NLRP3 inflammasome activation in
mouse bone marrow-derived macro-
phages and bone marrow-derived den-
dritic cells (PMDCs) as well as in human
PBMCs and THP-1-differentiated mac-
rophages

115 P2Y1R knockout, P2Y12R knockout,
P2Y13R knockout, P2X7R knockout,
NLRP3 knockout and wild type C57BL/6
mice

Aggravates inflammatory bowel disease
through ERK5-mediated tyrosine phos-
phorylation of the adaptor protein ASC
essential for NLRP3 inflammasome ac-
tivation and the secretion of IL-1β

[217]

116 C57BL/6 mice: Wild-type, P2X7 knockout,
NLRP3 knockout and caspase-1/11
knockout

Induces the release of extracellular vesicles
containing CD14. Extracellular CD14
induced during sepsis controls bacterial
dissemination and cytokine secretion

[218]

117 C57BL/6 J mice and their peritoneal
macrophages, immortalised human liver
stellate cell line LX-2 and immortalised
human leukaemia monocytic cell line
THP-1 cells

Blockade of P2X7R reverses
TAA-induced liver fibrosis
thioacetamide and attenuates
thioacetamide-induced inflammatory re-
sponse by inhibiting NLRP3 and NF-κB
activation in mice liver. P2X7R overex-
pression significantly enhances
TGF-β-increasedα-SMA and collagen I
protein and mRNA level in LX-2 cells.
Macrophages increase fibrogenesis in
LX-2 HSCs through the release of IL-1β
by P2x7R stimulation

[219]

118 Macrophages derived from human
leukaemia monocytic cell line THP-1 cells
cultured with T. pallidum with and with-
out P2X7R gene siRNA-transfection

T. pallidum increases both the mRNA and
protein levels of P2X7R, increases levels
of NLRP3 mRNA expression and
IL-1β. SiRNA transfection of the
macrophages reduces the percentage of
spirochete-positive macrophages and
spirochete internalisation

[220]

119 Human and mice macrophages Enhances the Neutrophil Extracellular
Traps (NETs) and LL-37 formation (an
antibacterial protein externalised on
NETs) activated caspase-1, the central
enzyme of the inflammasome, in both
human and murine macrophages,
resulting in release of active IL-1β and
IL-18. LL-37 activation of the NLRP3
Inflammasome utilises
P2X7R-mediated potassium efflux.
IL-18 can stimulate NETosis (NET ac-
tivation and release) in human neutro-
phils

[221]

120 ATP >1 mM,
prolonged
vigorous
activation

Macrophage, HeLa cells, 1321-N1 astro-
cytes and HEK293 cells

Induces pannexin-1 mediates large pore
formation and IL-1β release

[222]

121 Human neutrophils and HL-60 cells Mediates membrane large pore formation
and superoxide generation

[223]

122 Matured peripheral T-cells High dose ATP promotes apoptosis, cell
death and CD62L shedding (homing

[224–226]
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receptor for central T-cells) independent
from the NAD+-induced ART2-P2X7
pathway

123 J774 cells and HEK cells expressing the
P2X7 receptor

Promotes the formation of pores permeable
to very large ions leading to cytolysis

[227]

124 P2X7R and
P2Y13R

Human mast cell line HMC-1 and rat baso-
philic leukaemia cell line (RBL-2H3) with
and without transfection of
P2Y13-siRNAs and P2X7-siRNAs

P2Y13R mediates nanomolar
mechanical-induced ATP release.
P2X7R mediates micromolar
mechanical-induced ATP release

[228]

125 P2Y1R and
P2Y12R

ADP>ATP Platelets P2Y1R and P2Y12R synergistic action in
thrombin-induced platelet activation

[229]

126 Platelets C-activation of P2Y1R and P2Y12R by
ADP upregulates the expression of
P-selectin (CD62P)

[230]

127 P2Y2R UTP≥ATP Neutrophils Synergistic AdorA3 and P2Y2R neutrophil
chemotaxis (see under AdoRA3 above)

[146, 147]

128 Neutrophils and fibroblasts Mediates recruitment of neutrophils into
the lungs, proliferation and migration of
lung fibroblasts and IL-6 production

[231]

129 Monocyte-derived DCs (moDCs),
eosinophils

Promotes chemotaxis [232]

130 Eosinophils Induces VCAM-1 expression [233]

131 Peritoneal macrophages (RPMs) isolated
from resting C57/BL6 mice

P2Y2R-Induced c-Jun N-terminal kinase
(JNK) activation is responsible for
Increased in IL-1

β production

[234]

132 Murine model of cutaneous leishmaniasis Induces CASP-1 activation and IL-1β se-
cretion during L. amazonensis infection.
IL-1β/IL-1R signalling is crucial for
P2Y2R-mediated protective immune re-
sponse in an experimental model of cu-
taneous leishmaniasis

[235]

133 ChATBAC-eGFP mice Elicits tracheal brush cells generation of
cysteinyl leukotrienes. Aeroallergens
elicit P2Y2-dependent tracheal brush
cells cysteinyl leukotrienes generation
and tracheal brush cells -dependent air-
way eosinophilia

[236]

134 P2Y4R and
P2Y12

UTP≥ATP,
ADP>ATP,
respectively

Microglial cells P2Y4R and P2Y12R synergistic action
increases microglial chemotaxis

[237, 238]

135 P2Y6R UDP>UTP>>ATP Neutrophils Induces neutrophil activation and
extracellular trap formation

[239]

136 Human leukaemia monocytic cell line
THP-1 cells

Induces IL-1β release [240]

137 Macrophages Induces MCP-3(CCL7) expression in re-
sponse to necrotic tissue cells

[241]

138 Microglial cells Facilitates phagocytosis [242]

139 Microglial cells Induces the expression of MCP-1 (CCL-2) [243]

140 Microglial cells Promotes phagocytosis [244, 245]

141 Basophils UDP promotes IgE-dependent degranula-
tion

[246]

142 Plasmacytoid DCs UDP and UTP strongly inhibit IFN-alpha
secretion induced by influenza virus or
CpG-A

[247]

143 Tissue cells Induces IL-1α, IL-8/CXCL8 and IL-6 re-
lease

[240, 248,
249]
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144 Tissue cells Induces IFN-β release [250]

145 Wild-type C57BL/6 mice and their DCs Inhibits the maturation and activation of
DCs via suppressing the activation of the
transcription factor NF-κB. In-vitro
studies show that P2Y6 signalling in-
hibits the production of IL-12 and IL-23
and the polarisation of Th1 and Th17
subsets mediated by DCs. Mice lacking
P2Y6 develop more severe experimental
autoimmune encephalomyelitis com-
pared with wild-type mice

[251]

146 Institute of Cancer Research (ICR) mice,
primary microglial cells and neurons from
Sprague Dawley rat

Transient middle cerebral artery occlusion
(tMCAO) increases P2Y6R expression.
P2Y6 receptor-specific inhibitor
blocked the phagocytosis of primary
microglia under LPS and UDP stimula-
tion. P2Y6 receptor-specific inhibitor
down-regulates myosin light-chain ki-
nase (MLCK) required for the cytoskel-
etal remodelling for the formation of the
phagocytic cup. Inhibition of P2Y6R
does not reduce the tMCAO-induced
upregulation of mRNA levels of IL-1α,
IL-1β, IL-6, IL-10, TNF-α and TGF-β

[252]

147 P2Y11R ATP Neutrophils Inhibits neutrophil apoptosis [253]

148 Neutrophils Enhances chemotactic response [254]

149 Neutrophils and moDCs Induces maturation of the granulocytic
progenitors and monocyte
differentiation

[255, 256]

150 moDCs Inhibits migratory capacity [257]

151 moDCs Induces IL-8 release [258]

152 Monocytes Autocrine differentiation towards M1
macrophages, induces IL-1β, IL-6,
IL-12 and TNF-α release

[259]

153 P2Y12R ADP>ATP Monocytes Increases monocyte adhesion [260]

154 Vascular smooth muscle cells Upregulates MCP-1 (CCL-2) [260]

155 DCs Increases antigen endocytosis with
subsequent enhancement of specific
T-cell activation

[261]

156 Microglial cells Induces movement of juxta-vascular
microglial processes to close the injured
blood-brain barrier (BBB) and
microglial activation

[262, 263]

157 Microglial cells Promotes migratory, inflammatory
(TNF-αand IL-6 release) responses

[264]

158 Microglial cells ADP treated microglial cells induces CCL3
expression in activated T-cells

[265]

159 Murine model of sepsis, caecal ligation and
puncture (CLP). Co-cultures of human
platelets and T-cells with or without
anti-CD3/CD28

Blockade of the P2Y12 signalling pathway
restrains Treg proliferation in vivo and
in vitro

[266]

160 Male C57BL/6 mice microglial cells Mediates microglial activation via Ras
homolog family member
A/Rho-associated protein kinase
(RhoA/ROCK) pathways

[267]

161 P2Y13R ADP>ATP Red blood cells Inhibits ATP release [268]

162 P2Y14R UDP>UDP-glucose Neutrophils [269, 270]

27Purinergic Signalling (2022) 18:13–59



163. Coronaviruses can induce inflammation by the activation
of the intracellular sensing molecules IRIG1/MDA5 [285,
286]. Reportedly, acute inflammation [69, 70] and infec-
tion with SARS-CoV-2 virus induce ATP release [287].
The vesicular exocytosis-mediated release of ATP,
connexin-43 (Cx43)-mediated ATP release and
pannexin-1 (Panx-1)-mediated ATP release can be trig-
gered by the activation of Toll-like receptor 4 (TLR4)
and TLR2 by pathogen-associated molecular patterns
(PAMPs) and by the activation of P2X7Rs [180–182,
187]. In turn, activation of the P2X7Rs upregulates the
protein expression of TLR 2, TLR3, TLR4 and TLR 5
[288]. Additionally, increased levels of TNF-α during
inflammation induce ATP release via Panx-1 [289]. Pro-
inflammatory immune response is initiated by the in-
crease in the extracellular ATP, ADP and adenosine
levels in the microenvironment of immune cells activat-
ing the P2XRs, P2YRs and AdoRs (Fig. 3) [57, 60, 169,
290]. In this case, ATP acts as a danger-associated mo-
lecular pattern (DAMP) [291, 292]. Increased ADP levels
promote platelet activation and intravascular thrombosis
(Table 2, rows 125 and 126). Reportedly, the pathologi-
cal changes in the lung in patients with COVID-19 pneu-
monia showed marked microvascular thrombosis [293].
The EC50 for AdoRs is in the range of 26 nM to
1.4 μM [281] and for ATP, UTP or ADP receptors
(P2XRs and P2YRs with the exception of the P2X7R)
in the range of 0.01 nM to 10 μM [284, 294].
Obviously, the extent of the cellular ATP release is pro-
portional to the severity of the infection. A severe infec-
tion with SARS-CoV-2 causes massive extracellular ATP
release by the infected cells. This may be confined to the
airway mucosa and the lung or may be extensive in mul-
tiple organs. Although increased extracellular ATP con-
cent ra t ions upregula te the express ion of ec to-
nucleotidases [295] these high ATP concentrations

exceed the capacity of these ecto-enzymes (CD39,
CD73, etc.) to clear the extracellular space from ATP
molecules [60] ending in ATP concentrations of >1
mM. This is demonstrated in a report where the authors
show that TLR-mediated CD39 internalisation (causing
the deactivation of the ecto-enzyme CD39) in mice bone
marrow-derived dendritic cells (BMDCs) leads to the ac-
cumulation of extracellular ATP to 1.4 mM [296]. The
activation of P2X7Rs in ongoing inflammation is the
hallmark of severe pro-inflammatory immune response
(Table 2, rows 74, 86–119 and Fig. 3) [297] including
COVID-19 [298]. If these levels of extracellular ATP are
accompanied by the absence of the required fluctuations
for o the r pur ine rg ic recep to r to recover f rom
desensitisation, all P1 and P2 (other than P2X7)
purinergic receptors will become fully desensitised de-
marcating the initiation of hyperinflammation (Fig.3 and
Table 2, rows 120–123) [279–283].

Hyperinflammation is characterised by the activation
of P2X7Rs and desensitisation of other P2 receptors
and AdoRs

As mentioned above, hyperinflammation starts when fluctua-
tion of the extracellular nucleotides and adenosine no longer
occurs and leads to prolonged activation of the P2X7Rs of the
immune cells. Prolonged vigorous activation of the P2X7Rs
leads to macropore formation and cytolysis with uncontrolled
ATP release [222, 223, 227, 299] (Table 2, rows 120–123)
causing hyperinflammation with massive pro-inflammatory
immune response, massive pro-inflammatory and anti-
inflammatory cytokine release: the cytokine storm (Fig. 3).
In the early phase of COVID-19, hyperinflammation may be
confined to the site of viral entry (i.e. airway mucosa and
conjunctivae) but as viral replication and viral spreading prog-
ress, systemic hyperinflammation devel ops.

Table 2 (continued)

Effects of extracellular nucleotides and nucleoside on the innate and adaptive immune system through different purinergic receptors

Row
number

Receptor Ligand [52] Immune cell expression or experimental
model

Results of receptor signalling Reference
number

Enhances neutrophil chemotactic response
through IL-8 dependent manner

163 Sprague-Dawley Rats and human leukaemia
monocytic cell line THP-1 cells

P2Y14R knockout reduces in-vivo and
in-vitro monosodiu m urate-indu ced
NLRP3 inflammasome activation, in-
creased expressions of NLRP3, ASC,
active Caspase-1 and downstream active
IL-1β. Therefore, increases resistance to
monosodium urate-induced acute gouty
arthritis. Decreased AMP reverses the
in-vivo and in-vitro protective effect of
P2Y14R knockout

[271]
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The upregulation of the expression of ectonucleotidases
also leads to an increase in the concentrations of other nucle-
otides (i.e. ADP) and adenosine. These high extracellular con-
centrations of nucleotides and adenosine do not show concen-
tration fluctuations required for the recovery (resensitisation)
time from desensitisation causing a state of persistent
desensitisation of all P2XRs, P2YRs [279, 280, 283, 300,
301] and AdoRs [282] with the exception of P2X7Rs.
Consequently, the physiological function in the affected or-
gans and inflamma tory response of the immune system are
deactivated. This leads to the failure of organ function (i.e.
ARDS in the lungs as we reported earlier [61]) and the im-
mune system (immune paralysis) rendering the host suscepti-
ble to secondary co-infections(Fig.3). Sepsis-induced

immunosuppression [302, 303] or compensatory anti-
inflammatory response syndrome (CARS) in critically ill pa-
tients [304] was already raised by researchers in 1996 [305]
and is a well-known phenomenon in critically ill patients
[302]. Secondary bacterial infections occurred in 34.4% of
274 surviving elderly patients (age over 60 years) with
COVID-19 and in 81.7% of 65 deceased patients [15]. In
addition, it was found that 76 co-infections with other respi-
ratory pathogens occurred in another cohort of 354 COVID-
19 patients (16 of 115 mild cases (13.9%), 33 of 155 severe
cases (21.3%) and 27 in 84 critical cases (32%)) [16]. In a
meta-analysis involving 118 scientific reports on patients with
COVID-19, co-infection with other pathogens at admission
was observed in 19% and superinfection with other pathogens
during admission in the hospital in 24% [306].

Control of hyperinflammation is annihilated
by the downregulation of Tregs through the activation
of P2X7R and the desensitisation of adenosine receptors

Tregs are key elements in the control of hyperinflammation
[307]. Activation of AdoRA2As promotes the differentiation
of naïve T-cells towards regulatory T-cells(Tregs) [112], in-
creases the frequency of Tregs and the expression of CTLA-4
receptor and upregulates ecto-enzymes CD39 and CD73 ex-
pression accelerating adenosine generation from extracellular
ATP [118] (Table 2, rows 25, 29, 30 and 33). This process is
upset in case of desensitisation of AdoRs. In addition, activa-
tion of P2X7Rs inhibits the suppressive potential and stability
of Tregs, inhibits the clonal expansion of Tregs, promotes
Treg death, induces Treg depletion and reduces Treg IL-10
production (Table 2, rows 86–88, 106 and 107). In COVID-19
patients, significant lower Treg frequencies [308–310], lower
expression of forkhead box protein P3 (FoxP3), lower expres-
sion of transforming growth factor-β(TGF-β) and lower cy-
tokine TGF-β secretion [309] are observed compared to
healthy control. Additionally, a reduced proportion of specific
SARS-CoV-2-reactive Tregs was reported [311]. The
desensitisation of AdoRs and the activation of P2X7Rs may
well be the underlying mechanism of the low Tregs frequency
in severe and critically ill COVID-19.

P2X7R antagonist restores the reduced Tregs
population and Tregs function in hyperinflammation

As stated above, infected cells release ATP into the extracel-
lular space. Obviously, the P2X7R antagonist blocks the acti-
vation of the P2X7Rs. Because a significant proportion of the
ATP release to the extracellular space is mediated by the
P2X7R (Table 2, rows 77–79), P2X7R a ntagonism combined
with the upregulated ATP hydrolysing activity of the ecto-
enzymes results in the decrease of the extracellular ATP con-
centrations. This can potentially abrogate hyperinflammation

Fig. 2 Clearance of extracellular ATP and adenosine by
ectonucleotidases and soluble extracellular nucleotidases [272–274275].
This process is indispensable to enable receptors to recover from
desensitisation following receptor activation (resensitisation, see text
under the heading “Purinergic signalling in inflammation and
hyperinflammation” for explanation). CD39,Ecto-nucleoside triphos-
phate diphosphohydrolase 1-3 (ENTPD 1-3); CD73, Ecto-5′-nucleotidase
(5’-NT); NPP, nucleotide pyrophosphatase/phosphodiesterase; TNAP, t-
issue nonspecific alkaline phosphatase; ADA, adenosine deaminase;
ADK , adenosine kinase; HGPRT , hypoxanthine-guanine
phosphoribosyltransferase; ATP, adenosine triphosphate; ADP, a-
denosine diphosphate; AMP, adenosine monophosphate; ADO, adeno-
sine; ENTs, equilibrative nucleoside transporters; CNTs, concentrative
nucleoside transporters
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Fig. 3 A schematic presentation of the activation of the purinergic
receptors of the immune cells causing a pro-inflammatory response lead-
ing to hyperinflammation. Viral infection drives the controlled cellular
release of ATP molecules. Increased extracellular nucleotides levels ac-
tivate P2XRs and P2YRs. Upregulation of the extracellular ATP hydro-
lysing enzymes as depicted in Fig. 2 results in the increase of extracellular
adenosine levels followed by the activation of the adenosine receptors
(AdoRs). These processes initiate the physiologic pro-inflammatory re-
sponse of the immune system. The green line at the bottom of the graph
represents the extracellular ATP levels. The ascending part is caused by
the ATP release, and the descending part results from the clearance of
ATP by the extracellular or membrane-bound ATP hydrolysing enzymes.
As the disease progresses and extracellular ATP levels increase above 1
mM, the P2X7R is additionally and effectively activated leading to a
severe immune response. Except for P2X7Rs, all these receptors are
known to be subject to desensitisation. Desensitisation of a receptor is
defined as being unresponsive to activation by the ligand, resulting in

(near) zero transmembrane signal transduction. A certain extent of
desensitisation occurs after every activation, and this desensitisation re-
quires time to return to the state of complete resensitisation. Increasing
intensity and duration of the activation stimuli leads to increasing extent
of desensitisation and duration of the recovery time to the state of com-
plete resensitisation (represented by brown boxes with increasing size at
the bottom of the graph). Severe viral infection can increase the controlled
ATP release beyond the capacity of the extracellular enzymes to clear
ATP and adenosine molecules. This causes a sustained high extracellular
ATP and adenosine levels preventing the purinergic receptors from re-
covering from the state of desensitisation. The capacity to clear invading
microorganisms diminishes leading to immune paralysis. In addition,
prolonged high extracellular levels of ATP and activation of the P2X7R
lead to macropore formation and cell death with uncontrolled release of
ATP. In turn, this leads to vigorous activation of the P2X7R of the im-
mune cells promoting massive production of cytokines ending in a cyto-
kine storm and hyperinflammation
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and the concomitant immune paralysis. Moreover, P2X7R
inhibition promotes the cell-autonomous conversion of
CD4+ T cells into Tregs after stimulation of their T-cell re-
ceptors (TCRs) [190]. In addition, P2X7R knock-out mice,
mimicking the state of complete P2X7R inhibition, show an
increase in tissue Tregs, prevent Tregs death and the Tregs
produce more IL-10 and TGF-β [191]. Experimental inhibi-
tion of P2X7Rs restores the Tregs levels and function
(Table 2, rows 86–88, 106 and 107) [190–192]. Inhibition of
the P2X7R or P2X7R knock-out can attenuate severe inflam-
mation in abdominal sepsis [312] and in acute lung injury
[313, 314]. Apparently, amelioration of hyperinflammation
by P2X7R inhibition is based on the increased activation
and clonal expansion of the anti-inflammatory Tregs popula-
tion (Table 2, rows 86–88, 106 and 107).

Some authors proposed that the P2X7R is an ideal candida
te to target in COVID-19-associated severe pneumonia [298,
315], and others suggested that hyperactivation of the P2X7R
plays a key role in the neuropathology of COVID-19 and that
P2X7R antagonism may prevent or treat neurological mani-
festations of COVID-19 [316].

Lidocaine is a P2X7R antagonist

In 2015 it was discovered that lidocaine is a P2X7R antagonist
[74], and therefore, lidocaine can potentially reduce the clin-
ical symptoms of hyperinflammation significantly. In experi-
mental sepsis, lidocaine improves organ failure [317–319] and
survival [317]. In septic patients, lidocaine reduces neutrophil
recruitment by the mitigation of chemokine-induced arrest
and transepithelial neutrophil migration [320]. Neutrophil re-
cruitment is an important facilitating process in the pathogen-
esis of multiple organ failure [320] and hyperinflammation in
COVID-19 [321–324]. In patients with skin lesions from
atopic dermatitis, lidocaine increases the proportion of Tregs
and upregulates the FoxP3 expression [325]. In addition, lido-
caine increases the IL-10 levels in mechanically ventilated
mice [326] and decreases the TNF-α in BAL, plasma and lung
samples in pigs undergoing surgery for lung resection [327].

The P2X7R antagonist dose-response relationship of lido-
caine is presented in Fig.4. The IC50 for the inhibition of the
P2X7R by lidocaine is about 66.07 μg/ml (0.28 mM) [74]
where IC50 is defined as the required extracellular concentra-
tions of the receptor antagonist to reach an inhibitory effect of
halfway between maximal activation and maximal inhibition
(half-maximal inhibitory concentration). The main issue is
that the IC50 for P2X7R inhibition is much higher than the
maximal tolerable plasma concentration for mammals. The
maximal tolerable plasma concentration in humans is about
4.7 μg/ml (0.02 mM); this corresponds with an IC10 or lower
(<10% inhibitory concentration, Fig.4). Above this lidocaine
plasma concentration, adverse effects in increasing severity
occur as presented in Table 3 [328, 329]. Thus, systemic lido-
caine plasma concentrations of >4.7 μg/ml must be avoided
[328, 329]. Caveat: The inhibitory concentrations of lidocaine
for P2X7R as presented in Fig.4 are not corrected for the series
resistance (in the range of 1–3 MΩ) of the used whole-cell
voltage clamp method with two puller microelectrodes [74].
One should bear in mind that after correction for series resis-
tance, the reported inhibitory concentration values including
IC50 are expected to be higher [330].

In addition to the P2X7R antagonist properties, lidocaine is
also known to have several other inhibitory pharmacological
targets: the voltage-gated sodium channels (VGSC: Nav1.2
[331], Nav1.3 [332], Nav1.4[333], Nav1.5 [334], Nav1.7
[335], 1.8 [336] and Nav 1.9 [337]), the Toll-like receptor 2
(TLR 2) [338], TLR4 [318] and the N-methyl-D-aspartate
receptor (NMDAR) [339].

VGSCs conduct sodium ions inward and are essential for
the transduction of sensory stimuli, the generation of the ac-
tion potential and the release of neurotransmitters from senso-
ry neuron terminals. Lidocaine inhibition of VGSCs can ef-
fectively reduce pain signalling [340]. In addition, VGSCs are
present on dendritic cells (maintain chemokine-induced mi-
gration) [341], macrophages (regulate phagocytosis and
endosomal pH during LPS-mediated endosomal acidification)
[342], microglia (regulate phagocytosis cytokine release ad
migration) [343], neutrophils (regulate attachment,

Table 3 Adverse effects in
relation to the plasma
concentrations of lidocaine. The
maximal tolerable plasma levels
for human are about 4.7 μg/ml
(0.02 mmol/L). Serious adverse
effects start at 9.84 μg/ml (0.042
mmol/L). Source: Hermanns H
et al. [328] and Weinberg L et al.
[329]

Symptoms of toxic plasma levels of lidocaine Lidocaine concentration

mmol/L μmol/L μg/ml

No noticeable symptoms <0.020 <20 <4.69

Anxiety, dizziness 0.020 20 4.69

Decreased spinal reflexes 0.042 42 9.84

Central nervous system (confusion, diplopia, nausea and vomiting, twitching
and tremors, seizures with reduced consciousness, respiratory depression,
coma, etc.)

0.080 80 18.74

Cardiac toxicity (bradycardia, hypotension, cardiovascular depression, cardiac
arrest, etc.)

0.130 130 30.46

Cytotoxicity 3.0 3000 702.9
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transmigration and chemotaxis) [344] and T-cells (regulate
positive selection of CD4+ T cells) [345]. However, until date
no relevant data have been published suggesting that other
VGSC antagonists (such as HYP-17 [346], A-803467 [347,
348], PF-05089771 [349], phenytoin [350] or tetrodotoxin
[351, 352]) may substitute non-steroidal anti-inflammatory
drugs let alone may suppress COVID-19-related
hyperinflammation [353]. A plausible reason is that during
hyperinflammation—including hyperinflammation in
COVID-19—the cytokine levels (i.e. IL-1β [354], IL-6, IL-
10 [355, 356] and IL-12 [357]) are high. Reportedly, IL-1β
[358] and IL-6 [359] inhibit sodium currents of VGSCs, and
IL-10 downregulates the expression of VCSCs [360].
Moreover, activation of the P2X7R reduced the density and
currents of VGSCs [361]. Therefore, we do not consider the
inhibitory properties of lidocaine on VGSCs to be relevant for
the treatment of hyperinflammation in COVID-19.

At first glance, the downregulation of the expression of
TLR 2 [338] and TLR 4 [318] is an important anti-
inflammatory mechanism directly induced by lidocaine. But
at a closer look, it appeared that activation of P2X7R by the
agonist cathelicidin (LL-37) leads to the upregulation of the
protein expression of TLR2, TLR3, TLR4 and TLR 5 [288].

This is in line with the MyD88 (myeloid differentiation
primary-response protein 88)-dependent activation of NF-κB
(nuclear factor kappa-light-chain-enhancer of activated B
cells) following the activation of the P2X7R by BzATP
[362, 363]. The MyD88-dependent activation of NF-κB is
part of the TLR4/NF-κB pathway. Therefore, it is unsurpris-
ing that the inhibition of P2X7R by its antagonists (Brilliant
Blue G, A-438079 and A-740003) neutralises the above-
mentioned P2X7R-induced upregulation of TLRs [362].
Consequently, we argue that lidocaine inhibits inflammation
directly by blocking P2X7Rs independent from the
neutralisation of the P2X7R-induced upregulated TLR2 and
TLR4.

The subpopulation of NMDA receptors present on the pe-
ripheral neurons are involved in nociception, and their number
increases during inflammation contributing to the sensitisation
of peripheral nerves to nociceptive stimuli. NMDA receptor
antagonists have anaesthetic-like effects [364]. In addition,
NMDA receptor antagonist can prevent hypoxic neuronal
death, IL-1β and TNFα release [365], reduce the activation
of inflammatory experimental colitis [366] and suppress glial
pro-inflammatory cytokine expression [367]. Moreover, the
NMDA receptor antagonist memantine can increase IL-10

Fig. 4 Dose-response relationship of lidocaine suppressing the ATP-
induced currents in oocytes expressing P2X7R. We reconstructed the
fitted curve from the inhibitory concentrations data of lidocaine for
P2X7R from the original article: 7% inhibition: 0.01 mM (2.34 μg/ml);
11% inhibition: 0.03 mM (7.03 μg/ml); 35% inhibition: 0.10 mM (23.43
μg/ml); 50% inhibition (IC50): 0.28 mM (66.07 μg/ml); 55% inhibition:
0.30 mM (70.29 μg/ml); 74% inhibition: 1.00 mM (234.30 μg/ml); 91%

inhibition: 3.00 mM (702.90 μg/ml); and 98% inhibition: 10.00 mM
(2343.00 μg/ml), respectively. The usual plasma concentrations in clini-
cal settings are indicated by the green box, and the targeted concentrations
in the lymph nodes are indicated by the magenta box. Note that the
maximal tolerable plasma levels for human (about 4.7 μg/ml–0.02
mmol/L) are much lower than the required extracellular concentrations
of lidocaine to effectively inhibit the P2X7R. Source: Okura D, et al. [74]
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production in BCR/CD40-activatedB-cells [368]. Lidocaine
inhibits NMDA receptors [339, 369, 370], and thus the anti-
inflammatory properties of lidocaine could be attributed to the
inhibition of NMDA receptors. However, it has been reported
that the anti-inflammatory effect in T-cell functions (inhibition
of antigen-specific T-cell proliferation, T-cell cytotoxicity, T-
cell migration towards chemokines and decrease in IL-2 and
IFN-γ production by Th1 effector cells in favour of IL-10 and
IL-13 production by Th2 cells) of the NMDA receptor antag-
onist ifenprodil is effective both in wild-type and in NMDA
receptor (GluN1) knockout mice [371]. Moreover, it was
found that KN-62, an inhibitor of Ca2+/calmodulin-depen-
dent kinase type II and a potent P2X7R antagonist, provides
neuroprotection against NMDA-induced cell death [372].
Therefore, we argue that the anti-inflammatory properties of
NMDA receptor antagonists (including lidocaine) should be
attributed to the inhibition of P2X7Rs rather than to the inhi-
bition of NMDA receptors.

Selective inhibition of the P2X7Rs of the immune cells
in the lymphatics avoids exceeding the maximal tolerable
plasma concentration of lidocaine and inhibits
hyperinflammation in two stages

As mentioned above, the main issue is that the IC50 for
P2X7R inhibition is much higher than the maximal toler-
able plasma concentration for mammals because P2X7Rs
are indispensable for normal physiological functions (i.e.
in the central nervous system [373], the peripheral ner-
vous system [374] and in the lungs [60, 61]). Therefore,
intravenous or oral administration aimed at achieving an
effective concentration of lidocaine to inhibit P2X7Rs in
serum and in target organs will hamper organ functions
and is potentially dangerous.

The lymphatic system is populated exclusively by traffick-
ing immune cells, i.e. naïve T cells, activated T cells, B cells
[375], dendritic cells [376], monocytes [377], macrophages
[378], neutrophils [379], mast cells [380], eosinophils [381]
and basophils [382]. We postulate that selective inhibition of
the P2X7Rs of the immune cells of the lymphatic system by
lidocaine suppresses hyperinflammation in two stages: stage
1, the selective inhibition of the P2X7Rs of the immune cells
residing in the lymph nodes induces clonal expansion of Tregs
in these lymph nodes; stage 2, subsequently, these Tregs mi-
grate throughout the body exerting anti-inflammatory activi-
ties reducing systemic and (distant) local hyperinflammation
(Fig. 1).

The endothelium of the dermal capillaries of the skin be-
longs to the structural type “continuous endothelium” [383].
Although capillary walls can transport substances from blood
to tissue, the absorption of substances from tissue to blood is,
if any, extremely low [384]. Apparently, specialised initial
lymphatics harbouring one-way valve leaflets capable of

absorbing fluid and molecules from the interstitium are local-
ised in the dermis. The absorbed lymph fluid is then propelled
forward in the lymphatic network by collecting lymphatic
vessels harbouring a rhythmic contracting muscle layer
[385]. This system brings fluids and particles into the lymph
nodes where numerous immune processes take place. The
administration route to target the lymphatic system in a do-
mestic swine model is illustrated by the subcutaneous or in-
tradermal injection of compounds (isosulfan blue, fluorescein
and radioactive technetium-99 isotope—Tc99) and by tracing
the extent and the transit time of the distribution of these
compounds using whole body scintigraphy in pigs [386].
The absorption of intradermal application of radioactive Tc99

into the lymph nodes is 10 times faster than after deep subcu-
taneous application and leads to higher concentrations in the
lymph nodes related to these lymphatic vessels [386].
Radionuclide lymphoscintigraphy with molecules of different
sizes after intradermal and subcutaneous injections showed
that smaller particles (i.e. 99mTc-dextran and 99mTc-human
serum albumin) migrate more rapidly towards the lymphatic
vessels and lymphatic nodes than larger particles (i.e.
radiocolloids of larger molecular size) [387]. The rate of clear-
ance of 99mTc-pertechnetate and 99mTcDTPA after subcutane-
ous and intradermal administration in the back of the hand in
humans is 1 %/min and 8 to 10 %/min, respectively [387].

The additional advantage is that the plasma concentra-
tions of subcutaneously administered lidocaine are much
lower than intravenously administered lidocaine.
Intravenous administration of 2 mg/kg lidocaine in cats
is almost immediately followed by a peak plasma concen-
tration of 3.6 μg/mL [388]. In contrast, the achieved mean
peak plasma concentrations after the subcutaneous admin-
istration of 30 mg/kg, 20 mg/kg and 10 mg/kg lidocaine
are much lower: 1.69, 1.07 and 0.77 μg/mL, respectively
[389]. Note that the applied subcutaneous dose [389] is
15, 10 and 5 times higher than the intravenous dose, re-
spectively [388, 389]. Reportedly, the difference in the
plasma concentrations after intravenous and subcutaneous
administration of lidocaine is caused by the fact that, in
contrast to the intravenous administration, a large propor-
tion of the subcutaneously administered lidocaine is
drained into the lymphatic system [390–392]. Obviously,
this slows down the release of lidocaine to the venous
blood. This is confirmed for bevacizumab in mice [390],
for trastuzumab in rats [391] and for docetaxel in rats by
[392].

As stated above, lymphatic absorption after intradermal
administration is much higher than after deep subcutaneous
administration [386, 387]. Practically, the intradermal infu-
sion with lidocaine is not an accepted administration route
for lidocaine. Therefore, we argue that a subdermal adminis-
tration of lidocaine using a catheter inserted just beneath the
dermis (subdermal infusion, Fig. 5) will result in higher
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concentrations of lidocaine in the draining local lymph nodes
than a deep subcutaneous or intravenous infusion as depicted
in the schematic presentation of the putative distribution of
lidocaine in Fig. 6.

In summary, by means of the subdermal administration of
lidocaine, we can ensure high concentrations of lidocaine in
the local lymph nodes enabling an effective inhibition of
the P2X7R of the immune cells while keeping the lido-
caine plasma concentrations <4.7 μg/ml(stage 1a and 1b
in Fig. 1). The induced Tregs clonal expansion in these
local lymph nodes produces Tregs which migrate
th roughou t the body con t ro l l i ng the ongo ing
hyperinflammation (stage 2 in Fig. 1). Obviously, the
subdermal administration route may also apply to other
P2X7R antagonists.

Three other P2X7R antagonists have been tested in human:
CE-224,535 500 (Pfizer), AZD-9056(Astra-Zeneca) and JNJ-
54175446 (Johnson and Johnson). A phase IIa study with CE-
224,535 in patients with rheumatoid arthritis not responding
adequately to methotrexate was recently reported [393].
Patients in the treatment arm received oral CE-224,535
500 mg twice/day for 12 weeks. Although the safety and tol-
erability for the compound were acceptable, CE-224,535 was
not effective in this group of patients. The results of a phase II
study with AZD-9056 in patients with active rheumatoid ar-
thritis despite treatment with methotrexate or sulphasalazine
was published. The treatment arm consists of oral AZD-9056
100 or 400 mg/day for 6 months [394]. The AZD-9056 used
in this trial is non-lipophilic as indicated by the fact that this
compound cannot penetrate the blood-brain barrier [395]. The
authors conceded that “AZD-9056 does not have significant
efficacy in the treatment of RA, and the P2X7 receptor does
not appear to be a therapeutically useful target in RA” [394].
Recently, a randomised, placebo controlled, sequential-group,
single-centre ascending dose phase I study was reported. The

patients in the 5 treatment arms received 0.5, 2.5, 10, 50, 150
and 300mg JNJ-54175446, respectively. The authors reported
dose-dependent plasma levels, no serious adverse events,
ex vivo attenuation of lipopolysaccharide-induced IL-1β re-
lease in peripheral blood and confirmation of passive brain
penetration of JNJ-54175446 [396]. The approach of the
P2X7R antagonist therapy of the above-mentioned authors
is quite different from ours: While these authors directly
targeted the diseased organs via the gut absorption of the drug,
we target the immune cells in local lymph nodes inducing an
anti-inflammatory immune response which in turn targets the
diseased organs (Fig. 1). This is illustrated by the following
study concerning a placebo-controlled, multicentre, double-
blind phase IIa study in patients with moderately to severely
active Crohn’s disease. The patients in the treatment arm re-
ceived oral AZD-9056 200 mg/day for 28 days. The authors
found a significant improvement in the Crohn’s Disease
Activity Index (CDAI) at day 28 [397]. In contrast to the skin,
the endothelium of the mucosal capillaries of the mouth and
the gastrointestinal tract are fenestrated allowing molecules to
pass from the submucosal tissue into the capillaries [383].
Unlike the failure of the treatment of rheumatoid arthritis de-
scribed above, the successful treatment of gut inflammation
here can be attributed to the absorption of non-lipophilic oral
AZD-9056 by the mucosa-associated lymphoid tissue
(MALT). This is the inductive site of the mucosal im-
mune system consisting of mesenteric lymph nodes,
Peyer’s patches and isolated lymph follicles [398, 399].
Although lymphatic transport to the lymph nodes of the
non-lipophilic oral AZD-9056 is limited [400, 401],
AZD-9056 inhibits P2X7Rs of the local T-cells via ab-
sorption by the inductive sites of MALT. This induces a
local anti-inflammatory immune response executed by
the effector sites of MALT consisting of lamina propria
lymphocytes and intraepithelial lymphocytes [398, 399].

dermis

subcutaneous fat

muscle

infusion cannula

infusion line

Fig. 5 The cannula for
subdermal infusion of lidocaine is
superficially positioned just
below the dermis to promote the
uptake of lidocaine by the initial
lymphatics of the dermis and to
avoid accumulation of lidocaine
in the subcutaneous fat tissue
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Real-world subdermal administration
of lidocaine in critically ill COVID-19 patients

Six COVID-19-induced ARDS patients

From April 2020 until end of July 2020, two of the authors of
this report (AS and TK) have successfully treated six critically
ill patients with COVID-19 admitted to the ICU of the Showa
University in Tokyo, Japan, with lidocaine. The lidocaine
treatment was based on off-label use. The Medical Ethical
Committee of the Showa University, School of Medicine,
Tokyo, approved the collection, analysis and publication of
patients on mechanical ventilation admitted to the ICU (pro-
tocol number 3313). The administration was initially

intravenously in the two first patients, followed by subdermal-
ly (a superficially inserted subcutaneous catheter as illustrated
in Fig. 5). In the other four patients, only the subdermal ad-
ministration was further applied. The concentration of the in-
travenous lidocaine infusion solution is 20 mg/ml (2%), the
route for continuous administration of lidocaine commonly
used in daily practice. The dose for intravenous administration
is 0.6 mg/kg/h as recommended earlier [402]. Due to the lim-
ited efficacy of intravenous lidocaine and based on the hy-
pothesis of selectively targeting the inhibition of the P2X7Rs
of the immune cells, the infusion in both patients was convert-
ed to subdermal infusion of 1.0 mg/kg/h (dosage as reported
by Japanese researchers [403]) after 7 and 6 days, respective-
ly. The time course of clinical parameters of these six patients
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Fig. 6 Schematic presentation of the putative distribution of intravenous,
oral, transmucosal (i.e. in the oral cavity) and subdermal administered
lidocaine. Administration of hydrophilic lidocaine (lidocaine HCL)
through a (central) venous catheter or by oral intake results in concentra-
tion gradients with the highest value in the venous blood and the lowest
value in the lymph nodes. The reason is that by the time lidocaine reaches
the lymph nodes, the drug is massively diluted and may never reach the
effective concentration required to adequately inhibit the P2X7Rs of the
immune system. In contrast, after subdermal injection of hydrophilic
lidocaine, apart from a minimal absorption by the dermal capillaries,
almost all the lidocaine is absorbed by the lymphatic system via the initial
lymphatics. Because the fluid in the afferent collecting lymphatics

originates from the interstitial fluid of the tissues, dilution of the concen-
tration of lidocaine occurs. This fluid is then drained into the local lymph
nodes. The extent of the dilution of lidocaine in the targeted lymph nodes
is far less drastic compared to the (central) venous administration of the
drug. We postulate that with continuous subdermal infusion, we can
achieve concentrations of lidocaine in the lymph nodes sufficient to ef-
fectively inhibit the P2X7Rs of the immune cells. Theoretically, similar
results may be expected from transmucosal and transdermal administra-
tion of lipophilic lidocaine base with a high concentration. Obviously, the
subdermal, transmucosal and transdermal administration routes may also
apply to other P2X7R antagonists
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is presented in Figures 7, 8, 9, 10. In about 20% of the inserted
subdermal cannulae, local subdermal indurations were ob-
served. Whenever this occurred, the infusion cannula was re-
moved and replaced with a new cannula at a different location.

The first patient (Fig.7), a 63-year-old male (75 kg, 168
cm), developed fever and nausea on March 27, 2020, and 3
days later, he started to cough and became dyspnoeic. After 5
days, the PCR SARS-Cov-2 test was positive, and he was
admitted to the hospital with SARS-Cov-2-induced ARDS.
Co-morbidities include COPD and smoking 60 cigarettes
per day for more than 40 years. About 40 years earlier, the
patient suffered from pneumothorax. On day 3, the patient
deteriorated and was intubated and mechanically ventilated
due to poor blood gases. No haemodynamic instability was

observed. The CT scan showed bilateral ground glass opaci-
ties compatible with ARDS. On day 5, the patient was trans-
ferred to the ICU of the university hospital because of further
respiratory deterioration. The patient received favipiravir for
14 days after admission; the patient did not receive dexameth-
asone. Prone position mechanical ventilation was initiated due
to the progression of the respiratory disease with an extremely
low PaO2/FiO2 ratio of 63.3 mmHg (severe ARDS according
to the Berlin definition. The Berlin definition of ARDS in-
cludes severe PaO2/FiO2 ratio ≤100 mm Hg, moderate
PaO2/FiO2 >100 to 200 mm Hg, mild PaO2/FiO2 >200 to
300 mm Hg, no ARDS PaO2/FiO2 >300 mm Hg [404]).
The initial ventilator settings include APRV, Phigh27 cm
H2O, Thigh 7.0 s, Plow 0 cm H2O and Tlow 0.32 s. The

Fig. 7 Patient 1, the first of the six cases with severe COVID-19 treated
with subdermal lidocaine in the ICU of the Showa University, Tokyo,
Japan. A 63-year-old male with COVID-19-induced ARDS, was admit-
ted to the hospital. The CT scan showed bilateral ground glass opacities.
Co-morbidities: COPD, smoking 60 cigarettes per day for more than 40
years. About 40 years before admission, the patient suffered from pneu-
mothorax. After admission the clinical condition deteriorated requiring an
ICU admission and mechanical ventilation on day 4. On day 11, contin-
uous intravenous lidocaine of 0.6 mg/kg/h was initiated, but the patient’s
condition kept worsening with high pulmonary artery pressures and re-
duced aeration of the lung. On day 19, the continuous intravenous lido-
caine of 0.6 mg/kg/hwas changed to continuous subdermal lidocaine of 1
mg/kg/h. This was followed by improvement of the clinical condition,
and on day 20, the aeration of the lung was improved, but the pulmonary
artery pressures remained high. Despite this the P/F ratio was gradually
improving, and ECMO weaning was done on day 50. No new ECG

changes were observed during treatment with lidocaine. Blood metHb
were within the normal range (0.3–0.8%). On day 99, he was weaned
from the mechanical ventilator and was discharged from the ICU on day
121. CT scan on day 146 showed reduced ground glass opacities in both
lungs and some interstitial change in upper and middle fields of the lung
and improvement of the pneumothorax. The patient was discharged from
the hospital on day 187, he went home, and he could walk but needed
extra oxygen supply of 2L/min. Nine months after admission, the patient
is doing well and has returned to work. The patient visited the hospital 3
months after discharge: He only uses oxygen 1 L/min to go shopping and
during physical training (out-patient rehabilitation). He talked to the
treating intensivist without requiring oxygen and had no shortness of
breath or tachypnoea. The red-coloured labels of the legends refer to
graph plots using the (left) primary Y-axis, and the black-coloured labels
of the legends refer to graph plots using the (right) secondary Y-axis
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PaCO2 was normal. The echocardiographic estimated pulmo-
nary arterial systolic pressure (PASP) was 80 mm Hg. The
Krebs von Lungen 6 (KL-6, a marker for lung fibrosis
[405]) plasma level was highly elevated (1299 U/mL; normal
value <425 U/mL), CRP was also high (40.4 mg/L; normal
value <10 mg/L), and albumin was 2.2 g/dl. The white blood
cell count, platelet count and urine production were normal.
On day 4, the chest X-ray was not improved. On day 6, the
PaO2/FiO2 ratio was slightly increased but remained low at
103 mm Hg, and the chest X-ray showed progression of the
ARDS. ECMO was initiated due to exhausted ventilatory
strategy. On day 9, the PaO2/FiO2 ratio improved but
remained low at around 153 mm Hg, but the CRP declined
to around 21.8 mg/L. The patient was put onmuscle relaxants.
The patient’s ARDS status had improved from severe to mod-
erate ARDS. From day 10 until day 30, the ferritin levels were
well >1000 ng/ml (>100 μg/dl, normal values <300 ng/ml).
From day 11 until day 62, D-Dimer was very high reaching

121.9 nM/L day 14. On day 11, no improvement of the blood
gases was observed, and it was decided to treat the patient
with continuous intravenous lidocaine 0.6 mg/kg/h. The
CRP showed a progressive decline from 19 (on day 12) to
12.8 (on day 16) and 7.4 (on day 19), but the PaO2/FiO2 ratio
remained poor at around 90 mm Hg (severe ARDS according
to the Berlin criteria) and the chest X-ray image on day 15, 3
days after the initiation of the intravenous lidocaine infusion,
deteriorated dramatically. The lidocaine plasma concentra-
tions were 3.4 μg/ml on day 13 and 5.4 μg/ml on day 14.
On day 19, the continuous intravenous lidocaine infusion
was replaced by continuous subdermal lidocaine infusion of
1 mg/kg/h. Although the PaO2/FiO2 ratio remained un-
changed on day 20 (1 day after the switch to the continuous
subdermal lidocaine), the chest X-ray improved clearly. On
day 21, the lidocaine plasma concentration was 2.6μg/ml, and
albumin was 2.5 g/dl. From day 22, the PaO2/FiO2ratio was
gradually improving reaching 151 mm Hg on day 34

Fig. 8 Patient 2. A 68-year-old male with COVID-19-induced ARDS
admitted to the ICU and required mechanical ventilation. The CT scan
showed bilateral ground glass opacities. Co-morbidity: Asthma. After
admission the patient’s condition was deteriorating. On day 5, continuous
intravenous lidocaine of 0.6 mg/kg/h was initiated, but the clinical con-
dition and the P/F ratio kept worsening. On day 11, the intravenous
lidocaine of 0.6 mg/kg/h was changed to continuous subdermal lidocaine
of 1 mg/kg/h. A few days later, this was followed by improvement of the

clinical condition and the P/F ratio. No new ECG changes were observed
during treatment with lidocaine. Blood metHb were within the normal
range (0.1–0.6%). The patient was discharged from the ICU on day 30
home on day 37. At 3 months after admission, the patient is doing well.
The red coloured labels of the legends refer to graph plots using the (left)
primary Y-axis, and the black-coloured labels of the legends refer to graph
plots using the (right) secondary Y-axis
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(moderate ARDS). The KL-6 on day 22 dropped to 458 U/L
(this is only slightly above the normal value of <450 U/l). On
day 31, the CRP was low at 1 mg/L, and the lidocaine plasma
concentration was 1.2 μg/ml. The muscle relaxants were
discontinued. Albumin was 2.3 g/dl. On day 33, the chest X-
ray was further improved, and the CRP remained low at 5.5
mg/L. The patient was awake and could communicate with
the nurses. On day 38, the lidocaine plasma level was 2.3. On
day 43, the PaO2/FiO2 ratio was increased to 214 mm Hg.
According to the Berlin definition of ARDS [404], the pa-
tient’s ARDS status had changed from moderate to mild.
Albumin was 2.8 g/dl. On day 50, the patient was weaned
from ECMO. On day 51, the patient underwent tracheotomy.
Because the clinical condition of the patient was stabilised
with a low CRP of 6.3 mg/L on day 55, the continuous

subdermal lidocaine was discontinued on day 57. On day
69, he developed pneumothorax requiring pleural drainage.
On day 99, he was weaned from the mechanical ventilator
and was discharged from the ICU on day 121. No new ECG
changes were observed during treatment with lidocaine.
Blood methaemoglobin (metHb) were within the normal
range (0.3–0.8%). CT scan on day 146 showed reduced
ground glass opacities in both lungs, some interstitial change
in upper and middle fields of the lung and improvement of the
pneumothorax. The patient left the hospital on day 187, he
went home, and he could walk but needed extra oxygen sup-
ply of 2L/min. Nine months after admission, the patient is
doing well and has returned to work. The patient visited the
hospital 3 months after discharge: He only uses oxygen 1 L/
min to go shopping and during physical training (out-patient

Fig. 9 Left graph: Patient 3. A 59-year-old male with respiratory distress
and bilateral ground glass opacities on the CT scan. Co-morbidity:
Obesity, diabetes mellitus and gout. No new ECG changes were observed
during treatment with lidocaine. Blood metHb were within the normal
range (0.1–0.4%). The patient was discharged from the ICU on day 8 and
was discharged home on day 20. After 3 months, he is doing well. Right
graph: Patient 4. A 51-year-old male with fever, dyspnoea and cough due
to COVID-19. The CT scan showed bilateral ground glass opacities. Co-

morbidity: none. No new ECG changes were observed during treatment
with lidocaine. Blood metHb were within the normal range (0.1–0.3%).
The patient was discharged from the ICU on day 8 and was disc harged
home on day 28. At 3 months, he is doing well and has returned to work.
The red-coloured labels of the legends refer to graph plots using the (left)
primary Y-axis, and the black-coloured labels of the legends refer to graph
plots using the (right) secondary Y-axis
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rehabilitation). He talked to the treating intensivist without
requiring oxygen and had no shortness of breath or
tachypnoea.

The second patient (Fig.8) is a 68-year-old male (75 kg,
164 cm) with SARS-Cov-2-induced ARDS and positive
SARS-Cov-2 PCR test admitted to the university hospital.
Co-morbidity is asthma. The CT scan showed bilateral ground
glass opacities. Haemodynamically the patient was stable. The
patient received tocilizumab on day 8 and favipiravir for 14
days; he did not receive dexamethasone. On day 2, the respi-
ratory conditions deteriorated, and the PaO2/FiO2 ratio is
118 mm Hg (moderate ARDS according to the Berlin
ARDS definition [404]). The patient was intubated and re-
quired mechanical ventilation. The initial ventilator settings
include pressure control, peak inspiratory pressure 28 cm

H2O, PEEP 13 cm H2O and respiratory rate 30/min. CRP
was 10.6 mg/L, and KL-6 was 486 U/ml. White blood cell
count, platelet count and urine production were normal. The
ferritin levels remained >1000 ng/ml (100 μg/dl) during the
entire ICU stay. Albumin was 2.9 g/dl. In the following 3
days, the PaO2/FiO2 ratio improved to around 150 mm Hg.
The PaO2/FiO2 ratio dropped from 152 on day 5 to 84 mmHg
on day 6. CRP was increased to 22.9, and the KL-6 was
increased to 762 U/ml. The patient was put in prone position
and given muscle relaxants. Continuous intravenous lidocaine
of 0.6 ml/kg/h was started. Albumin was 1.8 g/dl. On day 7,
the PaO2/FiO2 ratio increased to 128 mmHg, CRP dropped to
10.3 mg/mL and the lidocaine plasma concentration was 2.2
μg/ml. From day 3 until discharge from the ICU, D-dimer
values were elevated reaching 75 nM/L on day 14. On day

Fig. 10 Left gr aph: P atient 5. A 5 8 -year-o ld male with fever,
dyspnoea and cough due to COVID-19. The CT scan showed bilateral
ground glass opacities. Co-morbidity: Fatty liver. No new ECG changes
were observed during treatment with lidocaine. BloodmetHbwere within
the normal range (0.1–0.3%).On day 14, the patient was discharged from
the ICU. On day 20, the patient was discharged home and is doing well at
3 months after admission. Right graph: Patien ts 6. A 59-year-old male
with fever, dyspnoea and cough due to COVID-19. CT scan showed
bilateral ground glass opacities. Co-morbidity: Hypertension on

medication. No new ECG changes were observed during treatment with
lidocaine. MetHb were within the normal range (0.1–0.3%). On day 13,
the patient was discharged from the ICU. He was discharged from the
hospital on day 20, and a t 3 months after admission, he is doing well,
played golf regularly and has returned to work. The red-coloured labels of
the legends refer to graph plots using the (left) primary Y-axis, and the
black-coloured labels of the legends refer to graph plots using the (right)
secondary Y-axis
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8, although the PaO2/FiO2 ratio improved from 84 to 125 mm
Hg, the mechanical ventilatory strategies were exhausted, and
the patient was put on ECMO. The KL-6 was increased to 845
U/L, and lidocaine plasma level was 2.9 μg/ml. The PaO2/
FiO2 ratio improved to 238 mmHg on day 9, but on day 10, a
sharp drop of the PaO2/FiO2 ratio to 60 mmHgwas observed,
and CRP was 2.0 mg/ml. The patient’s ARDS status had
changed from moderate to severe according to the Berlin
ARDS criteria [404]. Lidocaine treatment was switched from
continuous intravenous to continuous subdermal (dosage: 1
mg/kg/h). On day 14, the lidocaine plasma level was 2.7
μg/ml. KL-6 dropped to 549 U/l. On day 17, the clinical
condition of the patient was improving, and the PaO2/FiO2

ratio reached 158 mm Hg. The patient was weaned from
ECMO. The PaO2/FiO2 ratio improved further reaching
291 mm Hg on day 21, and the patient’s ARDS status has
changed from moderate to mild ARDS [404]. On day 22,
mechanical ventilation was discontinued, and the patient was
extubated. The patient was orientated, and no signs of confu-
sion were detected. CT scan on day 25 showed persistent
ground glass opacities in both lungs, some pulmonary effu-
sion (right >left), and no signs of vascular thrombosis. In
addition, no signs of deep venous thrombosis were found in
the lower extremities. Lidocaine treatment was continued until
discharge from the ICU on day 30. No new ECG changes
were observed during treatment with lidocaine. Blood
metHb were within the normal range (0.1–0.6%). The patient
was discharged home on day 37. At 3 months after admission,
the patient is doing well.

The third patient (Fig. 9left), a 59-year-old male (109
kg, 170 cm), was admitted to the university hospital with
respiratory distress and bilateral ground glass opacities on
the CT scan with a positive SARS-CoV-2 test. Co-
morbidities include obesity (BMI 37.7 kg/m2), diabetes
mellitus and gout. The patient required immediate intuba-
tion and mechanical ventilation. The patient received toci-
lizumab on day 3 and favipiravir for 15 days and did not
receive dexamethasone. The initial ventilator settings are
pressure control, peak inspiratory pressure 30 cm H2O,
PEEP 15 cm H2O and respiratory rate 25/min. The
PaO2/FiO2 ratio on admission was 160 mm Hg (moderate
ARDS according to the Berlin definition [404]), CRP was
39.3 mg/L and KL-6 was 294 U/ml. White blood cell
count was increased (13.10−9/L) and platelet count and
urine production were normal. Albumin was 2.1 g/dl.
Haemodynamic parameters were stable. On the admission
day, continuous subdermal lidocaine was started at 1
mg/kg/h. On day 2, the PaO2/FiO2 ratio improved to
283 mm Hg, and the patient’s ARDS status had changed
from moderate to mild ARDS. CRP was 41 mg/L, KL-6
was 268 U/L and the lidocaine plasma level was 3.7
μg/ml. Albumin was 1.7 g/dl. On day 4, the PaO2/FiO2

ratio was 302 mm Hg, and the patient’s ARDS status had

changed from mild ARDS to no ARDS according to the
Berlin ARDS criteria. On day 5, the PaO2/FiO2 ratio was
improved further to 328 mm Hg, and CRP dropped to
16.4, and the patient was extubated. The patient was ori-
entated, no signs of confusion were detected. The patient
was discharged from the ICU on day 8; CRP was 2.3
mg/ml. Albumin was 2.5 g/dl. No new ECG changes were
observed during treatment with lidocaine. Blood metHb
were within the normal range (0.1–0.4%). The patient
was discharged home on day 20. After 3 months, he is
doing well.

The fourth patient (Fig. 9right) is a 51-year-old male (68
kg, 175 cm). Ten days before admission, he developed fever
and 2 days before admission dyspnoea and coughing. On the
day of admission, the PCR SARS-CoV-2 test was positive.
The CT scan showed bilateral ground glass opacities. Co-
morbidity is none. The patient was intubated and put on me-
chanical ventilation on admission. The patient received
favipiravir for 14 days; he did not receive dexamethasone.
On day 3, he was transferred to the university hospital because
of deterioration of pulmonary condition. The initial ventilator
settings include pressure control, peak inspiratory pressure
24 cm H2O, PEEP 12 cm H2O and respiratory rate 15/min.
The haemodynamic conditions were stable. White blood cell
count and platelet count were normal. Albumin was 2.6 g/dl.
Continuous subdermal lidocaine was started immediately. On
day 3, the PaO2/FiO2 ratio was 214 (moderate ARDS accord-
ing to the Berlin definition [404]). KL-6 was 177 U/L, and
CRP was 17.4 mg/L. On day 5, the PaO2/FiO2 ratio was in-
creased to 382 (the patient’s ARDS status had changed from
mild ARDS to no ARDS), and lidocaine plasma concentration
was 5.2 μg/ml. CRP was 27.3mg/L. Lidocaine plasma levels
on day 3 and 4 were 3.4 and 4.2 μg/ml, respectively. KL-6
was 163 U/L. The patient was extubated. The patient was
orientated, and no signs of confusion were detected. The pa-
tient was discharged from the ICU on day 8, and the CRP was
9.3 mg/L. No new ECG changes were observed during treat-
ment with lidocaine. Blood metHb were within the normal
range (0.1–0.3%). He was discharged home on day 28. At 3
months, he is doing well and has returned to work.

The fifth patient (Fig. 10left) is a 58-year-old male (80 kg,
175 cm). Nine days before admission, he developed a sore
throat. A day later, he developed fever. Two days before ad-
mission, he started coughing and was dyspnoeic. On the day
of admission, the PCR SARS-Cov-2 test was positive. Co-
morbidity includes fatty liver. The CT scan showed bilateral
ground glass opacities. The patient was initially admitted to
the hospital ward. The patient received tocilizumab on day 7
and favipiravir for 10 days; dexamethasone was not pre-
scribed. On day 3, the patient deteriorated and had to be
intubated and put on mechanical ventilation. On day 4, the
patient was transferred to the university hospital due to dete-
rioration of the pulmonary condition. The initial ventilator

40 Purinergic Signalling (2022) 18:13–59



settings include pressure control, peak inspiratory pressure
27 cm H2O, PEEP 12 cm H2O and respiratory rate 25/min.
PaO2/FiO2 ratio was 188 (moderate ARDS according to the
Berlin definition). Haemodynamic parameters were stable,
and CRP was 12.9 mg/ml. White blood cell count was in-
creased (14.4.109/L), but platelet count was normal. KL-6
was 330 U/L. Continuous subdermal lidocaine was started at
1 mg/kg/h at arrival at the ICU of the university hospital.
Albumin was 2.8 g/dl. On day 5, the PaO2/FiO2 ratio was
unchanged, CRP was 10.4 mg/L and the lidocaine plasma
level was 4 μg/ml. On day 6, the lidocaine plasma level was
3.2μg/ml. KL-6 remained stable at 400 U/L. Albumin was 2.3
g/dl. On day 10, the respiratory insufficiency had cleared;
although the PaO2/FiO2 ratio remained 184, the CRP dropped
to 2.4 mg/L, and KL-6 was 322 U/L. The patient was
extubated, and he was orientated; no signs of confusion were
detected. On day 14, the patient was discharged from the ICU.
No new ECG changes were observed during treatment with
lidocaine. Blood metHb were within the normal range (0.1–
0.3%). On day 20, the patient was discharged home and is
doing well at 3 months after admission.

The sixth patient (Fig. 10right) is a 59-year-old male
(65 kg, 175 cm) with fever, dyspnoea and cough due to
COVID-19. CT scan showed bilateral ground glass opac-
ities. Co-morbidity includes hypertension on medication.
The patient was admitted to the general ward. KL-6 233
U/L, white blood cell count and platelet count were nor-
mal. Albumin was 3.6 g/dl. On day 3, there is a deteri-
oration of the respiratory function necessitating a transfer
to the ICU and mechanical ventilation. Tocilizumab was
given on day 4. The patient received favipiravir for 11
days, and the patient did not receive dexamethasone. The
initial ventilator settings include pressure control, peak
inspiratory pressure 22 cm H2O, PEEP 10 cm H2O and
respiratory rate 20/min. Continuous subdermal lidocaine
of 1 mg/kg/h was initiated after admission to the ICU.
Haemodynamic parameters were stable. CRP was 6.3
mg/L, and KL-6 was 263 U/L. On day 4, a progressive
respiratory failure occurred requiring intubation and me-
chanical ventilation. PaO2/FiO2 ratio was 218 mm Hg;
the haemodynamic parameters remained stable. CRP
was 6.3 mg/L, and the white blood count and platelet
count were normal. Lidocaine plasma level was 4.6
μg/ml. On day 5, the PaO2/FiO2 ratio dropped further
to 164 mm Hg. Lidocaine plasma level was 3.4 μg/ml.
Albumin was 3.2 g/dl. On day 9, the clinical condition of
the patient improved. The ventilator settings could be
decreased, the PaO2/FiO2 ratio remained 207 mm Hg
during the weaning period, and CRP was 0.7 mg/L. On
day 10, the patient was extubated, he was orientated, and
no signs of confusion were detected. On day 13, the
patient was discharged from the ICU. No new ECG
changes were observed during treatment with lidocaine.

Blood metHb were within the normal range (0.1–0.3%).
He was discharged from the hospital on day 20, and at 3
months after admission, he is doing well, played golf
regularly and has returned to work.

Additional 14 patients with COVID-19-induced ARDS

From July 2020 until beginning of December 2020, 14 addi-
tional critically ill patients with COVID-19-induced ARDS
requiring mechanical ventilation were treated in the ICU of
the Showa University with continuous subdermal lidocaine
infusion (1 mg/kg/h) plus intravenous or oral dexamethasone
(6 mg/day) as reported earlier [35]. Of these 20 patients, 19
survived, but an 87-year-old female patient died of invasive
aspergillosis. No other patient developed secondary co-
infections (unpublished data, personal communication by
AS and TK).

Discussion of the clinical cases

After completing the novel definition of hyperinflammation,
we developed a new approach to target the lymphatic system
with continuous subdermal administration of lidocaine. This
is meant to increase the anti-hyperinflammatory effect of lido-
caine while avoiding toxic plasma levels. We described the
treatment of six critically ill patients with COVID-19 with
lidocaine. Two patients required mechanical ventilation and
ECMO, and four patients were treated with mechanical ven-
tilation. As mentioned under the heading “Introduction”, the
case fatality rates of patients requiring mechanical ventilation
and/or ECMO are alarmingly high [1, 2]. Patient 1 and patient
2 were older than 60 years. Additionally, patient 1 had COPD
and had smoked 60 cigarettes per day for more than 40 years.
Patient 3 suffered from obesity and diabetes mellitus. These
are serious prognostic factors for bad outcome COVID-19
[406, 407]. Patient 1 and patient 2 were initially treated with
continuous intravenous lidocaine through a central venous
line. In both patients, the pulmonary conditions deteriorated
after the initiation of intravenous lidocaine: Patient 1 who was
already on ECMO showed progressive pulmonary deteriora-
tion on the chest X-rays, and patient 2 deteriorated further
necessitating the initiation of ECMO therapy. Remarkably,
the pulmonary conditions of both patients improved within
48 h after the switch from intravenous to subdermal continu-
ous lidocaine. The lidocaine plasma levels remained around 5
μg/ml. To our knowledge, these six cases represent the first
observations of the promising treatment of critically ill
COVID-19 patients with lidocaine targeting P2X7Rs of the
immune cells in the lymphatics. All patients recovered
completely from their illness. None of the patients showed
the feared side effect of cardiac arrhythmia and
methaemoglobinaemia during lidocaine therapy. Our findings
suggest that continuous subdermal lidocaine infusion at the

41Purinergic Signalling (2022) 18:13–59



ra te of 1 mg/kg/h has the potent ia l to mit igate
hyperinflammation and ARDS in critically ill COVID-19-pa-
tients. Obviously, although all six patients appeared to re-
spond positively to the treatment and no severe adverse effects
were observed, no final conclusions can be made on the effi-
cacy of lidocaine in critically ill COVID-19 patients.

Researchers from Lima, Peru, reported the treatment of 28
(three mild, 21 moderate and four severe) COVID-19 patients
with 0.5% lidocaine HCL solutionwith an intravenous dose of
1 mg/kg once a day for 2 days and 2% lidocaine HCL solution
with a subcutaneous dose of 1 mg/kg once a day for 2 days
[408]. The authors aimed at the improvement of pain, cough,
respiratory rate and oxygen saturation. They found improve-
ment in most patients. In severe cases, this treatment did not
improve the oxygen saturation. As expected, treatment with a
low daily dose of lidocaine once per day for a total treatment
duration of 2 days could not adequately inhibit the P2X7R-
induced hyperinflammation in COVID-19.

Recently, a group of researchers from Strasbourg, France,
announced a study entitled: “Impact of intravenous lidocaine
on clinical outcomes of patients with ARDS during COVID-
19 pandemia (LidoCovid): A structured summary of a study
protocol for a randomised controlled trial” (ClinicalTrials.gov
Identifier: NCT04609865) [409].

Lately, an extraordinary treatment of COVID-19
ARDS was reported [410]. The authors performed lung
transplantations in three critically ill COVID-19 ARDS
patients: a 28-year-old female, a 62-year-old male and a
43-year-old male. The first patient underwent lung trans-
plantation after weeks on veno-venous ECMO support
with elevated pulmonary arterial pressures and severe sec-
ondary Serratia marcescens pneumonia. The second pa-
tient underwent lung transplantation after 100 days on
v eno - v e nou s ECMO suppo r t c omp l i c a t e d by
Pseudomonas aeruginosa pneumonia, haemothorax and
empyema, while the third patient after 90 days on the
mechanical ventilator. This patient suffered from many
complications: asystolic cardiac arrest, heparin-induced
thrombocytopenia, a left frontal lobe infarct of the cere-
bral cortex, Serratia marcescens-mediated pneumonia with
bacteraemia, acute kidney injury, a left haemothorax re-
quiring thoracotomy and lung decortication, a right pneu-
mothorax requiring tube thoracostomy, hypernatremia as-
sociated with seizures and malnutrition. Before lung trans-
plantation, the patient developed increasing clinical signs
of pulmonary fibrosis and severe pulmonary hypertension.
The first two patients are reported to have achieved inde-
pendence in daily life activities several months after lung
transplantation. Three months after lung transplantation,
t h e t h i r d p a t i e n t made imp r ov emen t s i n t h e
neurocognitive status and muscular strength at an inpa-
tient rehabilitation centre.

Far less dras t ic is our proposed trea tment of
hyperinflammation in COVID-19-induced ARDS with lido-
caine, an old drug that is readily available to hospitals all over
the world at a low cost. In November 1948, Xylocaine was
approved by the Food and Drug Administration (FDA) in the
USA [411]. Lidocaine is used as a local anaesthetic [411],
treatment of chronic neuropathic pain [412] but also for the
prophylaxis or treatment of ventricular arrhythmia [328, 329].
Recently, intravenous lidocaine has been administered as gen-
eral anaesthetic replacing opioids in the perioperative settings
[413]. Potentially, lidocaine, as a P2X7R antagonist, can ab-
rogate hyperinflammation, can restore the capacity of the im-
mune system to combat secondary co-infections and can im-
prove the clinical condition in critically ill COVID-19 pa-
tients. Despite several in vitro [326, 327, 414, 415], animal
studies [319, 416–420] and patient cohorts [408, 421] on the
anti-inflammatory properties of lidocaine, completed clinical
trials which deliver a proof of concept (i.e. a randomised con-
trolled trial) have not yet been performed. We postulate that
because the maximal tolerable plasma concentration of lido-
caine is much lower than the required extracellular concentra-
tion to effectively inhibit P2X7Rs, intravenous systemic ad-
ministration of lidocaine simply cannot not be used to effec-
tively treat hyperinflammation. This is a plausible reason why
5 years after the discovery of lidocaine as a P2X7R inhibitor
(published in 2015) [74] the drug is still not used as an anti-
hyperinflammatory treatment in clinical practice.

Concluding remarks

As stated in the introduction, therapeutic measures that can
immediately attenuate the course of SARS-CoV-2-related
lung damage are promptly needed on a global scale. In con-
trast to the investigational P2X7R antagonists described
above, continuous subdermal infusion of 2% lidocaine solu-
tion to primarily deposit lidocaine into the lymphatics is read-
ily available and can be used in the daily practice immediately
and, in principle, even outside the ICU and is very well af-
fordable. Therefore, this therapy deserves to be investigated in
larger placebo controlled randomised clinical studies with
COVID-19 patients.

Future development

However, our experience with subdermal administration of
lidocaine in the ICU made clear that this method may not be
routinely suitable outside hospital settings. Needless to say
that high complexity and high-cost treatments (requiring high-
ly skilled nurses and infusion pump equipment) are inacces-
sible to low-income COVID-19 patients in developing
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countries. Also, as the severity and case fatality rate of
COVID-19 increase with age [406], the case fatality rate in
elderly patients in nursing homes is strikingly high, and many
residents have poor access to medical care [422]. This encour-
aged us to explore alternative uncomplicated methods of lido-
caine administration accessible to everyone, particularly elder-
ly COVID-19 patients and COVID-19 patients in developing
countries.

Recently, researchers stated in their article on targeting the
P2X7R in COVID-19 that the P2X7R antagonists for human
use are available only in oral form and that this might be an
inefficient route of drug delivery [298].We found a solution to
this problem. Permeability of the skin and mucous membrane
to water, drugs, etc. is said to be dependent on the site of the
administration [423, 424]. For example, the permeability con-
stant of the floor of the mouth (sublingual mucosa), lateral
border of the tongue and buccal mucosa for tritium-labelled
water is 22, 17 and 13 times as high as human skin, respec-
tively [423]. We argue that this also applies to lidocaine. As
mentioned above, the endothelium of the mucosal capillaries
of the mouth and the gastrointestinal tract belong to the struc-
tural type “fenestrated endothelium” allowing molecules to
pass from the submucosal tissue into the capillaries [383].
Lidocaine hydrochloride is highly soluble in water (solubility
of 680 mg/ml in water) [425] and therefore will mainly be
absorbed by the submucosal capillary [426] and the inductive
sites of MALT [398, 399]. In contrast, the highly lipophilic
lidocaine base (solubility of 4 mg/ml in water, 760 mg/ml in
95% ethanol and 790 mg/ml in chloroform) [425] is prefera-
bly absorbed by the local initial lymphatics in the submucosal
tissue [426, 427]. In addition, the lymphatic drainage of the
floor of the mouth is extensive, involving many lymph nodes
[428–431].

We estimate that with a sublingual administration of lipophil-
ic lidocaine base (Fig. 1), we may reach the IC50 of the P2X7Rs
in the draining lymph nodes to control systemic
hyperinflammation and avoid toxic lidocaine plasma levels
(Figs. 4 and 6). Obviously, such solutionmay also apply to other
P2X7R antagonists. We stress that sublingual and buccal ad-
ministration of lipophilic lidocaine is different from oral admin-
istration of lidocaine. Oral administration of lidocaine is aimed
at the resorption of the drug in the gastrointestinal tract (Fig.6).

There are other methods of targeting the immune cells
in the lymphatics, i.e. transdermal administration of lipo-
philic P2X7R antagonist with skin penetration enhancers
(i.e. alpha-terpineol [432], ethanol [433] and lipid based
nanoformulations [434]), intravenous administration of a
P2X7R antagonist using nano-sized drug delivery systems
[435], liposomes or polymer micelles [436] and oral ad-
ministration of a P2X7R antagonist using delivery sys-
tems for intestinal lymphatic drug transport such as chy-
lomicrons [437].
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